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Last time: Dual Space

Def’n:
We call L(V ,F) the dual space of V and denote it V ′.

Prop’n:
For V finite-dimensional, V ′ is also finite-dimensional and
dim V ′ = dim V .
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Dual Basis

Def’n:
If v1, . . . , vn is a basis of V , then the dual basis of v1, . . . , vn is the list
of ϕ1, . . . , ϕn of V ′ such that

ϕj(vk) =

{
1 k = j,
0 k ̸= j

Examples:
Dual basis of e1, . . . , en?
Dual basis of 1, x, . . . , xm ∈ Pm(R)?

(xk)(j)(0)
j!
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Last time: Dual Map

Def’n:
If T ∈ L(V ,W), the dual map is the linear map T ′ ∈ L(W ′, V ′) defined
T ′(ϕ) = ϕ ◦ T for ϕ ∈ W ′.

Today we will see the following results:

Prop’ns:
Suppose V ,W are finite dimensional and T ∈ L(V ,W). Then

T is surjective if and only if T ′ is injective
T is injective if and only if T ′ is surjective
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Examples and Exercises

Define T : P(R) → P(R) by (Tp)(x) = x2p(x) for x ∈ R.

Suppose ϕ ∈ P(R)′ defined by ϕ(p) = p′′(7).

Describe T ′(ϕ) on P(R).
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Examples and Exercises

Suppose V is finite dimensional and v ∈ V with v ̸= 0. Prove that
there exists ϕ ∈ V ′ such that ϕ(v) = 1.
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Annihilator

Def’n:
For U ⊂ V the annihilator of U is denoted U0 and is defined to be

U0 = {ϕ ∈ V ′ : ϕ(u) = 0 for all u ∈ U}.

Fact [Axl14]:

U0 is a subspace of V ′.

Example:

U ⊂ P(R) where polynomials are multiples of x2

ϕ ∈ P(R)′ defined as ϕ(p) = p′(0) is in U0
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Dimension of Annihilator

Prop’n:
V finite dimensional. U a subspace. Then

dimU + dimU0 = dim V .

Proof sketch.

Define i ∈ L(U, V) to be the inclusion map. Then i′ is a linear map
V ′ → U′.

dim range i′ + dim null i′ = dim V ′ = dim V

Using definitions, replace dim null i′ with dimU0.
Need: dim range i′ = dimU. . .
range i′ = U′ because every linear functional of U can be extended to
V

FD · MATH 110 · July 10, 2023 8 / 18



Dimension of Annihilator

Prop’n:
V finite dimensional. U a subspace. Then

dimU + dimU0 = dim V .

Proof sketch.

Define i ∈ L(U, V) to be the inclusion map. Then i′ is a linear map
V ′ → U′.

dim range i′ + dim null i′ = dim V ′ = dim V

Using definitions, replace dim null i′ with dimU0.
Need: dim range i′ = dimU. . .
range i′ = U′ because every linear functional of U can be extended to
V

FD · MATH 110 · July 10, 2023 8 / 18



Dimension of Annihilator

Prop’n:
V finite dimensional. U a subspace. Then

dimU + dimU0 = dim V .

Proof sketch.

Define i ∈ L(U, V) to be the inclusion map. Then i′ is a linear map
V ′ → U′.

dim range i′ + dim null i′ = dim V ′ = dim V

Using definitions, replace dim null i′ with dimU0.
Need: dim range i′ = dimU. . .
range i′ = U′ because every linear functional of U can be extended to
V

FD · MATH 110 · July 10, 2023 8 / 18



Dimension of Annihilator

Prop’n:
V finite dimensional. U a subspace. Then

dimU + dimU0 = dim V .

Proof sketch.

Define i ∈ L(U, V) to be the inclusion map. Then i′ is a linear map
V ′ → U′.

dim range i′ + dim null i′ = dim V ′ = dim V

Using definitions, replace dim null i′ with dimU0.
Need: dim range i′ = dimU. . .
range i′ = U′ because every linear functional of U can be extended to
V

FD · MATH 110 · July 10, 2023 8 / 18



Dimension of Annihilator

Prop’n:
V finite dimensional. U a subspace. Then

dimU + dimU0 = dim V .

Proof sketch.

Define i ∈ L(U, V) to be the inclusion map. Then i′ is a linear map
V ′ → U′.

dim range i′ + dim null i′ = dim V ′ = dim V

Using definitions, replace dim null i′ with dimU0.

Need: dim range i′ = dimU. . .
range i′ = U′ because every linear functional of U can be extended to
V

FD · MATH 110 · July 10, 2023 8 / 18



Dimension of Annihilator

Prop’n:
V finite dimensional. U a subspace. Then

dimU + dimU0 = dim V .

Proof sketch.

Define i ∈ L(U, V) to be the inclusion map. Then i′ is a linear map
V ′ → U′.

dim range i′ + dim null i′ = dim V ′ = dim V

Using definitions, replace dim null i′ with dimU0.
Need: dim range i′ = dimU. . .

range i′ = U′ because every linear functional of U can be extended to
V

FD · MATH 110 · July 10, 2023 8 / 18



Dimension of Annihilator

Prop’n:
V finite dimensional. U a subspace. Then

dimU + dimU0 = dim V .

Proof sketch.

Define i ∈ L(U, V) to be the inclusion map. Then i′ is a linear map
V ′ → U′.

dim range i′ + dim null i′ = dim V ′ = dim V

Using definitions, replace dim null i′ with dimU0.
Need: dim range i′ = dimU. . .
range i′ = U′ because every linear functional of U can be extended to
V

FD · MATH 110 · July 10, 2023 8 / 18



Null space of T ′

Prop’n:
Suppose V and W are finite dimensional T ∈ L(V ,W). Then

null T ′ = (range T)0

dim null T ′ = dim null T + dimW − dim V

Proof notes. part 1:
null T ′ ⊆ (range T)0

null T ′ ⊇ (range T)0

part 2: Notice dim(range T)0 = dimW − dim range T .
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T is surjective⇔ T’ injective

Prop’n:
Suppose V and W are finite dimensional and T ∈ L(V ,W). Then T is
surjective if and only if T ′ is injective.

Proof. T is surjective⇔ range T = W

range T = W ⇔ (range T)0 = 0

(range T)0 = 0⇔ null T ′ = 0
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Similar Results

Prop’n [Axl14]:
Suppose V and W are finite dimensional T ∈ L(V ,W). Then

dim range T ′ = dim range T
range T ′ = (null T)0

Prop’n [Axl14]:
Suppose V and W are finite dimensional T ∈ L(V ,W). Then T is
injective if and only if T ′ is surjective.
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Matrix Transpose

Def’n:
The transpose of a matrix A, denoted At is the matrix obtained by
interchanging rows and columns.

(At)k,j = Aj,k

Facts:
(A+ C)t = At + Ct

(λA)t = λAt

(AC)t = CtAt

For T ∈ L(V ,W),M(T ′) = (M(T))t .
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Transpose is matrix of T ′

Prop’n:
For T ∈ L(V ,W),M(T ′) = (M(T))t .

Proof. Let A = M(T), C = M(T ′).

From definition, T ′(ψj) =
n∑
r=1

Cr,jϕr for some bases of W ′, V ′.

Rewrite by applying both sides to vk

(ψj ◦ T)(vk) =
n∑
r=1

Cr,jϕr(vk) = Ck,j.

On the other hand, we also have
(ψj ◦ T)(vk) = ψj(Tvk)

= ψj(
m∑
r=1

Ar,kwr)

=
m∑
r=1

Ar,kψj(wr)

= Aj,k
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Matrix Rank

Def’n:
Suppose A is an m× n matrix with entries in F.

The row rank is the dimension of the span of the rows of A.
The column rank is the dimension of the span of the columns of
A.

Examples: (
1 2 3 4 5
0 8 7 0 6

)
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Range and Column Rank

Prop’n:
Suppose V and W are finite-dimensional and T ∈ L(V ,W). Then
dim range T is equal to the column rank ofM(T).

Proof sketch. Pick v1, . . . , vn to be a basis of V .

M : span(Tv1, . . . , Tvn) → span(M(Tv1), . . . ,M(Tvn)) is an
isomorphism.

range T = span(Tv1, . . . , Tvn) and
dim span(M(Tv1), . . . ,M(Tvn)) = column rank
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Row Rank Equals Column Rank

Prop’n:
Suppose A ∈ Fm,n. Then row rank of A equals the column rank of A.

Proof. Define T : Fn,1 → Fm,1 by Tx = Ax. ThenM(T) = A.

column rank of A = column rank ofM(T)
= dim range T
= dim range T ′

= column rank ofM(T ′)

= column rank of At

= row rank of A

□
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= row rank of A

□
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Matrix Rank

Def’n:
We then say the rank of a matrix is the column rank (or equivalently
the row rank).
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