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Lecture 12

Announcements

Homework due tomorrow

Midterm Thursday: 4:10-5:00pm
Only paper notes, no book
Only thing you need to know from this lecture is what an
eigenvalue is, rank + things about dual maps from yesterdays
class important but won’t show up on exam–dual space will
though
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Lecture 12

Motivation

Recall...

Def’n:
An operator is a linear map from a vector space to itself. The set of
operators on V is denoted L(V).

Goal: Better understand operators on V .

Suppose V = U1 ⊕ · · · ⊕ Um.

We can describe T ∈ L(V) as T |Ui .

But T |Ui might not be an operator on Ui . . .
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Lecture 12

Invariant Subspaces

Def’n
A subspace U ⊆ V is called invariant under T ∈ L(V) if u ∈ U implies
Tu ∈ U.

First Examples: {0}, V , nullT , rangeT
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Lecture 12

More Examples

T ∈ L(P(R)) is the derivative operator. Then Pn(R) is invariant.

Let T be represented by

 2 3 0
1 1 0
0 0 1

. I claim U1 = span(e1, e2) and
U2 = span(e3) are invariant subspaces.
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Lecture 12

Eigenspaces

One Dimensional Invariant Subspaces:

U = {λv : λ ∈ F}

Tv = λv

Def’n:
Suppose T ∈ L(V). A number λ ∈ F is called an eigenvalue of T if
there exists v ∈ V such that v ̸= 0 and Tv = λv. We then call v the
corresponding eigenvector.
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Lecture 12

Eigenspaces

Tv = λv

⇔
(T − λI)v = 0
⇔
null (T − λI) ̸= 0

Prop’n:
TFAE:

λ is an eigenvalue
T − λI is not injective
T − λI is not surjective
T − λI is not invertible
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Lecture 12

Example

Suppose T ∈ L(F2) defined as T(w, z) = (−z,w).

What are the eigenvalues and eigenvectors?

Over R? None because 90 degree rotation.

Over C? Solve for scalars λ that make T(w, z) = λ(w, z).
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Lecture 12

Linear Independence of Eigenvectors

Prop’n:
Let T ∈ L(V). S’pose λ1, . . . , λm are distinct eigenvalues of T and
v1, . . . , vm are corresponding eigenvectors. Then v1, . . . , vm is linearly
independent.

Proof.
pick smallest k such that vk ∈ span(v1, . . . , vk−1)
vk = a1v1 + . . .+ ak−1vk−1
apply T : λkvk = a1λ1v1 + . . .+ ak−1λk−1vk−1
subtract, get contradict on size of k
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Lecture 12

Number of Eigenvectors

Prop’n:
Suppose V is finite-dimensional. Then each operator on V has at
most dim V distinct eigenvalues.

FD · MATH 110 · July 11, 2023 10 / 17



Lecture 12

Polynomials Applied to Operators

Def’n:
Suppose T ∈ L(V) and m is a positive integer. We define
Tm = T · · · T , the composition of m maps T .

T0 is defined to be I.
If T is invertible, T−m = (T−1)m.

Def’n:
Suppose T ∈ L(V) and p ∈ P(F) is a polynomial

p(z) = a0 + a1z + a2z2 + . . .+ amzm

for z ∈ F. Then p(T) is the operator

p(T) = a0 + a1T + a2T2 + . . .+ amTm.
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Lecture 12

Product of Polynomials

(pq)(z) := p(z)q(z)

We have the following [Axl14]:
(pq)(T) = p(T)q(T)
p(T)q(T) = q(T)p(T)
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Lecture 12

Existence of Eigenvalues

Prop’n:
Every operator on a finite-dimensional, non-zero, complex vector
space has an eigenvalue.
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Lecture 12

Polynomial Interlude

Def’n:
A number λ ∈ F is called a zero of a polynomial p ∈ P(F) if p(λ) = 0.

Def’n:
A polynomial s ∈ P(F) is called a factor of a polynomial p ∈ P(F) if
there exists q ∈ P(R) such that p = sq.

Prop’n [Axl14]:
Each zero of a polynomial corresponds to a degree 1 factor, i.e.
p(λ) = 0 if and only if p(z) = (z − λ)q(z) for every z ∈ F.

FD · MATH 110 · July 11, 2023 14 / 17
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Lecture 12

Polynomial Interlude (Cont’d)

Prop’n [Axl14]:
If p has degree m ≥ 0, then p has at most m distinct zeros in F.

Fundamental Theorem of Algebra [Axl14]:
Every nonconstant polynomial with complex coefficients has a zero.

Prop’n [Axl14]:
If p ∈ P(C) is a nonconstant polynomial, then p has a unique
factorization up to reordering, of the form

p(z) = c(z − λ1) · · · (z − λm)

for c, λi ∈ C.
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Lecture 12

Existence of Eigenvalues

Prop’n:
Every operator on a finite-dimensional, non-zero, complex vector
space has an eigenvalue.

v, Tv, Tv2, . . . , Tnv are linearly dependent
0 = a0v + a1Tv + . . .+ anTnv factors
0 = c(T − λ1I) · · · (T − λmI)v implies one of the T − λjI is not
injective
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