

Lecture 11: Duality (cont'd) and Rank

MATH 110-3

Franny Dean

July 10, 2023

Last time: Dual Space

Def'n:

We call $\mathcal{L}(V, \mathbb{F})$ the **dual space** of *V* and denote it *V'*.

Last time: Dual Space

Def'n:

We call $\mathcal{L}(V, \mathbb{F})$ the **dual space** of *V* and denote it *V'*.

Prop'n:

For V finite-dimensional, V' is also finite-dimensional and dim $V' = \dim V$.

Def'n:

If v_1, \ldots, v_n is a basis of V, then the dual basis of v_1, \ldots, v_n is the list of ϕ_1, \ldots, ϕ_n of V' such that

$$\phi_j(\mathbf{v}_k) = \begin{cases} 1 & k = j, \\ 0 & k \neq j \end{cases}$$

Def'n:

If v_1, \ldots, v_n is a basis of V, then the dual basis of v_1, \ldots, v_n is the list of ϕ_1, \ldots, ϕ_n of V' such that

$$\phi_j(\mathbf{v}_k) = egin{cases} 1 & k=j, \ 0 & k
eq j \end{cases}$$

Examples:

Dual basis of e_1, \ldots, e_n ?

Def'n:

If v_1, \ldots, v_n is a basis of V, then the dual basis of v_1, \ldots, v_n is the list of ϕ_1, \ldots, ϕ_n of V' such that

$$\phi_j(\mathbf{v}_k) = egin{cases} 1 & k=j, \ 0 & k
eq j \end{cases}$$

Examples:

- Dual basis of e_1, \ldots, e_n ?
- Dual basis of $1, x, \ldots, x^m \in \mathcal{P}_m(\mathbb{R})$?

Def'n:

If v_1, \ldots, v_n is a basis of V, then the dual basis of v_1, \ldots, v_n is the list of ϕ_1, \ldots, ϕ_n of V' such that

$$\phi_j(\mathbf{v}_k) = egin{cases} 1 & k=j, \ 0 & k
eq j \end{cases}$$

Examples:

- Dual basis of e_1, \ldots, e_n ?
- Dual basis of $1, x, \ldots, x^m \in \mathcal{P}_m(\mathbb{R})$?

$$\frac{(x^k)^{(j)}(0)}{j!}$$

Last time: Dual Map

Def'n:

If $T \in \mathcal{L}(V, W)$, the **dual map** is the linear map $T' \in \mathcal{L}(W', V')$ defined $T'(\phi) = \phi \circ T$ for $\phi \in W'$.

Last time: Dual Map

Def'n:

If $T \in \mathcal{L}(V, W)$, the **dual map** is the linear map $T' \in \mathcal{L}(W', V')$ defined $T'(\phi) = \phi \circ T$ for $\phi \in W'$.

Today we will see the following results:

Prop'ns:

Suppose V, W are finite dimensional and $T \in \mathcal{L}(V, W)$. Then

- *T* is surjective if and only if *T*′ is injective
- *T* is injective if and only if *T*′ is surjective

Define $T : \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ by $(Tp)(x) = x^2 p(x)$ for $x \in \mathbb{R}$.

Define $T : \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ by $(Tp)(x) = x^2 p(x)$ for $x \in \mathbb{R}$. Suppose $\phi \in \mathcal{P}(\mathbb{R})'$ defined by $\phi(p) = p''(7)$.

Define $T : \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ by $(Tp)(x) = x^2 p(x)$ for $x \in \mathbb{R}$. Suppose $\phi \in \mathcal{P}(\mathbb{R})'$ defined by $\phi(p) = p''(7)$. Describe $T'(\phi)$ on $\mathcal{P}(\mathbb{R})$.

Suppose *V* is finite dimensional and $v \in V$ with $v \neq 0$. Prove that there exists $\phi \in V'$ such that $\phi(v) = 1$.

Def'n:

For $U \subset V$ the **annihilator** of U is denoted U^0 and is defined to be

$$U^0 = \{ \phi \in V' : \phi(u) = 0 \text{ for all } u \in U \}.$$

Def'n:

For $U \subset V$ the **annihilator** of U is denoted U^0 and is defined to be

$$U^0 = \{ \phi \in V' : \phi(u) = 0 \text{ for all } u \in U \}.$$

Fact [Axl14]:

 U^0 is a subspace of V'.

Def'n:

For $U \subset V$ the **annihilator** of U is denoted U^0 and is defined to be

$$U^0 = \{ \phi \in V' : \phi(u) = 0 \text{ for all } u \in U \}.$$

Fact [Axl14]:

 U^0 is a subspace of V'.

Example:

Def'n:

For $U \subset V$ the **annihilator** of U is denoted U^0 and is defined to be

$$U^0 = \{ \phi \in V' : \phi(u) = 0 \text{ for all } u \in U \}.$$

Fact [Axl14]:

 U^0 is a subspace of V'.

Example:

 $U \subset \mathcal{P}(\mathbb{R})$ where polynomials are multiples of x^2

Def'n:

For $U \subset V$ the **annihilator** of U is denoted U^0 and is defined to be

$$U^0 = \{\phi \in V' : \phi(u) = 0 \text{ for all } u \in U\}.$$

Fact [Axl14]:

 U^0 is a subspace of V'.

Example:

 $U \subset \mathcal{P}(\mathbb{R})$ where polynomials are multiples of x^2

 $\phi \in \mathcal{P}(\mathbb{R})'$ defined as $\phi(p) = p'(0)$ is in U^0

Prop'n:

V finite dimensional. U a subspace. Then

 $\dim U + \dim U^0 = \dim V.$

Prop'n:

V finite dimensional. U a subspace. Then

 $\dim U + \dim U^0 = \dim V.$

Proof sketch.

Prop'n:

V finite dimensional. U a subspace. Then

 $\dim U + \dim U^0 = \dim V.$

Proof sketch.

Define $i \in \mathcal{L}(U, V)$ to be the inclusion map. Then i' is a linear map $V' \to U'$.

Prop'n:

V finite dimensional. U a subspace. Then

 $\dim U + \dim U^0 = \dim V.$

Proof sketch.

Define $i \in \mathcal{L}(U, V)$ to be the inclusion map. Then i' is a linear map $V' \to U'$.

dim range i' + dim null i' = dim V' = dim V

Prop'n:

V finite dimensional. U a subspace. Then

 $\dim U + \dim U^0 = \dim V.$

Proof sketch.

Define $i \in \mathcal{L}(U, V)$ to be the inclusion map. Then i' is a linear map $V' \to U'$.

dim range i' + dim null i' = dim V' = dim V

Using definitions, replace dim null i' with dim U^0 .

Prop'n:

V finite dimensional. U a subspace. Then

 $\dim U + \dim U^0 = \dim V.$

Proof sketch.

Define $i \in \mathcal{L}(U, V)$ to be the inclusion map. Then i' is a linear map $V' \to U'$.

dim range i' + dim null i' = dim V' = dim V

Using definitions, replace dim null i' with dim U^0 . Need: dim range $i' = \dim U$...

Prop'n:

V finite dimensional. U a subspace. Then

 $\dim U + \dim U^0 = \dim V.$

Proof sketch.

Define $i \in \mathcal{L}(U, V)$ to be the inclusion map. Then i' is a linear map $V' \to U'$.

dim range i' + dim null i' = dim V' = dim V

Using definitions, replace dim null i' with dim U^0 . Need: dim range $i' = \dim U$... range i' = U' because every linear functional of U can be extended to V

Prop'n:

Suppose *V* and *W* are finite dimensional $T \in \mathcal{L}(V, W)$. Then

Inull
$$T' = (range T)^0$$

dim null $T' = \dim \operatorname{null} T + \dim W - \dim V$

Prop'n:

Suppose *V* and *W* are finite dimensional $T \in \mathcal{L}(V, W)$. Then

Inull
$$T' = (range T)^0$$

dim null $T' = \dim \operatorname{null} T + \dim W - \dim V$

Proof notes.

Prop'n:

Suppose *V* and *W* are finite dimensional $T \in \mathcal{L}(V, W)$. Then

```
Inull T' = (range T)^0
```

```
dim null T' = \dim \operatorname{null} T + \dim W - \dim V
```

Proof notes. part 1:

• null
$$T' \subseteq (range T)^0$$

• null $T' \supseteq (range T)^0$

Prop'n:

Suppose *V* and *W* are finite dimensional $T \in \mathcal{L}(V, W)$. Then

```
Inull T' = (range T)^0
```

```
dim null T' = \dim \operatorname{null} T + \dim W - \dim V
```

Proof notes. part 1:

• null
$$T' \subseteq (range T)^0$$

■ null $T' \supseteq (range T)^0$

part 2: Notice dim(range T)⁰ = dim W – dim range T.

Prop'n:

Suppose V and W are finite dimensional and $T \in \mathcal{L}(V, W)$. Then T is surjective if and only if T' is injective.

Prop'n:

Suppose V and W are finite dimensional and $T \in \mathcal{L}(V, W)$. Then T is surjective if and only if T' is injective.

Proof.

Prop'n:

Suppose V and W are finite dimensional and $T \in \mathcal{L}(V, W)$. Then T is surjective if and only if T' is injective.

Proof. T is surjective \Leftrightarrow range *T* = *W*

Prop'n:

Suppose V and W are finite dimensional and $T \in \mathcal{L}(V, W)$. Then T is surjective if and only if T' is injective.

Proof. T is surjective \Leftrightarrow range T = Wrange $T = W \Leftrightarrow (range T)^0 = 0$

Prop'n:

Suppose V and W are finite dimensional and $T \in \mathcal{L}(V, W)$. Then T is surjective if and only if T' is injective.

Proof. T is surjective
$$\Leftrightarrow$$
 range $T = W$
range $T = W \Leftrightarrow (range T)^0 = 0$
 $(range T)^0 = 0 \Leftrightarrow null T' = 0$

Similar Results

Prop'n [Axl14]:

Suppose *V* and *W* are finite dimensional $T \in \mathcal{L}(V, W)$. Then

dim range
$$T' = \dim range T$$

range
$$T' = (\text{null } T)^0$$

Similar Results

Prop'n [Axl14]:

Suppose *V* and *W* are finite dimensional $T \in \mathcal{L}(V, W)$. Then

dim range $T' = \dim range T$

range
$$T' = (\text{null } T)^0$$

Prop'n [Axl14]:

Suppose V and W are finite dimensional $T \in \mathcal{L}(V, W)$. Then T is injective if and only if T' is surjective.

Def'n:

The **transpose** of a matrix A, denoted A^t is the matrix obtained by interchanging rows and columns.

Def'n:

The **transpose** of a matrix A, denoted A^t is the matrix obtained by interchanging rows and columns.

 $(A^t)_{k,j} = A_{j,k}$

Def'n:

The **transpose** of a matrix A, denoted A^t is the matrix obtained by interchanging rows and columns.

 $(A^t)_{k,j} = A_{j,k}$

Def'n:

The **transpose** of a matrix A, denoted A^t is the matrix obtained by interchanging rows and columns.

 $(A^t)_{k,j} = A_{j,k}$

Def'n:

The **transpose** of a matrix A, denoted A^t is the matrix obtained by interchanging rows and columns.

 $(A^t)_{k,j} = A_{j,k}$

Facts: $(A + C)^{t} = A^{t} + C^{t}$ $(\lambda A)^{t} = \lambda A^{t}$ $(AC)^{t} = C^{t}A^{t}$

Def'n:

The **transpose** of a matrix A, denoted A^t is the matrix obtained by interchanging rows and columns.

 $(A^t)_{k,j} = A_{j,k}$

Facts: (A + C)^t = $A^t + C^t$ (λA)^t = λA^t (AC)^t = $C^t A^t$ For $T \in \mathcal{L}(V, W)$, $\mathcal{M}(T') = (\mathcal{M}(T))^t$.

Prop'n:

For $T \in \mathcal{L}(V, W)$, $\mathcal{M}(T') = (\mathcal{M}(T))^t$.

Prop'n:

For
$$T \in \mathcal{L}(V, W)$$
, $\mathcal{M}(T') = (\mathcal{M}(T))^t$.

Proof.

Prop'n:

For
$$T \in \mathcal{L}(V, W)$$
, $\mathcal{M}(T') = (\mathcal{M}(T))^t$.

Proof. Let $A = \mathcal{M}(T)$, $C = \mathcal{M}(T')$.

Prop'n:

For
$$T \in \mathcal{L}(V, W)$$
, $\mathcal{M}(T') = (\mathcal{M}(T))^t$.

Proof. Let
$$A = \mathcal{M}(T)$$
, $C = \mathcal{M}(T')$.
From definition, $T'(\psi_j) = \sum_{r=1}^{n} C_{r,j} \phi_r$ for some bases of W', V' .

Prop'n:

For
$$T \in \mathcal{L}(V, W)$$
, $\mathcal{M}(T') = (\mathcal{M}(T))^t$.

Proof. Let $A = \mathcal{M}(T)$, $C = \mathcal{M}(T')$. From definition, $T'(\psi_j) = \sum_{r=1}^{n} C_{r,j}\phi_r$ for some bases of W', V'. Rewrite by applying both sides to v_k

Prop'n:

For
$$T \in \mathcal{L}(V, W)$$
, $\mathcal{M}(T') = (\mathcal{M}(T))^t$.

Proof. Let $A = \mathcal{M}(T)$, $C = \mathcal{M}(T')$. From definition, $T'(\psi_j) = \sum_{r=1}^{n} C_{r,j}\phi_r$ for some bases of W', V'. Rewrite by applying both sides to v_k

$$(\psi_j \circ T)(\mathbf{v}_k) = \sum_{r=1}^n C_{r,j}\phi_r(\mathbf{v}_k) = C_{k,j}.$$

Prop'n:

For
$$T \in \mathcal{L}(V, W)$$
, $\mathcal{M}(T') = (\mathcal{M}(T))^t$.

Proof. Let $A = \mathcal{M}(T)$, $C = \mathcal{M}(T')$. From definition, $T'(\psi_j) = \sum_{r=1}^{n} C_{r,j}\phi_r$ for some bases of W', V'. Rewrite by applying both sides to v_k

$$(\psi_j \circ T)(\mathbf{v}_k) = \sum_{r=1}^n C_{r,j}\phi_r(\mathbf{v}_k) = C_{k,j}.$$

On the other hand, we also have

$$egin{aligned} &(\psi_j\circ T)(\mathbf{v}_k)=\psi_j(T\mathbf{v}_k)\ &=\psi_j(\sum_{r=1}^m A_{r,k}w_r)\ &=\sum_{r=1}^m A_{r,k}\psi_j(w_r) \end{aligned}$$

FD • MATH 110 • July 10, 2023

Def'n:

Suppose *A* is an $m \times n$ matrix with entries in \mathbb{F} .

- The *row rank* is the dimension of the span of the rows of *A*.
- The column rank is the dimension of the span of the columns of A.

Def'n:

Suppose *A* is an $m \times n$ matrix with entries in \mathbb{F} .

- The *row rank* is the dimension of the span of the rows of *A*.
- The column rank is the dimension of the span of the columns of A.

Examples:

Matrix Rank

Def'n:

Suppose *A* is an $m \times n$ matrix with entries in \mathbb{F} .

- The *row rank* is the dimension of the span of the rows of *A*.
- The column rank is the dimension of the span of the columns of A.

Examples:

$$\left(\begin{array}{rrrrr}1 & 2 & 3 & 4 & 5\\0 & 8 & 7 & 0 & 6\end{array}\right)$$

Range and Column Rank

Prop'n:

Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Then dim range T is equal to the column rank of $\mathcal{M}(T)$.

Proof sketch. Pick v_1, \ldots, v_n to be a basis of *V*.

 \mathcal{M} : span(Tv_1, \ldots, Tv_n) \rightarrow span($\mathcal{M}(Tv_1), \ldots, \mathcal{M}(Tv_n)$) is an isomorphism.

range $T = \text{span}(Tv_1, ..., Tv_n)$ and dim span $(\mathcal{M}(Tv_1), ..., \mathcal{M}(Tv_n)) = \text{column rank}$

Prop'n:

Suppose $A \in \mathbb{F}^{m,n}$. Then row rank of A equals the column rank of A.

Prop'n:

Suppose $A \in \mathbb{F}^{m,n}$. Then row rank of A equals the column rank of A.

Proof. Define $T : \mathbb{F}^{n,1} \to \mathbb{F}^{m,1}$ by Tx = Ax.

Prop'n:

Suppose $A \in \mathbb{F}^{m,n}$. Then row rank of A equals the column rank of A.

Proof. Define $T : \mathbb{F}^{n,1} \to \mathbb{F}^{m,1}$ by Tx = Ax. Then $\mathcal{M}(T) = A$.

Prop'n:

Suppose $A \in \mathbb{F}^{m,n}$. Then row rank of A equals the column rank of A.

Proof. Define $T : \mathbb{F}^{n,1} \to \mathbb{F}^{m,1}$ by Tx = Ax. Then $\mathcal{M}(T) = A$.

column rank of A = column rank of $\mathcal{M}(T)$

- = dim range T
- = dim range T'
- = column rank of $\mathcal{M}(T')$
- = column rank of A^t
- = row rank of A

Prop'n:

Suppose $A \in \mathbb{F}^{m,n}$. Then row rank of A equals the column rank of A.

Proof. Define $T : \mathbb{F}^{n,1} \to \mathbb{F}^{m,1}$ by Tx = Ax. Then $\mathcal{M}(T) = A$.

column rank of A = column rank of $\mathcal{M}(T)$

- = dim range T
- = dim range T'
- = column rank of $\mathcal{M}(T')$
- = column rank of A^t
- = row rank of A

Def'n:

We then say the **rank** of a matrix is the column rank (or equivalently the row rank).

[Ax114] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.