

Lecture 13: Review

MATH 110-3

Franny Dean

July 12, 2023

- Vector space
- Field
- Subspace
- $\blacksquare U + W$
- $\blacksquare U \oplus W$

- Linear combination
- Span, spans
- $\blacksquare \mathcal{P}(\mathbb{R}), \mathcal{P}_n(\mathbb{R}), \mathbb{F}^{\mathsf{S}}, \mathbb{F}^{[0,1]}$
- Linearly independent
- Bases
- Standard basis for $\mathbb{F}^n, \mathcal{P}(\mathbb{R})$
- Dimension

- Linear maps
- $\blacksquare \mathcal{L}(V,W)$
- Null space
- Range
- Injective
- Surjective
- Matrix of a linear map $\mathcal{M}(T)$
- $\mathbb{F}^{n,m}$
- Matrix multiplication
- Invertible
- Isomorphism
- Operator

- Linear functional
- V'
- U⁰
- Dual map
- Dual basis
- Rank
- Eigenvalue, eigenvector
- Invariant subspace

Key results and tools to review

- Subspace criteria
- Conditions for direct sum
- Linear dependence lemma
- Lengths of linearly independent vs. spanning lists
- Turning linearly independent lists and spanning lists into bases
- Basis of domain
- Relationship between null space and injective and range and surjective
- Fundamental Theorem of Linear Maps (Rank-Nullity)
- Invertible = injective + surjective
- Dimension and isomorphic **F**-vector spaces

Midterm Structure

- 4 questions
- First question: T/F, circle answers
- Second is computational think bases and matrices
- Third, fourth are more abstract proofs

Review of Subspace Criteria

Give an example of a subset for each of the following vector spaces. Can we prove it is a subspace?

R^[0,1]

■ *P*₃(ℝ)

■ C²

Is the intersection of two subspaces a subspace? Is the union?

Is the dual space a subspace?

Review of Proving Lists for Bases

- Prove that the list 1, (x 2), $(x 2)^2$, $(x 2)^3$, $(x 2)^4$, $(x 2)^5$ forms a basis of $\mathcal{P}_5(\mathbb{R})$.
- Find a basis for the subspace of $\mathcal{P}_5(\mathbb{R})$ defined as

$$W:=\{p\in\mathcal{P}_5(\mathbb{R})|p'(2)=0\}$$

.

Review of Matrices

- Find a matrix for the linear map $D : \mathcal{P}_5(\mathbb{R}) \to \mathcal{P}_4(\mathbb{R})$ defined Dp = p' with respect to the following bases:
 - Standard basis of both spaces
 - 1, (x 2), (x 2)², (x 2)³, (x 2)⁴, (x 2)⁵, Standard basis of output space
 - What would the matrix look like if we considered the map to be $D: \mathcal{P}_5(\mathbb{R}) \to \mathcal{P}_5(\mathbb{R})$?

Linear Functionals

- Prove that every linear functional is either surjective or the zero map.
- Define $T : \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ by $(Tp)(x) = x^2 p(x) + p''(x)$ for $x \in \mathbb{R}$.
 - (a) Suppose $\phi \in \mathcal{P}(\mathbb{R})'$ is defined by $\phi(p) = p'(4)$. Describe the linear functional $T'(\phi)$ on $\mathcal{P}(\mathbb{R})$.
 - (b) Suppose $\phi \in \mathcal{P}(\mathbb{R})'$ is defined by $\phi(p) = \int_0^1 p(x) dx$. Evaluate $(T'(\phi))(x^3)$.

Homework Problems to Review

• (Last problem Homework 4) Suppose V is finite-dimensional and $v_1, \ldots, v_m \in V$. Define a linear map $\Gamma : V' \to \mathbb{F}^m$ by

$$\Gamma(\phi) = (\phi(v_1), \ldots, \phi(v_m)).$$

Prove that v_1, \ldots, v_m spans V if and only if Γ is injective.

■ (Last problem Homework 3) Suppose V and W are finite-dimensional with dim V ≥ dim W ≥ 2. Show that

 ${T \in \mathcal{L}(V, W) : T \text{ is not surjective }}$

is not a subspace of $\mathcal{L}(V, W)$.

[Ax114] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.