Lecture 11: Duality (cont'd) and Rank

MATH 110-3

Franny Dean

July 10, 2023

Last time: Dual Space

Def'n:
We call $\mathcal{L}(V, \mathbb{F})$ the dual space of V and denote it V^{\prime}.

Last time: Dual Space

Def'n:
We call $\mathcal{L}(V, \mathbb{F})$ the dual space of V and denote it V^{\prime}.

Prop'n:

For V finite-dimensional, V^{\prime} is also finite-dimensional and $\operatorname{dim} V^{\prime}=\operatorname{dim} V$.

Dual Basis

Def'n:

If v_{1}, \ldots, v_{n} is a basis of V, then the dual basis of v_{1}, \ldots, v_{n} is the list of $\phi_{1}, \ldots, \phi_{n}$ of V^{\prime} such that

$$
\phi_{j}\left(v_{k}\right)= \begin{cases}1 & k=j \\ 0 & k \neq j\end{cases}
$$

Dual Basis

Def'n:

If v_{1}, \ldots, v_{n} is a basis of V, then the dual basis of v_{1}, \ldots, v_{n} is the list of $\phi_{1}, \ldots, \phi_{n}$ of V^{\prime} such that

$$
\phi_{j}\left(v_{k}\right)= \begin{cases}1 & k=j \\ 0 & k \neq j\end{cases}
$$

Examples:

■ Dual basis of e_{1}, \ldots, e_{n} ?

Dual Basis

Def'n:

If v_{1}, \ldots, v_{n} is a basis of V, then the dual basis of v_{1}, \ldots, v_{n} is the list of $\phi_{1}, \ldots, \phi_{n}$ of V^{\prime} such that

$$
\phi_{j}\left(v_{k}\right)= \begin{cases}1 & k=j \\ 0 & k \neq j\end{cases}
$$

Examples:

■ Dual basis of e_{1}, \ldots, e_{n} ?
$■$ Dual basis of $1, x, \ldots, x^{m} \in \mathcal{P}_{m}(\mathbb{R})$?

Dual Basis

Def'n:

If v_{1}, \ldots, v_{n} is a basis of V, then the dual basis of v_{1}, \ldots, v_{n} is the list of $\phi_{1}, \ldots, \phi_{n}$ of V^{\prime} such that

$$
\phi_{j}\left(v_{k}\right)= \begin{cases}1 & k=j \\ 0 & k \neq j\end{cases}
$$

Examples:

■ Dual basis of e_{1}, \ldots, e_{n} ?
■ Dual basis of $1, x, \ldots, x^{m} \in \mathcal{P}_{m}(\mathbb{R})$?

$$
\frac{\left(x^{k}\right)^{(j)}(0)}{j!}
$$

Last time: Dual Map

Def'n:

If $T \in \mathcal{L}(V, W)$, the dual map is the linear map $T^{\prime} \in \mathcal{L}\left(W^{\prime}, V^{\prime}\right)$ defined $T^{\prime}(\phi)=\phi \circ T$ for $\phi \in W^{\prime}$.

Last time: Dual Map

Def'n:

If $T \in \mathcal{L}(V, W)$, the dual map is the linear map $T^{\prime} \in \mathcal{L}\left(W^{\prime}, V^{\prime}\right)$ defined $T^{\prime}(\phi)=\phi \circ T$ for $\phi \in W^{\prime}$.

Today we will see the following results:

Prop'ns:

Suppose V, W are finite dimensional and $T \in \mathcal{L}(V, W)$. Then
■ T is surjective if and only if T^{\prime} is injective
■ T is injective if and only if T^{\prime} is surjective

Examples and Exercises

Define $T: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R})$ by $(T p)(x)=x^{2} p(x)$ for $x \in \mathbb{R}$.

Examples and Exercises

Define $T: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R})$ by $(T p)(x)=x^{2} p(x)$ for $x \in \mathbb{R}$.
Suppose $\phi \in \mathcal{P}(\mathbb{R})^{\prime}$ defined by $\phi(p)=p^{\prime \prime}(7)$.

Examples and Exercises

Define $T: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R})$ by $(T p)(x)=x^{2} p(x)$ for $x \in \mathbb{R}$.
Suppose $\phi \in \mathcal{P}(\mathbb{R})^{\prime}$ defined by $\phi(p)=p^{\prime \prime}(7)$.
Describe $T^{\prime}(\phi)$ on $\mathcal{P}(\mathbb{R})$.

Examples and Exercises

Suppose V is finite dimensional and $v \in V$ with $v \neq 0$. Prove that there exists $\phi \in V^{\prime}$ such that $\phi(v)=1$.

Annihilator

Def'n:

For $U \subset V$ the annihilator of U is denoted U^{0} and is defined to be

$$
U^{0}=\left\{\phi \in V^{\prime}: \phi(u)=0 \text { for all } u \in U\right\} .
$$

Annihilator

Def'n:
For $U \subset V$ the annihilator of U is denoted U^{0} and is defined to be

$$
U^{0}=\left\{\phi \in V^{\prime}: \phi(u)=0 \text { for all } u \in U\right\} .
$$

Fact [Ax[14]:

U^{0} is a subspace of V^{\prime}.

Annihilator

Def'n:
For $U \subset V$ the annihilator of U is denoted U^{0} and is defined to be

$$
U^{0}=\left\{\phi \in V^{\prime}: \phi(u)=0 \text { for all } u \in U\right\} .
$$

Fact [Ax[14]:

U^{0} is a subspace of V^{\prime}.

Example:

Annihilator

Def'n:

For $U \subset V$ the annihilator of U is denoted U^{0} and is defined to be

$$
U^{0}=\left\{\phi \in V^{\prime}: \phi(u)=0 \text { for all } u \in U\right\} .
$$

Fact [Ax[14]:

U^{0} is a subspace of V^{\prime}.

Example:
$U \subset \mathcal{P}(\mathbb{R})$ where polynomials are multiples of x^{2}

Annihilator

Def'n:

For $U \subset V$ the annihilator of U is denoted U^{0} and is defined to be

$$
U^{0}=\left\{\phi \in V^{\prime}: \phi(u)=0 \text { for all } u \in U\right\} .
$$

Fact [Axl14]:

U^{0} is a subspace of V^{\prime}.

Example:
$U \subset \mathcal{P}(\mathbb{R})$ where polynomials are multiples of x^{2}
$\phi \in \mathcal{P}(\mathbb{R})^{\prime}$ defined as $\phi(p)=p^{\prime}(0)$ is in U^{0}

Dimension of Annihilator

Prop'n:

V finite dimensional. U a subspace. Then

$$
\operatorname{dim} U+\operatorname{dim} U^{0}=\operatorname{dim} V .
$$

Dimension of Annihilator

Prop'n:

V finite dimensional. U a subspace. Then

$$
\operatorname{dim} U+\operatorname{dim} U^{0}=\operatorname{dim} V .
$$

Proof sketch.

Dimension of Annihilator

Prop'n:

V finite dimensional. U a subspace. Then

$$
\operatorname{dim} U+\operatorname{dim} U^{0}=\operatorname{dim} V .
$$

Proof sketch.
Define $i \in \mathcal{L}(U, V)$ to be the inclusion map. Then i^{\prime} is a linear map $V^{\prime} \rightarrow U^{\prime}$.

Dimension of Annihilator

Prop'n:

V finite dimensional. U a subspace. Then

$$
\operatorname{dim} U+\operatorname{dim} U^{0}=\operatorname{dim} V
$$

Proof sketch.
Define $i \in \mathcal{L}(U, V)$ to be the inclusion map. Then i^{\prime} is a linear map $V^{\prime} \rightarrow U^{\prime}$.

$$
\operatorname{dim} \text { range } i^{\prime}+\operatorname{dim} n u l l i^{\prime}=\operatorname{dim} V^{\prime}=\operatorname{dim} V
$$

Dimension of Annihilator

Prop'n:

V finite dimensional. U a subspace. Then

$$
\operatorname{dim} U+\operatorname{dim} U^{0}=\operatorname{dim} V .
$$

Proof sketch.
Define $i \in \mathcal{L}(U, V)$ to be the inclusion map. Then i^{\prime} is a linear map $V^{\prime} \rightarrow U^{\prime}$.

$$
\operatorname{dim} \text { range } i^{\prime}+\operatorname{dim} \text { null } i^{\prime}=\operatorname{dim} V^{\prime}=\operatorname{dim} V
$$

Using definitions, replace dim null i^{\prime} with $\operatorname{dim} U^{0}$.

Dimension of Annihilator

Prop'n:

V finite dimensional. U a subspace. Then

$$
\operatorname{dim} U+\operatorname{dim} U^{0}=\operatorname{dim} V .
$$

Proof sketch.
Define $i \in \mathcal{L}(U, V)$ to be the inclusion map. Then i^{\prime} is a linear map $V^{\prime} \rightarrow U^{\prime}$.

$$
\operatorname{dim} \text { range } i^{\prime}+\operatorname{dim} \text { null } i^{\prime}=\operatorname{dim} V^{\prime}=\operatorname{dim} V
$$

Using definitions, replace dim null i^{\prime} with $\operatorname{dim} U^{0}$.
Need: dim range $i^{\prime}=\operatorname{dim} U . .$.

Dimension of Annihilator

Prop'n:

V finite dimensional. U a subspace. Then

$$
\operatorname{dim} U+\operatorname{dim} U^{0}=\operatorname{dim} V
$$

Proof sketch.
Define $i \in \mathcal{L}(U, V)$ to be the inclusion map. Then i^{\prime} is a linear map $V^{\prime} \rightarrow U^{\prime}$.

$$
\operatorname{dim} \text { range } i^{\prime}+\operatorname{dim} n u l l i^{\prime}=\operatorname{dim} V^{\prime}=\operatorname{dim} V
$$

Using definitions, replace dim null i^{\prime} with $\operatorname{dim} U^{0}$.
Need: dim range $i^{\prime}=\operatorname{dim} U .$.
range $i^{\prime}=U^{\prime}$ because every linear functional of U can be extended to
V

Null space of T^{\prime}

Prop'n:

Suppose V and W are finite dimensional $T \in \mathcal{L}(V, W)$. Then

- null $T^{\prime}=(\text { range } T)^{0}$
- dim null $T^{\prime}=\operatorname{dim} n u l l T+\operatorname{dim} W-\operatorname{dim} V$

Null space of T^{\prime}

Prop'n:

Suppose V and W are finite dimensional $T \in \mathcal{L}(V, W)$. Then

- null $T^{\prime}=(\text { range } T)^{0}$
- dim null $T^{\prime}=\operatorname{dim} n u l l T+\operatorname{dim} W-\operatorname{dim} V$

Proof notes.

Null space of T^{\prime}

Prop'n:

Suppose V and W are finite dimensional $T \in \mathcal{L}(V, W)$. Then

- null $T^{\prime}=(\text { range } T)^{0}$
- dim null $T^{\prime}=\operatorname{dim} n u l l T+\operatorname{dim} W-\operatorname{dim} V$

Proof notes. part 1:

- null $T^{\prime} \subseteq(\text { range } T)^{0}$
- null $T^{\prime} \supseteq(\text { range } T)^{0}$

Null space of T^{\prime}

Prop'n:

Suppose V and W are finite dimensional $T \in \mathcal{L}(V, W)$. Then

- null $T^{\prime}=(\text { range } T)^{0}$
- dim null $T^{\prime}=\operatorname{dim} n u l l T+\operatorname{dim} W-\operatorname{dim} V$

Proof notes. part 1:

- null $T^{\prime} \subseteq(\text { range } T)^{0}$
- null $T^{\prime} \supseteq(\text { range } T)^{0}$
part 2: Notice $\operatorname{dim}(\text { range } T)^{0}=\operatorname{dim} W-\operatorname{dim}$ range T.

T is surjective $\Leftrightarrow \mathbf{T}^{\prime}$ injective

Prop'n:

Suppose V and W are finite dimensional and $T \in \mathcal{L}(V, W)$. Then T is surjective if and only if T^{\prime} is injective.

T is surjective \Leftrightarrow T' injective

Prop'n:

Suppose V and W are finite dimensional and $T \in \mathcal{L}(V, W)$. Then T is surjective if and only if T^{\prime} is injective.

Proof.

T is surjective $\Leftrightarrow \mathbf{T}^{\prime}$ injective

Prop'n:

Suppose V and W are finite dimensional and $T \in \mathcal{L}(V, W)$. Then T is surjective if and only if T^{\prime} is injective.

$$
\text { Proof. } T \text { is surjective } \Leftrightarrow \text { range } T=W
$$

T is surjective $\Leftrightarrow \mathbf{T}^{\prime}$ injective

Prop'n:

Suppose V and W are finite dimensional and $T \in \mathcal{L}(V, W)$. Then T is surjective if and only if T^{\prime} is injective.

Proof. T is surjective \Leftrightarrow range $T=W$
range $T=W \Leftrightarrow(\text { range } T)^{0}=0$

T is surjective \Leftrightarrow T' injective

Prop'n:

Suppose V and W are finite dimensional and $T \in \mathcal{L}(V, W)$. Then T is surjective if and only if T^{\prime} is injective.

Proof. T is surjective \Leftrightarrow range $T=W$
range $T=W \Leftrightarrow(\text { range } T)^{0}=0$
$(\text { range } T)^{0}=0 \Leftrightarrow \operatorname{null} T^{\prime}=0$

Similar Results

Prop'n [Ax[14]:

Suppose V and W are finite dimensional $T \in \mathcal{L}(V, W)$. Then
■ dim range $T^{\prime}=\operatorname{dim}$ range T

- range $T^{\prime}=(\text { null } T)^{0}$

Similar Results

Prop'n [Ax[14]:

Suppose V and W are finite dimensional $T \in \mathcal{L}(V, W)$. Then

- dim range $T^{\prime}=\operatorname{dim}$ range T
- range $T^{\prime}=(\text { null } T)^{0}$

Prop'n [Axl14]:

Suppose V and W are finite dimensional $T \in \mathcal{L}(V, W)$. Then T is injective if and only if T^{\prime} is surjective.

Matrix Transpose

Def'n:

The transpose of a matrix A, denoted A^{t} is the matrix obtained by interchanging rows and columns.

Matrix Transpose

Def'n:

The transpose of a matrix A, denoted A^{t} is the matrix obtained by interchanging rows and columns.

$$
\left(A^{t}\right)_{k, j}=A_{j, k}
$$

Matrix Transpose

Def'n:

The transpose of a matrix A, denoted A^{t} is the matrix obtained by interchanging rows and columns.

$$
\left(A^{t}\right)_{k, j}=A_{j, k}
$$

Facts:

$\square(A+C)^{t}=A^{t}+C^{t}$

Matrix Transpose

Def'n:

The transpose of a matrix A, denoted A^{t} is the matrix obtained by interchanging rows and columns.

$$
\left(A^{t}\right)_{k, j}=A_{j, k}
$$

Facts:

$\square(A+C)^{t}=A^{t}+C^{t}$

- $(\lambda A)^{t}=\lambda A^{t}$

Matrix Transpose

Def'n:

The transpose of a matrix A, denoted A^{t} is the matrix obtained by interchanging rows and columns.

$$
\left(A^{t}\right)_{k, j}=A_{j, k}
$$

Facts:

$\square(A+C)^{t}=A^{t}+C^{t}$
■ $(\lambda A)^{t}=\lambda A^{t}$
$\square(A C)^{t}=C^{t} A^{t}$

Matrix Transpose

Def'n:

The transpose of a matrix A, denoted A^{t} is the matrix obtained by interchanging rows and columns.

$$
\left(A^{t}\right)_{k, j}=A_{j, k}
$$

Facts:

■ $(A+C)^{t}=A^{t}+C^{t}$

- $(\lambda A)^{t}=\lambda A^{t}$
- $(A C)^{t}=C^{t} A^{t}$
\square For $T \in \mathcal{L}(V, W), \mathcal{M}\left(T^{\prime}\right)=(\mathcal{M}(T))^{t}$.

Transpose is matrix of T^{\prime}

Prop'n:

For $T \in \mathcal{L}(V, W), \mathcal{M}\left(T^{\prime}\right)=(\mathcal{M}(T))^{t}$.

Transpose is matrix of T^{\prime}

Prop'n:

For $T \in \mathcal{L}(V, W), \mathcal{M}\left(T^{\prime}\right)=(\mathcal{M}(T))^{t}$.
Proof.

Transpose is matrix of T^{\prime}

Prop'n:

For $T \in \mathcal{L}(V, W), \mathcal{M}\left(T^{\prime}\right)=(\mathcal{M}(T))^{t}$.
Proof. Let $A=\mathcal{M}(T), C=\mathcal{M}\left(T^{\prime}\right)$.

Transpose is matrix of T^{\prime}

Prop'n:

For $T \in \mathcal{L}(V, W), \mathcal{M}\left(T^{\prime}\right)=(\mathcal{M}(T))^{t}$.
Proof. Let $A=\mathcal{M}(T), C=\mathcal{M}\left(T^{\prime}\right)$.
From definition, $T^{\prime}\left(\psi_{j}\right)=\sum_{r=1}^{n} C_{r, j} \phi_{r}$ for some bases of W^{\prime}, V^{\prime}.

Transpose is matrix of T^{\prime}

Prop'n:

For $T \in \mathcal{L}(V, W), \mathcal{M}\left(T^{\prime}\right)=(\mathcal{M}(T))^{t}$.
Proof. Let $A=\mathcal{M}(T), C=\mathcal{M}\left(T^{\prime}\right)$.
From definition, $T^{\prime}\left(\psi_{j}\right)=\sum_{r=1}^{n} C_{r, j} \phi_{r}$ for some bases of W^{\prime}, V^{\prime}.
Rewrite by applying both sides to v_{k}

Transpose is matrix of T^{\prime}

Prop'n:

For $T \in \mathcal{L}(V, W), \mathcal{M}\left(T^{\prime}\right)=(\mathcal{M}(T))^{t}$.
Proof. Let $A=\mathcal{M}(T), C=\mathcal{M}\left(T^{\prime}\right)$.
From definition, $T^{\prime}\left(\psi_{j}\right)=\sum_{r=1}^{n} C_{r, j} \phi_{r}$ for some bases of W^{\prime}, V^{\prime}.
Rewrite by applying both sides to v_{k}

$$
\left(\psi_{j} \circ T\right)\left(v_{k}\right)=\sum_{r=1}^{n} C_{r, j} \phi_{r}\left(v_{k}\right)=C_{k, j} .
$$

Transpose is matrix of T^{\prime}

Prop'n:

For $T \in \mathcal{L}(V, W), \mathcal{M}\left(T^{\prime}\right)=(\mathcal{M}(T))^{t}$.
Proof. Let $A=\mathcal{M}(T), C=\mathcal{M}\left(T^{\prime}\right)$.
From definition, $T^{\prime}\left(\psi_{j}\right)=\sum_{r=1}^{n} C_{r, j} \phi_{r}$ for some bases of W^{\prime}, V^{\prime}.
Rewrite by applying both sides to v_{k}

$$
\left(\psi_{j} \circ T\right)\left(v_{k}\right)=\sum_{r=1}^{n} C_{r, j} \phi_{r}\left(v_{k}\right)=C_{k, j} .
$$

On the other hand, we also have

$$
\begin{aligned}
\left(\psi_{j} \circ T\right)\left(v_{k}\right) & =\psi_{j}\left(T v_{k}\right) \\
& =\psi_{j}\left(\sum_{r=1}^{m} A_{r, k} W_{r}\right) \\
& =\sum_{r=1}^{m} A_{r, k} \psi_{j}\left(w_{r}\right)
\end{aligned}
$$

Matrix Rank

Def'n:

Suppose A is an $m \times n$ matrix with entries in \mathbb{F}.

- The row rank is the dimension of the span of the rows of A.

■ The column rank is the dimension of the span of the columns of A.

Matrix Rank

Def'n:

Suppose A is an $m \times n$ matrix with entries in \mathbb{F}.

- The row rank is the dimension of the span of the rows of A.

■ The column rank is the dimension of the span of the columns of A.

Examples:

Matrix Rank

Def'n:

Suppose A is an $m \times n$ matrix with entries in \mathbb{F}.

- The row rank is the dimension of the span of the rows of A.

■ The column rank is the dimension of the span of the columns of A.

Examples:

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
0 & 8 & 7 & 0 & 6
\end{array}\right)
$$

Range and Column Rank

Prop'n:

Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Then dim range T is equal to the column rank of $\mathcal{M}(T)$.

Proof sketch. Pick v_{1}, \ldots, v_{n} to be a basis of V.
$\mathcal{M}: \operatorname{span}\left(T v_{1}, \ldots, T v_{n}\right) \rightarrow \operatorname{span}\left(\mathcal{M}\left(T v_{1}\right), \ldots, \mathcal{M}\left(T v_{n}\right)\right)$ is an isomorphism.
range $T=\operatorname{span}\left(T v_{1}, \ldots, T v_{n}\right)$ and $\operatorname{dim} \operatorname{span}\left(\mathcal{M}\left(T v_{1}\right), \ldots, \mathcal{M}\left(T v_{n}\right)\right)=$ column rank

Row Rank Equals Column Rank

Prop'n:

Suppose $A \in \mathbb{F}^{m, n}$. Then row rank of A equals the column rank of A.

Row Rank Equals Column Rank

Prop'n:

Suppose $A \in \mathbb{F}^{m, n}$. Then row rank of A equals the column rank of A.

Proof. Define $T: \mathbb{F}^{n, 1} \rightarrow \mathbb{F}^{m, 1}$ by $T x=A x$.

Row Rank Equals Column Rank

Prop'n:

Suppose $A \in \mathbb{F}^{m, n}$. Then row rank of A equals the column rank of A.
Proof. Define $T: \mathbb{F}^{n, 1} \rightarrow \mathbb{F}^{m, 1}$ by $T x=A x$. Then $\mathcal{M}(T)=A$.

Row Rank Equals Column Rank

Prop'n:

Suppose $A \in \mathbb{F}^{m, n}$. Then row rank of A equals the column rank of A.
Proof. Define $T: \mathbb{F}^{n, 1} \rightarrow \mathbb{F}^{m, 1}$ by $T x=A x$. Then $\mathcal{M}(T)=A$.

$$
\text { column rank of } \begin{aligned}
A & =\operatorname{column} \text { rank of } \mathcal{M}(T) \\
& =\operatorname{dim} \text { range } T \\
& =\operatorname{dim} \text { range } T^{\prime} \\
& =\operatorname{column} \text { rank of } \mathcal{M}\left(T^{\prime}\right) \\
& =\operatorname{column} \text { rank of } A^{t} \\
& =\text { row rank of } A
\end{aligned}
$$

Row Rank Equals Column Rank

Prop'n:

Suppose $A \in \mathbb{F}^{m, n}$. Then row rank of A equals the column rank of A.
Proof. Define $T: \mathbb{F}^{n, 1} \rightarrow \mathbb{F}^{m, 1}$ by $T x=A x$. Then $\mathcal{M}(T)=A$.

$$
\text { column rank of } \begin{aligned}
A & =\text { column rank of } \mathcal{M}(T) \\
& =\operatorname{dim} \text { range } T \\
& =\operatorname{dim} \text { range } T^{\prime} \\
& =\operatorname{column} \text { rank of } \mathcal{M}\left(T^{\prime}\right) \\
& =\operatorname{column} \text { rank of } A^{t} \\
& =\text { row rank of } A
\end{aligned}
$$

Matrix Rank

Def'n:

We then say the rank of a matrix is the column rank (or equivalently the row rank).

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

