

Lecture 12: Invariant Subspaces, Eigenvectors

MATH 110-3

Franny Dean

July 11, 2023

Announcements

Homework due tomorrow

Announcements

- Homework due tomorrow
- Midterm Thursday: 4:10-5:00pm
- Only paper notes, no book

Announcements

- Homework due tomorrow
- Midterm Thursday: 4:10-5:00pm
- Only paper notes, no book
- Only thing you need to know from this lecture is what an eigenvalue is, rank + things about dual maps from yesterdays class important but won't show up on exam-dual space will though

Motivation

Recall...

Def'n:

An **operator** is a linear map from a vector space to itself. The set of operators on V is denoted $\mathcal{L}(V)$.

Goal: Better understand operators on *V*.

Motivation

Recall...

Def'n:

An **operator** is a linear map from a vector space to itself. The set of operators on V is denoted $\mathcal{L}(V)$.

Goal: Better understand operators on *V*.

Suppose
$$V = U_1 \oplus \cdots \oplus U_m$$
.

Motivation

Recall...

Def'n:

An **operator** is a linear map from a vector space to itself. The set of operators on V is denoted $\mathcal{L}(V)$.

Goal: Better understand operators on *V*.

Suppose $V = U_1 \oplus \cdots \oplus U_m$. We can describe $T \in \mathcal{L}(V)$ as $T|_{U_i}$.

Motivation

Recall...

Def'n:

An **operator** is a linear map from a vector space to itself. The set of operators on V is denoted $\mathcal{L}(V)$.

Goal: Better understand operators on *V*.

Suppose $V = U_1 \oplus \cdots \oplus U_m$. We can describe $T \in \mathcal{L}(V)$ as $T|_{U_i}$.

A But $T|_{U_i}$ might not be an operator on U_i ...

Invariant Subspaces

Def'n

A subspace $U \subseteq V$ is called **invariant** under $T \in \mathcal{L}(V)$ if $u \in U$ implies $Tu \in U$.

Invariant Subspaces

Def'n

A subspace $U \subseteq V$ is called **invariant** under $T \in \mathcal{L}(V)$ if $u \in U$ implies $Tu \in U$.

First Examples: {0}, *V*, null*T*, range*T*

More Examples

$T \in \mathcal{L}(P(\mathbb{R}))$ is the derivative operator. Then $P_n(\mathbb{R})$ is invariant.

More Examples

 $T \in \mathcal{L}(P(\mathbb{R}))$ is the derivative operator. Then $P_n(\mathbb{R})$ is invariant.

Let *T* be represented by $\begin{pmatrix} 2 & 3 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. I claim $U_1 = \text{span}(e_1, e_2)$ and $U_2 = \text{span}(e_3)$ are invariant subspaces.

One Dimensional Invariant Subspaces:

One Dimensional Invariant Subspaces:

$$U = \{\lambda v : \lambda \in \mathbb{F}\}$$

One Dimensional Invariant Subspaces:

$$U = \{\lambda v : \lambda \in \mathbb{F}\}$$

 $T v = \lambda v$

One Dimensional Invariant Subspaces:

$$U = \{\lambda v : \lambda \in \mathbb{F}\}$$

 $T v = \lambda v$

Def'n:

Suppose $T \in \mathcal{L}(V)$. A number $\lambda \in \mathbb{F}$ is called an **eigenvalue** of T if there exists $v \in V$ such that $v \neq 0$ and $Tv = \lambda v$. We then call v the corresponding **eigenvector**.

 $T v = \lambda v$

$$Tv = \lambda v$$

$$\Leftrightarrow$$

$$(T - \lambda I)v = 0$$

$$\begin{aligned}
Tv &= \lambda v \\
\Leftrightarrow \\
(T - \lambda I)v &= 0 \\
\Leftrightarrow
\end{aligned}$$

$$T v = \lambda v$$

$$\Leftrightarrow$$

$$(T - \lambda l) v = 0$$

$$\Leftrightarrow$$

null $(T - \lambda l) \neq 0$

 $T v = \lambda v$ \Leftrightarrow $(T - \lambda I) v = 0$ \Leftrightarrow null $(T - \lambda I) \neq 0$

Prop'n:

TFAE:

- λ is an eigenvalue
- **T** $-\lambda I$ is not injective
- **T** $-\lambda I$ is not surjective
- **T** $-\lambda I$ is not invertible

Suppose $T \in \mathcal{L}(\mathbb{F}^2)$ defined as T(w, z) = (-z, w).

Suppose $T \in \mathcal{L}(\mathbb{F}^2)$ defined as T(w, z) = (-z, w). What are the eigenvalues and eigenvectors?

Suppose $T \in \mathcal{L}(\mathbb{F}^2)$ defined as T(w, z) = (-z, w). What are the eigenvalues and eigenvectors? Over \mathbb{R} ?

Suppose $T \in \mathcal{L}(\mathbb{F}^2)$ defined as T(w, z) = (-z, w). What are the eigenvalues and eigenvectors? Over \mathbb{R} ? None because 90 degree rotation.

Suppose $T \in \mathcal{L}(\mathbb{F}^2)$ defined as T(w, z) = (-z, w).

What are the eigenvalues and eigenvectors?

Over \mathbb{R} ? None because 90 degree rotation.

Over \mathbb{C} ?

Suppose $T \in \mathcal{L}(\mathbb{F}^2)$ defined as T(w, z) = (-z, w).

What are the eigenvalues and eigenvectors?

Over \mathbb{R} ? None because 90 degree rotation.

Over \mathbb{C} ? Solve for scalars λ that make $T(w, z) = \lambda(w, z)$.

Linear Independence of Eigenvectors

Prop'n:

Let $T \in \mathcal{L}(V)$. Spose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Then v_1, \ldots, v_m is linearly independent.

Linear Independence of Eigenvectors

Prop'n:

Let $T \in \mathcal{L}(V)$. Spose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Then v_1, \ldots, v_m is linearly independent.

Proof.

Linear Independence of Eigenvectors

Prop'n:

Let $T \in \mathcal{L}(V)$. S'pose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Then v_1, \ldots, v_m is linearly independent.

Proof.

■ pick smallest *k* such that $v_k \in \text{span}(v_1, \ldots, v_{k-1})$

Linear Independence of Eigenvectors

Prop'n:

Let $T \in \mathcal{L}(V)$. Spose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Then v_1, \ldots, v_m is linearly independent.

Proof.

- pick smallest *k* such that $v_k \in \text{span}(v_1, \ldots, v_{k-1})$
- $v_k = a_1v_1 + \ldots + a_{k-1}v_{k-1}$

Linear Independence of Eigenvectors

Prop'n:

Let $T \in \mathcal{L}(V)$. S'pose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Then v_1, \ldots, v_m is linearly independent.

Proof.

■ pick smallest k such that $v_k \in \text{span}(v_1, \ldots, v_{k-1})$

$$\bullet v_k = a_1v_1 + \ldots + a_{k-1}v_{k-1}$$

• apply $T: \lambda_k v_k = a_1 \lambda_1 v_1 + \ldots + a_{k-1} \lambda_{k-1} v_{k-1}$

Linear Independence of Eigenvectors

Prop'n:

Let $T \in \mathcal{L}(V)$. S'pose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Then v_1, \ldots, v_m is linearly independent.

Proof.

■ pick smallest k such that $v_k \in \text{span}(v_1, \ldots, v_{k-1})$

•
$$v_k = a_1 v_1 + \ldots + a_{k-1} v_{k-1}$$

- apply $T: \lambda_k v_k = a_1 \lambda_1 v_1 + \ldots + a_{k-1} \lambda_{k-1} v_{k-1}$
- subtract, get contradict on size of k

Number of Eigenvectors

Prop'n:

Suppose V is finite-dimensional. Then each operator on V has at most dim V distinct eigenvalues.

Polynomials Applied to Operators

Def'n:

Suppose $T \in \mathcal{L}(V)$ and *m* is a positive integer. We define $T^m = T \cdots T$, the composition of *m* maps *T*.

Polynomials Applied to Operators

Def'n:

Suppose $T \in \mathcal{L}(V)$ and *m* is a positive integer. We define $T^m = T \cdots T$, the composition of *m* maps *T*.

T⁰ is defined to be *I*.

Polynomials Applied to Operators

Def'n:

Suppose $T \in \mathcal{L}(V)$ and *m* is a positive integer. We define $T^m = T \cdots T$, the composition of *m* maps *T*.

- T⁰ is defined to be *I*.
- If T is invertible, $T^{-m} = (T^{-1})^m$.

Polynomials Applied to Operators

Def'n:

Suppose $T \in \mathcal{L}(V)$ and *m* is a positive integer. We define $T^m = T \cdots T$, the composition of *m* maps *T*.

- T⁰ is defined to be *I*.
- If T is invertible, $T^{-m} = (T^{-1})^m$.

Def'n:

Suppose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$ is a polynomial

$$p(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_m z^m$$

for $z \in \mathbb{F}$. Then p(T) is the *operator*

$$p(T) = a_0 + a_1T + a_2T^2 + \ldots + a_mT^m.$$

FD • MATH 110 • July 11, 2023

Product of Polynomials

$$(pq)(z) := p(z)q(z)$$

We have the following [Axl14]:

$$(pq)(T) = p(T)q(T)$$

p(T)q(T) = q(T)p(T)

Existence of Eigenvalues

Prop'n:

Every operator on a finite-dimensional, non-zero, complex vector space has an eigenvalue.

Def'n:

A number $\lambda \in \mathbb{F}$ is called a **zero** of a polynomial $p \in \mathcal{P}(\mathbb{F})$ if $p(\lambda) = 0$.

Def'n:

A number $\lambda \in \mathbb{F}$ is called a **zero** of a polynomial $p \in \mathcal{P}(\mathbb{F})$ if $p(\lambda) = 0$.

Def'n:

A polynomial $s \in \mathcal{P}(\mathbb{F})$ is called a **factor** of a polynomial $p \in \mathcal{P}(\mathbb{F})$ if there exists $q \in \mathcal{P}(\mathbb{R})$ such that p = sq.

Def'n:

A number $\lambda \in \mathbb{F}$ is called a **zero** of a polynomial $p \in \mathcal{P}(\mathbb{F})$ if $p(\lambda) = 0$.

Def'n:

A polynomial $s \in \mathcal{P}(\mathbb{F})$ is called a **factor** of a polynomial $p \in \mathcal{P}(\mathbb{F})$ if there exists $q \in \mathcal{P}(\mathbb{R})$ such that p = sq.

Prop'n [Axl14]:

Each zero of a polynomial corresponds to a degree 1 factor, i.e. $p(\lambda) = 0$ if and only if $p(z) = (z - \lambda)q(z)$ for every $z \in \mathbb{F}$.

Polynomial Interlude (Cont'd)

Polynomial Interlude (Cont'd)

Prop'n [Axl14]:

If p has degree $m \ge 0$, then p has at most m distinct zeros in \mathbb{F} .

Polynomial Interlude (Cont'd)

Prop'n [Axl14]:

If p has degree $m \ge 0$, then p has at most m distinct zeros in \mathbb{F} .

Fundamental Theorem of Algebra [Axl14]:

Every nonconstant polynomial with complex coefficients has a zero.

Polynomial Interlude (Cont'd)

Prop'n [Axl14]:

If p has degree $m \ge 0$, then p has at most m distinct zeros in \mathbb{F} .

Fundamental Theorem of Algebra [Axl14]:

Every nonconstant polynomial with complex coefficients has a zero.

Prop'n [Axl14]:

If $p \in \mathcal{P}(\mathbb{C})$ is a nonconstant polynomial, then p has a unique factorization up to reordering, of the form

$$p(z) = c(z - \lambda_1) \cdots (z - \lambda_m)$$

for $c, \lambda_i \in \mathbb{C}$.

Prop'n:

Every operator on a finite-dimensional, non-zero, complex vector space has an eigenvalue.

Prop'n:

Every operator on a finite-dimensional, non-zero, complex vector space has an eigenvalue.

■ $v, Tv, Tv^2, ..., T^n v$ are linearly dependent

Prop'n:

Every operator on a finite-dimensional, non-zero, complex vector space has an eigenvalue.

Prop'n:

Every operator on a finite-dimensional, non-zero, complex vector space has an eigenvalue.

•
$$v, Tv, Tv^2, \ldots, T^n v$$
 are linearly dependent

•
$$0 = a_0v + a_1Tv + \ldots + a_nT^nv$$
 factors

• $0 = c(T - \lambda_1 I) \cdots (T - \lambda_m I)v$ implies one of the $T - \lambda_j I$ is not injective

[Axl14] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.