Lecture 10: Duality

MATH 110-3

Franny Dean

July 6, 2023

Notation

Let V be a \mathbb{F}-vector space.

Linear Functionals

Def'n:

A linear functional on V is a linear map from V to \mathbb{F}, i.e. an element of $\mathcal{L}(V, \mathbb{F})$.

Linear Functionals

Def'n:

A linear functional on V is a linear map from V to \mathbb{F}, i.e. an element of $\mathcal{L}(V, \mathbb{F})$.

Examples:

Linear Functionals

Def'n:

A linear functional on V is a linear map from V to \mathbb{F}, i.e. an element of $\mathcal{L}(V, \mathbb{F})$.

Examples:

■ $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ where $\phi(x, y, z)=6 x+y-z$

Linear Functionals

Def'n:

A linear functional on V is a linear map from V to \mathbb{F}, i.e. an element of $\mathcal{L}(V, \mathbb{F})$.

Examples:

■ $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ where $\phi(x, y, z)=6 x+y-z$
■ $\phi: \mathbb{F}^{n} \rightarrow \mathbb{F}$ where $\phi\left(x_{1}, \ldots, x_{n}\right)=c_{1} x_{1}+\ldots+c_{n} x_{n}$

Linear Functionals

Def'n:

A linear functional on V is a linear map from V to \mathbb{F}, i.e. an element of $\mathcal{L}(V, \mathbb{F})$.

Examples:

■ $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ where $\phi(x, y, z)=6 x+y-z$
■ $\phi: \mathbb{F}^{n} \rightarrow \mathbb{F}$ where $\phi\left(x_{1}, \ldots, x_{n}\right)=c_{1} x_{1}+\ldots+c_{n} x_{n}$

- $\phi: \mathcal{P}(\mathbb{R}) \rightarrow \mathbb{R}$ where $\phi(p)=\int_{0}^{1} p d x$

Dual Space

Def'n:

We call $\mathcal{L}(V, \mathbb{F})$ the dual space of V and denote it V^{\prime}.

Dual Space

Def'n:

We call $\mathcal{L}(V, \mathbb{F})$ the dual space of V and denote it V^{\prime}.

Sometimes V^{\prime} is denoted V^{*} elsewhere.

Dual Space

Def'n:

We call $\mathcal{L}(V, \mathbb{F})$ the dual space of V and denote it V^{\prime}.

Sometimes V^{\prime} is denoted V^{*} elsewhere.

Prop'n:

For V finite-dimensional, V^{\prime} is also finite-dimensional and $\operatorname{dim} V^{\prime}=\operatorname{dim} V$.

Dual Space

Prop'n:

For V finite-dimensional, V^{\prime} is also finite-dimensional and $\operatorname{dim} V^{\prime}=\operatorname{dim} V$.

Dual Space

Prop'n:

For V finite-dimensional, V^{\prime} is also finite-dimensional and $\operatorname{dim} V^{\prime}=\operatorname{dim} V$.

Proof.

Dual Space

Prop'n:

For V finite-dimensional, V^{\prime} is also finite-dimensional and $\operatorname{dim} V^{\prime}=\operatorname{dim} V$.

Proof. Recall that $\mathcal{L}(V, W) \cong \mathbb{F}^{n, m}$.

Dual Space

Prop'n:

For V finite-dimensional, V^{\prime} is also finite-dimensional and $\operatorname{dim} V^{\prime}=\operatorname{dim} V$.

Proof. Recall that $\mathcal{L}(V, W) \cong \mathbb{F}^{n, m}$.
Then $\operatorname{dim} \mathcal{L}(V, W)=\operatorname{dim} \mathbb{F}^{n, m}=\operatorname{dim} V \cdot \operatorname{dim} W$.

Dual Space

Prop'n:

For V finite-dimensional, V^{\prime} is also finite-dimensional and $\operatorname{dim} V^{\prime}=\operatorname{dim} V$.

Proof. Recall that $\mathcal{L}(V, W) \cong \mathbb{F}^{n, m}$.
Then $\operatorname{dim} \mathcal{L}(V, W)=\operatorname{dim} \mathbb{F}^{n, m}=\operatorname{dim} V \cdot \operatorname{dim} W$. $\operatorname{dim} \mathcal{L}(V, \mathbb{F})=\operatorname{dim} V \cdot \operatorname{dim} \mathbb{F}=\operatorname{dim} V$.

Dual Basis

Def'n:

If v_{1}, \ldots, v_{n} is a basis of V, then the dual basis of v_{1}, \ldots, v_{n} is the list of $\phi_{1}, \ldots, \phi_{n}$ of V^{\prime} such that

$$
\phi_{j}\left(v_{k}\right)= \begin{cases}1 & k=j \\ 0 & k \neq j\end{cases}
$$

Dual Basis

Def'n:

If v_{1}, \ldots, v_{n} is a basis of V, then the dual basis of v_{1}, \ldots, v_{n} is the list of $\phi_{1}, \ldots, \phi_{n}$ of V^{\prime} such that

$$
\phi_{j}\left(v_{k}\right)= \begin{cases}1 & k=j \\ 0 & k \neq j\end{cases}
$$

Examples:

$■$ Dual basis of e_{1}, \ldots, e_{n} ?

Dual Basis

Def'n:

If v_{1}, \ldots, v_{n} is a basis of V, then the dual basis of v_{1}, \ldots, v_{n} is the list of $\phi_{1}, \ldots, \phi_{n}$ of V^{\prime} such that

$$
\phi_{j}\left(v_{k}\right)= \begin{cases}1 & k=j \\ 0 & k \neq j\end{cases}
$$

Examples:

■ Dual basis of e_{1}, \ldots, e_{n} ?
■ $V=\mathbb{R}^{2}, B=\{(2,1),(3,1)$. Find the dual basis.

Dual Basis

Prop'n:

For V finite-dimensional, the dual basis of V is a basis of V^{\prime}.

Dual Basis

Prop'n:

For V finite-dimensional, the dual basis of V is a basis of V^{\prime}.
Proof.

Dual Basis

Prop'n:

For V finite-dimensional, the dual basis of V is a basis of V^{\prime}.
Proof. S'pose v_{1}, \ldots, v_{n} is a basis of V and $\phi_{1}, \ldots, \phi_{n}$ denotes the dual basis.

Dual Basis

Prop'n:

For V finite-dimensional, the dual basis of V is a basis of V^{\prime}.
Proof. S'pose v_{1}, \ldots, v_{n} is a basis of V and $\phi_{1}, \ldots, \phi_{n}$ denotes the dual basis. It suffices to show that $\phi_{1}, \ldots, \phi_{n}$ is linearly independent.

Let

$$
a_{1} \phi_{1}+\ldots+a_{n} \phi_{n}=0
$$

Dual Basis

Prop'n:

For V finite-dimensional, the dual basis of V is a basis of V^{\prime}.
Proof. S'pose v_{1}, \ldots, v_{n} is a basis of V and $\phi_{1}, \ldots, \phi_{n}$ denotes the dual basis. It suffices to show that $\phi_{1}, \ldots, \phi_{n}$ is linearly independent.

Let

$$
a_{1} \phi_{1}+\ldots+a_{n} \phi_{n}=0
$$

Notice $\left(a_{1} \phi_{1}+\ldots+a_{n} \phi_{n}\right)\left(v_{j}\right)=a_{j}$ for each $j \in[n]$.

Dual Basis

Prop'n:

For V finite-dimensional, the dual basis of V is a basis of V^{\prime}.
Proof. S'pose v_{1}, \ldots, v_{n} is a basis of V and $\phi_{1}, \ldots, \phi_{n}$ denotes the dual basis. It suffices to show that $\phi_{1}, \ldots, \phi_{n}$ is linearly independent.

Let

$$
a_{1} \phi_{1}+\ldots+a_{n} \phi_{n}=0
$$

Notice $\left(a_{1} \phi_{1}+\ldots+a_{n} \phi_{n}\right)\left(v_{j}\right)=a_{j}$ for each $j \in[n]$. Thus, $a_{j}=0$ for each j. \square

Dual Map

Def'n:

If $T \in \mathcal{L}(V, W)$, the dual map is the linear map $T^{\prime} \in \mathcal{L}\left(W^{\prime}, V^{\prime}\right)$ defined $T^{\prime}(\phi)=\phi \circ T$ for $\phi \in W^{\prime}$.

Dual Map

Def'n:

If $T \in \mathcal{L}(V, W)$, the dual map is the linear map $T^{\prime} \in \mathcal{L}\left(W^{\prime}, V^{\prime}\right)$ defined $T^{\prime}(\phi)=\phi \circ T$ for $\phi \in W^{\prime}$.

Examples:

Dual Map

Def'n:

If $T \in \mathcal{L}(V, W)$, the dual map is the linear map $T^{\prime} \in \mathcal{L}\left(W^{\prime}, V^{\prime}\right)$ defined $T^{\prime}(\phi)=\phi \circ T$ for $\phi \in W^{\prime}$.

Examples:

Let $D: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R})$ be the differentiation map $p \rightarrow p^{\prime}$.

Dual Map

Def'n:

If $T \in \mathcal{L}(V, W)$, the dual map is the linear map $T^{\prime} \in \mathcal{L}\left(W^{\prime}, V^{\prime}\right)$ defined $T^{\prime}(\phi)=\phi \circ T$ for $\phi \in W^{\prime}$.

Examples:

Let $D: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R})$ be the differentiation map $p \rightarrow p^{\prime}$.
D^{\prime} is the dual map from $\mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R}) \rightarrow \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$.

Dual Map

Def'n:

If $T \in \mathcal{L}(V, W)$, the dual map is the linear map $T^{\prime} \in \mathcal{L}\left(W^{\prime}, V^{\prime}\right)$ defined $T^{\prime}(\phi)=\phi \circ T$ for $\phi \in W^{\prime}$.

Examples:

Let $D: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R})$ be the differentiation map $p \rightarrow p^{\prime}$.
D^{\prime} is the dual map from $\mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R}) \rightarrow \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$.
For example, if $\phi \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$ defined to be $\phi(p)=p(3)$.

Dual Map

Def'n:

If $T \in \mathcal{L}(V, W)$, the dual map is the linear map $T^{\prime} \in \mathcal{L}\left(W^{\prime}, V^{\prime}\right)$ defined $T^{\prime}(\phi)=\phi \circ T$ for $\phi \in W^{\prime}$.

Examples:

Let $D: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R})$ be the differentiation map $p \rightarrow p^{\prime}$.
D^{\prime} is the dual map from $\mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R}) \rightarrow \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$.
For example, if $\phi \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$ defined to be $\phi(p)=p(3)$.
Then $D^{\prime}(\phi)(p)=\phi(D(p))=\phi\left(p^{\prime}\right)=p^{\prime}(3)$.

Dual Map

Def'n:

If $T \in \mathcal{L}(V, W)$, the dual map is the linear map $T^{\prime} \in \mathcal{L}\left(W^{\prime}, V^{\prime}\right)$ defined $T^{\prime}(\phi)=\phi \circ T$ for $\phi \in W^{\prime}$.

Examples:

Let $D: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R})$ be the differentiation map $p \rightarrow p^{\prime}$.
D^{\prime} is the dual map from $\mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R}) \rightarrow \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$.
For example, if $\phi \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$ defined to be $\phi(p)=p(3)$.
Then $D^{\prime}(\phi)(p)=\phi(D(p))=\phi\left(p^{\prime}\right)=p^{\prime}(3)$.
If $\phi \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$ defined to be $\phi(p)=\int_{0}^{1} p$.

Dual Map

Def'n:

If $T \in \mathcal{L}(V, W)$, the dual map is the linear map $T^{\prime} \in \mathcal{L}\left(W^{\prime}, V^{\prime}\right)$ defined $T^{\prime}(\phi)=\phi \circ T$ for $\phi \in W^{\prime}$.

Examples:

Let $D: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R})$ be the differentiation map $p \rightarrow p^{\prime}$.
D^{\prime} is the dual map from $\mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R}) \rightarrow \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$.
For example, if $\phi \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$ defined to be $\phi(p)=p(3)$.
Then $D^{\prime}(\phi)(p)=\phi(D(p))=\phi\left(p^{\prime}\right)=p^{\prime}(3)$.
If $\phi \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$ defined to be $\phi(p)=\int_{0}^{1} p$.
Then $D^{\prime}(\phi)(p)=\phi(D(p))=\phi\left(p^{\prime}\right)=\int_{0}^{1} p^{\prime}=p(1)-p(0)$.

Dual Map

Facts about Dual Map:

$\square(S+T)^{\prime}=S^{\prime}+T^{\prime}$ for all $S, T \in \mathcal{L}(V, W)$
■ $(\lambda T)^{\prime}=\lambda T^{\prime}$ for all $\lambda \in \mathbb{F}$ and $T \in \mathcal{L}(V, W)$
■ $(S T)^{\prime}=T^{\prime} S^{\prime}$ for all $T \in \mathcal{L}(U, V)$ and all $S \in \mathcal{L}(V, W)$

Examples and Exercises

$$
\text { Define } T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \text { by } T(x, y, z)=(10 x+8 y+2 z, x+y-z) .
$$

Examples and Exercises

Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $T(x, y, z)=(10 x+8 y+2 z, x+y-z)$.
Suppose ϕ_{1}, ϕ_{2} denotes the dual basis of the standard basis of \mathbb{R}^{2}.
What are the linear functionals $T^{\prime}\left(\phi_{1}\right)$ and $T^{\prime}\left(\phi_{2}\right)$?

Lecture ended here!

Examples and Exercises

Define $T: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R})$ by $(T p)(x)=x^{2} p(x)$ for $x \in \mathbb{R}$.

Examples and Exercises

Define $T: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R})$ by $(T p)(x)=x^{2} p(x)$ for $x \in \mathbb{R}$.
Suppose $\phi \in \mathcal{P}(\mathbb{R})^{\prime}$ defined by $\phi(p)=p^{\prime \prime}(7)$.

Examples and Exercises

Define $T: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R})$ by $(T p)(x)=x^{2} p(x)$ for $x \in \mathbb{R}$.
Suppose $\phi \in \mathcal{P}(\mathbb{R})^{\prime}$ defined by $\phi(p)=p^{\prime \prime}(7)$.
Describe $T^{\prime}(\phi)$ on $\mathcal{P}(\mathbb{R})$.

Examples and Exercises

Suppose V is finite-dimensional and U is a subspace of V such that $U \neq V$. Prove that there exists $\phi \in V^{\prime}$ such that $\phi(u)=0$ for every $u \in U$ but $\phi \neq 0$.

Examples and Exercises

Suppose V is finite dimensional and $v \in V$ with $v \neq 0$. Prove that there exists $\phi \in V^{\prime}$ such that $\phi(v)=1$.

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

