Lecture 12: Invariant Subspaces, Eigenvectors

 MATH 110-3Franny Dean

July 11, 2023

Announcements

■ Homework due tomorrow

Announcements

■ Homework due tomorrow
■ Midterm Thursday: 4:10-5:00pm
■ Only paper notes, no book

Announcements

■ Homework due tomorrow
■ Midterm Thursday: 4:10-5:00pm
■ Only paper notes, no book
■ Only thing you need to know from this lecture is what an eigenvalue is, rank + things about dual maps from yesterdays class important but won't show up on exam-dual space will though

Motivation

Recall...

Def'n:

An operator is a linear map from a vector space to itself. The set of operators on V is denoted $\mathcal{L}(V)$.

Goal: Better understand operators on V.

Motivation

Recall...

Def'n:

An operator is a linear map from a vector space to itself. The set of operators on V is denoted $\mathcal{L}(V)$.

Goal: Better understand operators on V.

$$
\text { Suppose } V=U_{1} \oplus \cdots \oplus U_{m}
$$

Motivation

Recall...

Def'n:

An operator is a linear map from a vector space to itself. The set of operators on V is denoted $\mathcal{L}(V)$.

Goal: Better understand operators on V.

$$
\begin{gathered}
\text { Suppose } V=U_{1} \oplus \cdots \oplus U_{m} \\
\text { We can describe } T \in \mathcal{L}(V) \text { as }\left.T\right|_{U_{i}} .
\end{gathered}
$$

Motivation

Recall...

Def'n:

An operator is a linear map from a vector space to itself. The set of operators on V is denoted $\mathcal{L}(V)$.

Goal: Better understand operators on V.

$$
\begin{gathered}
\text { Suppose } V=U_{1} \oplus \cdots \oplus U_{m} . \\
\text { We can describe } T \in \mathcal{L}(V) \text { as }\left.T\right|_{U_{i}} \text {. }
\end{gathered}
$$

$₫$ But $\left.T\right|_{U_{i}}$ might not be an operator on $U_{i} \ldots$

Invariant Subspaces

Def'n

A subspace $U \subseteq V$ is called invariant under $T \in \mathcal{L}(V)$ if $u \in U$ implies $T u \in U$.

Invariant Subspaces

Def'n

A subspace $U \subseteq V$ is called invariant under $T \in \mathcal{L}(V)$ if $u \in U$ implies $T u \in U$.

First Examples: $\{0\}, V$, null T, range T

More Examples

$T \in \mathcal{L}(P(\mathbb{R}))$ is the derivative operator. Then $P_{n}(\mathbb{R})$ is invariant.

More Examples

$T \in \mathcal{L}(P(\mathbb{R}))$ is the derivative operator. Then $P_{n}(\mathbb{R})$ is invariant.
Let T be represented by $\left(\begin{array}{lll}2 & 3 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. I claim $U_{1}=\operatorname{span}\left(e_{1}, e_{2}\right)$ and
$U_{2}=\operatorname{span}\left(e_{3}\right)$ are invariant subspaces.

Eigenspaces

One Dimensional Invariant Subspaces:

Eigenspaces

One Dimensional Invariant Subspaces:

$$
U=\{\lambda v: \lambda \in \mathbb{F}\}
$$

Eigenspaces

One Dimensional Invariant Subspaces:

$$
U=\{\lambda v: \lambda \in \mathbb{F}\}
$$

$$
T v=\lambda v
$$

Eigenspaces

One Dimensional Invariant Subspaces:

$$
U=\{\lambda v: \lambda \in \mathbb{F}\}
$$

$$
T v=\lambda v
$$

Def'n:

Suppose $T \in \mathcal{L}(V)$. A number $\lambda \in \mathbb{F}$ is called an eigenvalue of T if there exists $v \in V$ such that $v \neq 0$ and $T v=\lambda v$. We then call v the corresponding eigenvector.

Eigenspaces

$$
T v=\lambda v
$$

Eigenspaces

$$
\begin{aligned}
& T v=\lambda v \\
& \Leftrightarrow
\end{aligned}
$$

Eigenspaces

$$
\begin{aligned}
& T v=\lambda v \\
& \Leftrightarrow \\
& (T-\lambda /) v=0
\end{aligned}
$$

Eigenspaces

$$
\begin{aligned}
& T v=\lambda v \\
& \Leftrightarrow \\
& (T-\lambda /) v=0
\end{aligned}
$$

Eigenspaces

$$
\begin{aligned}
& T v=\lambda v \\
& \Leftrightarrow \\
& (T-\lambda I) v=0 \\
& \Leftrightarrow \\
& \text { null }(T-\lambda I) \neq 0
\end{aligned}
$$

Eigenspaces

$$
\begin{aligned}
& T v=\lambda v \\
& \Leftrightarrow \\
& (T-\lambda I) v=0 \\
& \Leftrightarrow \\
& \text { null }(T-\lambda I) \neq 0
\end{aligned}
$$

Prop'n:

TFAE:

- λ is an eigenvalue

■ $T-\lambda /$ is not injective

- $T-\lambda /$ is not surjective

■ $T-\lambda /$ is not invertible

Example

Suppose $T \in \mathcal{L}\left(\mathbb{F}^{2}\right)$ defined as $T(w, z)=(-z, w)$.

Example

Suppose $T \in \mathcal{L}\left(\mathbb{F}^{2}\right)$ defined as $T(w, z)=(-z, w)$.
What are the eigenvalues and eigenvectors?

Example

Suppose $T \in \mathcal{L}\left(\mathbb{F}^{2}\right)$ defined as $T(w, z)=(-z, w)$.
What are the eigenvalues and eigenvectors?
Over \mathbb{R} ?

Example

Suppose $T \in \mathcal{L}\left(\mathbb{F}^{2}\right)$ defined as $T(w, z)=(-z, w)$.
What are the eigenvalues and eigenvectors?
Over \mathbb{R} ? None because 90 degree rotation.

Example

Suppose $T \in \mathcal{L}\left(\mathbb{F}^{2}\right)$ defined as $T(w, z)=(-z, w)$.
What are the eigenvalues and eigenvectors?
Over \mathbb{R} ? None because 90 degree rotation.
Over \mathbb{C} ?

Example

Suppose $T \in \mathcal{L}\left(\mathbb{F}^{2}\right)$ defined as $T(w, z)=(-z, w)$.
What are the eigenvalues and eigenvectors?
Over \mathbb{R} ? None because 90 degree rotation.
Over \mathbb{C} ? Solve for scalars λ that make $T(w, z)=\lambda(w, z)$.

Linear Independence of Eigenvectors

Prop'n:

Let $T \in \mathcal{L}(V)$. S'pose $\lambda_{1}, \ldots, \lambda_{m}$ are distinct eigenvalues of T and v_{1}, \ldots, v_{m} are corresponding eigenvectors. Then v_{1}, \ldots, v_{m} is linearly independent.

Linear Independence of Eigenvectors

Prop'n:

Let $T \in \mathcal{L}(V)$. S'pose $\lambda_{1}, \ldots, \lambda_{m}$ are distinct eigenvalues of T and v_{1}, \ldots, v_{m} are corresponding eigenvectors. Then v_{1}, \ldots, v_{m} is linearly independent.

Proof.

Linear Independence of Eigenvectors

Prop'n:

Let $T \in \mathcal{L}(V)$. S'pose $\lambda_{1}, \ldots, \lambda_{m}$ are distinct eigenvalues of T and v_{1}, \ldots, v_{m} are corresponding eigenvectors. Then v_{1}, \ldots, v_{m} is linearly independent.

Proof.
■ pick smallest k such that $v_{k} \in \operatorname{span}\left(v_{1}, \ldots, v_{k-1}\right)$

Linear Independence of Eigenvectors

Prop'n:

Let $T \in \mathcal{L}(V)$. S'pose $\lambda_{1}, \ldots, \lambda_{m}$ are distinct eigenvalues of T and v_{1}, \ldots, v_{m} are corresponding eigenvectors. Then v_{1}, \ldots, v_{m} is linearly independent.

Proof.
■ pick smallest k such that $v_{k} \in \operatorname{span}\left(v_{1}, \ldots, v_{k-1}\right)$
■ $v_{k}=a_{1} v_{1}+\ldots+a_{k-1} v_{k-1}$

Linear Independence of Eigenvectors

Prop'n:

Let $T \in \mathcal{L}(V)$. S'pose $\lambda_{1}, \ldots, \lambda_{m}$ are distinct eigenvalues of T and v_{1}, \ldots, v_{m} are corresponding eigenvectors. Then v_{1}, \ldots, v_{m} is linearly independent.

Proof.

■ pick smallest k such that $v_{k} \in \operatorname{span}\left(v_{1}, \ldots, v_{k-1}\right)$
■ $v_{k}=a_{1} v_{1}+\ldots+a_{k-1} v_{k-1}$
\square apply $T: \lambda_{k} v_{k}=a_{1} \lambda_{1} v_{1}+\ldots+a_{k-1} \lambda_{k-1} v_{k-1}$

Linear Independence of Eigenvectors

Prop'n:

Let $T \in \mathcal{L}(V)$. S'pose $\lambda_{1}, \ldots, \lambda_{m}$ are distinct eigenvalues of T and v_{1}, \ldots, v_{m} are corresponding eigenvectors. Then v_{1}, \ldots, v_{m} is linearly independent.

Proof.

■ pick smallest k such that $v_{k} \in \operatorname{span}\left(v_{1}, \ldots, v_{k-1}\right)$
■ $v_{k}=a_{1} v_{1}+\ldots+a_{k-1} v_{k-1}$
■ apply T : $\lambda_{k} v_{k}=a_{1} \lambda_{1} v_{1}+\ldots+a_{k-1} \lambda_{k-1} v_{k-1}$
■ subtract, get contradict on size of k

Number of Eigenvectors

Prop'n:

Suppose V is finite-dimensional. Then each operator on V has at most $\operatorname{dim} V$ distinct eigenvalues.

Polynomials Applied to Operators

Def'n:

Suppose $T \in \mathcal{L}(V)$ and m is a positive integer. We define $T^{m}=T \cdots T$, the composition of m maps T.

Polynomials Applied to Operators

Def'n:

Suppose $T \in \mathcal{L}(V)$ and m is a positive integer. We define $T^{m}=T \cdots T$, the composition of m maps T.

- T^{0} is defined to be l.

Polynomials Applied to Operators

Def'n:

Suppose $T \in \mathcal{L}(V)$ and m is a positive integer. We define $T^{m}=T \cdots T$, the composition of m maps T.

- T^{0} is defined to be l.

■ If T is invertible, $T^{-m}=\left(T^{-1}\right)^{m}$.

Polynomials Applied to Operators

Def'n:

Suppose $T \in \mathcal{L}(V)$ and m is a positive integer. We define $T^{m}=T \cdots T$, the composition of m maps T.

- T^{0} is defined to be l.
- If T is invertible, $T^{-m}=\left(T^{-1}\right)^{m}$.

Def'n:

Suppose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$ is a polynomial

$$
p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{m} z^{m}
$$

for $z \in \mathbb{F}$. Then $p(T)$ is the operator

$$
p(T)=a_{0}+a_{1} T+a_{2} T^{2}+\ldots+a_{m} T^{m} .
$$

Product of Polynomials

$$
(p q)(z):=p(z) q(z)
$$

We have the following [Axl14]:
■ $(p q)(T)=p(T) q(T)$
■ $p(T) q(T)=q(T) p(T)$

Existence of Eigenvalues

Prop'n:

Every operator on a finite-dimensional, non-zero, complex vector space has an eigenvalue.

Polynomial Interlude

Polynomial Interlude

Def'n:

A number $\lambda \in \mathbb{F}$ is called a zero of a polynomial $p \in \mathcal{P}(\mathbb{F})$ if $p(\lambda)=0$.

Polynomial Interlude

Def'n:

A number $\lambda \in \mathbb{F}$ is called a zero of a polynomial $p \in \mathcal{P}(\mathbb{F})$ if $p(\lambda)=0$.

Def'n:

A polynomial $s \in \mathcal{P}(\mathbb{F})$ is called a factor of a polynomial $p \in \mathcal{P}(\mathbb{F})$ if there exists $q \in \mathcal{P}(\mathbb{R})$ such that $p=s q$.

Polynomial Interlude

Def'n:

A number $\lambda \in \mathbb{F}$ is called a zero of a polynomial $p \in \mathcal{P}(\mathbb{F})$ if $p(\lambda)=0$.

Def'n:

A polynomial $s \in \mathcal{P}(\mathbb{F})$ is called a factor of a polynomial $p \in \mathcal{P}(\mathbb{F})$ if there exists $q \in \mathcal{P}(\mathbb{R})$ such that $p=s q$.

Prop'n [Axl14]:

Each zero of a polynomial corresponds to a degree 1 factor, i.e. $p(\lambda)=0$ if and only if $p(z)=(z-\lambda) q(z)$ for every $z \in \mathbb{F}$.

Polynomial Interlude (Cont’d)

Polynomial Interlude (Cont’d)

Prop'n [Axl14]:

If p has degree $m \geq 0$, then p has at most m distinct zeros in \mathbb{F}.

Polynomial Interlude (Cont'd)

Prop'n [Axl14]:

If p has degree $m \geq 0$, then p has at most m distinct zeros in \mathbb{F}.

Fundamental Theorem of Algebra [Axl14]:

Every nonconstant polynomial with complex coefficients has a zero.

Polynomial Interlude (Cont’d)

Prop'n [Axl14]:

If p has degree $m \geq 0$, then p has at most m distinct zeros in \mathbb{F}.

Fundamental Theorem of Algebra [Axl14]:

Every nonconstant polynomial with complex coefficients has a zero.

Prop'n [Axl14]:

If $p \in \mathcal{P}(\mathbb{C})$ is a nonconstant polynomial, then p has a unique factorization up to reordering, of the form

$$
p(z)=c\left(z-\lambda_{1}\right) \cdots\left(z-\lambda_{m}\right)
$$

for $c, \lambda_{i} \in \mathbb{C}$.

Existence of Eigenvalues

Prop'n:

Every operator on a finite-dimensional, non-zero, complex vector space has an eigenvalue.

Existence of Eigenvalues

Prop'n:

Every operator on a finite-dimensional, non-zero, complex vector space has an eigenvalue.
$■ v, T v, T v^{2}, \ldots, T^{n} v$ are linearly dependent

Existence of Eigenvalues

Prop'n:

Every operator on a finite-dimensional, non-zero, complex vector space has an eigenvalue.
$\square v, T v, T v^{2}, \ldots, T^{n} v$ are linearly dependent
$■ 0=a_{0} v+a_{1} T v+\ldots+a_{n} T^{n} v$ factors

Existence of Eigenvalues

Prop'n:

Every operator on a finite-dimensional, non-zero, complex vector space has an eigenvalue.
$\square v, T v, T v^{2}, \ldots, T^{n} v$ are linearly dependent
$■ 0=a_{0} v+a_{1} T v+\ldots+a_{n} T^{n} v$ factors
$■ 0=c\left(T-\lambda_{1} I\right) \cdots\left(T-\lambda_{m} I\right) v$ implies one of the $T-\lambda_{j} /$ is not injective

References

[Axl14] Sheldon Axler.
Linear Algebra Done Right.
Undergraduate Texts in Mathematics. Springer Cham, 2014.

