# Lecture 13: Review 

MATH 110-3

Franny Dean

July 12, 2023

## Definitions

■ Vector space
■ Field
■ Subspace
■ $U+W$

- U $\oplus W$


## Definitions

■ Linear combination

- Span, spans

■ $\mathcal{P}(\mathbb{R}), \mathcal{P}_{n}(\mathbb{R}), \mathbb{F}^{S}, \mathbb{F}^{[0,1]}$
■ Linearly independent
■ Bases

- Standard basis for $\mathbb{F}^{n}, \mathcal{P}(\mathbb{R})$
- Dimension


## Definitions

■ Linear maps

- $\mathcal{L}(V, W)$
- Null space
- Range

■ Injective
■ Surjective

- Matrix of a linear map $\mathcal{M}(T)$

■ $\mathbb{F}^{n, m}$
■ Matrix multiplication
■ Invertible
■ Isomorphism

- Operator


## Definitions

■ Linear functional

- $V^{\prime}$
$\square U^{0}$
- Dual map

■ Dual basis

- Rank

■ Eigenvalue, eigenvector
■ Invariant subspace

## Key results and tools to review

■ Subspace criteria
■ Conditions for direct sum
■ Linear dependence lemma
■ Lengths of linearly independent vs. spanning lists
■ Turning linearly independent lists and spanning lists into bases

- Basis of domain

■ Relationship between null space and injective and range and surjective
■ Fundamental Theorem of Linear Maps (Rank-Nullity)
■ Invertible = injective + surjective
■ Dimension and isomorphic $\mathbb{F}$-vector spaces

## Midterm Structure

- 4 questions

■ First question: T/F, circle answers

- Second is computational - think bases and matrices

■ Third, fourth are more abstract proofs

## Review of Subspace Criteria

Give an example of a subset for each of the following vector spaces.
Can we prove it is a subspace?
■ $\mathbb{R}^{[0,1]}$

- $\mathcal{P}_{3}(\mathbb{R})$

■ $\mathbb{C}^{2}$
Is the intersection of two subspaces a subspace? Is the union?
Is the dual space a subspace?

## Review of Proving Lists for Bases

■ Prove that the list $1,(x-2),(x-2)^{2},(x-2)^{3},(x-2)^{4},(x-2)^{5}$ forms a basis of $\mathcal{P}_{5}(\mathbb{R})$.
■ Find a basis for the subspace of $\mathcal{P}_{5}(\mathbb{R})$ defined as

$$
W:=\left\{p \in \mathcal{P}_{5}(\mathbb{R}) \mid p^{\prime}(2)=0\right\}
$$

## Review of Matrices

■ Find a matrix for the linear map $D: \mathcal{P}_{5}(\mathbb{R}) \rightarrow \mathcal{P}_{4}(\mathbb{R})$ defined $D p=p^{\prime}$ with respect to the following bases:

- Standard basis of both spaces
- $1,(x-2),(x-2)^{2},(x-2)^{3},(x-2)^{4},(x-2)^{5}$, Standard basis of output space
- What would the matrix look like if we considered the map to be $D: \mathcal{P}_{5}(\mathbb{R}) \rightarrow \mathcal{P}_{5}(\mathbb{R})$ ?


## Linear Functionals

■ Prove that every linear functional is either surjective or the zero map.
$■$ Define $T: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R})$ by $(T p)(x)=x^{2} p(x)+p^{\prime \prime}(x)$ for $x \in \mathbb{R}$.
(a) Suppose $\phi \in \mathcal{P}(\mathbb{R})^{\prime}$ is defined by $\phi(p)=p^{\prime}(4)$. Describe the linear functional $T^{\prime}(\phi)$ on $\mathcal{P}(\mathbb{R})$.
(b) Suppose $\phi \in \mathcal{P}(\mathbb{R})^{\prime}$ is defined by $\phi(p)=\int_{0}^{1} p(x) d x$. Evaluate $\left(T^{\prime}(\phi)\right)\left(x^{3}\right)$.

## Homework Problems to Review

■ (Last problem Homework 4) Suppose $V$ is finite-dimensional and $v_{1}, \ldots, v_{m} \in V$. Define a linear map $\Gamma: V^{\prime} \rightarrow \mathbb{F}^{m}$ by

$$
\Gamma(\phi)=\left(\phi\left(v_{1}\right), \ldots, \phi\left(v_{m}\right)\right)
$$

Prove that $v_{1}, \ldots, v_{m}$ spans $V$ if and only if $\Gamma$ is injective.
■ (Last problem Homework 3) Suppose $V$ and $W$ are finite-dimensional with $\operatorname{dim} V \geq \operatorname{dim} W \geq 2$. Show that

$$
\{T \in \mathcal{L}(V, W): T \text { is not surjective }\}
$$

is not a subspace of $\mathcal{L}(V, W)$.

## References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

