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Announcements

Midterm expository write up: 2+ pages, explain all of the theory
to someone who has not taken the class, one question, any
number of points lost

Roughly overall grades, including homework + quizzes:
A: 90% and above
B: 80-89%
C: 67-79%

Remember homework + quizzes + discussion worth 50% and
exams worth 50%
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Recall Eigenvectors

One Dimensional Invariant Subspaces

U = {λv : λ ∈ F}

Tv = λv

Def’n:
Suppose T ∈ L(V). A number λ ∈ F is called an eigenvalue of T if
there exists v ∈ V such that v ̸= 0 and Tv = λv. We then call v the
corresponding eigenvector.
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Facts we learned:

Prop’n:
Let T ∈ L(V). S’pose λ1, . . . , λm are distinct eigenvalues of T and
v1, . . . , vm are corresponding eigenvectors. Then v1, . . . , vm is linearly
independent.

Prop’n:
Suppose V is finite-dimensional. Then each operator on V has at
most dim V distinct eigenvalues.

Prop’n:
Every operator on a finite-dimensional, non-zero, complex vector
space has an eigenvalue.
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Matrix of Operators

Def’n:
T ∈ L(V) and v1, . . . , vn is a basis for V .
We defineM(T) to be the matrix whose entries are defined by

Tvk = A1,kv1 + . . .+ An,kvn.

Def’n:
The diagonal of a square matrix is the entries along the line from the
upper left corner to the bottom right corner.

Def’n:
A matrix is called upper triangular if all the entries below the
diagonal equal 0.
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Conditions for Upper-Triangular Matrix

Prop’n:
Suppose T ∈ L(V) and v1, . . . , vn is a basis of V . TFAE:
(a) the matrix of T with respect to v1, . . . , vn is upper triangular
(b) Tvj ∈ span(v1, . . . , vj) for each j = 1, . . . , n
(c) span(v1, . . . , vj) is invariant under T for each j = 1, . . . , n

Proof.

(a)⇔ (b) by definition
(b) =⇒ (c): Tv1 ∈ span(v1) ⊂ span(v1, . . . , vj)

...

Tvj ∈ span(v1, . . . , vj)

(c) =⇒ (b): span(v1, . . . , vj) invariant implies
Tvj ∈ span(v1, . . . , vj)

FD · MATH 110 · July 17, 2023 6 / 16



Conditions for Upper-Triangular Matrix

Prop’n:
Suppose T ∈ L(V) and v1, . . . , vn is a basis of V . TFAE:
(a) the matrix of T with respect to v1, . . . , vn is upper triangular
(b) Tvj ∈ span(v1, . . . , vj) for each j = 1, . . . , n
(c) span(v1, . . . , vj) is invariant under T for each j = 1, . . . , n

Proof.
(a)⇔ (b) by definition

(b) =⇒ (c): Tv1 ∈ span(v1) ⊂ span(v1, . . . , vj)
...

Tvj ∈ span(v1, . . . , vj)

(c) =⇒ (b): span(v1, . . . , vj) invariant implies
Tvj ∈ span(v1, . . . , vj)

FD · MATH 110 · July 17, 2023 6 / 16



Conditions for Upper-Triangular Matrix

Prop’n:
Suppose T ∈ L(V) and v1, . . . , vn is a basis of V . TFAE:
(a) the matrix of T with respect to v1, . . . , vn is upper triangular
(b) Tvj ∈ span(v1, . . . , vj) for each j = 1, . . . , n
(c) span(v1, . . . , vj) is invariant under T for each j = 1, . . . , n

Proof.
(a)⇔ (b) by definition
(b) =⇒ (c):

Tv1 ∈ span(v1) ⊂ span(v1, . . . , vj)
...

Tvj ∈ span(v1, . . . , vj)

(c) =⇒ (b): span(v1, . . . , vj) invariant implies
Tvj ∈ span(v1, . . . , vj)

FD · MATH 110 · July 17, 2023 6 / 16



Conditions for Upper-Triangular Matrix

Prop’n:
Suppose T ∈ L(V) and v1, . . . , vn is a basis of V . TFAE:
(a) the matrix of T with respect to v1, . . . , vn is upper triangular
(b) Tvj ∈ span(v1, . . . , vj) for each j = 1, . . . , n
(c) span(v1, . . . , vj) is invariant under T for each j = 1, . . . , n

Proof.
(a)⇔ (b) by definition
(b) =⇒ (c): Tv1 ∈ span(v1) ⊂ span(v1, . . . , vj)

...

Tvj ∈ span(v1, . . . , vj)

(c) =⇒ (b): span(v1, . . . , vj) invariant implies
Tvj ∈ span(v1, . . . , vj)

FD · MATH 110 · July 17, 2023 6 / 16



Conditions for Upper-Triangular Matrix

Prop’n:
Suppose T ∈ L(V) and v1, . . . , vn is a basis of V . TFAE:
(a) the matrix of T with respect to v1, . . . , vn is upper triangular
(b) Tvj ∈ span(v1, . . . , vj) for each j = 1, . . . , n
(c) span(v1, . . . , vj) is invariant under T for each j = 1, . . . , n

Proof.
(a)⇔ (b) by definition
(b) =⇒ (c): Tv1 ∈ span(v1) ⊂ span(v1, . . . , vj)

...

Tvj ∈ span(v1, . . . , vj)

(c) =⇒ (b):

span(v1, . . . , vj) invariant implies
Tvj ∈ span(v1, . . . , vj)

FD · MATH 110 · July 17, 2023 6 / 16



Conditions for Upper-Triangular Matrix

Prop’n:
Suppose T ∈ L(V) and v1, . . . , vn is a basis of V . TFAE:
(a) the matrix of T with respect to v1, . . . , vn is upper triangular
(b) Tvj ∈ span(v1, . . . , vj) for each j = 1, . . . , n
(c) span(v1, . . . , vj) is invariant under T for each j = 1, . . . , n

Proof.
(a)⇔ (b) by definition
(b) =⇒ (c): Tv1 ∈ span(v1) ⊂ span(v1, . . . , vj)

...

Tvj ∈ span(v1, . . . , vj)

(c) =⇒ (b): span(v1, . . . , vj) invariant implies
Tvj ∈ span(v1, . . . , vj)

FD · MATH 110 · July 17, 2023 6 / 16



Every Operator has an Upper-Triangular Form over C
Prop’n:
Suppose V is a finite-dimensional C-vector space and T ∈ L(V). Then
T has an upper triangular matrix with respect to some basis of V .

Proof.
By induction on dimension.
Base case: dim V = 1. 1× 1 matrix is upper triangular.
Induction step: Let dim V > 1 and the claim is true for U with
dimU < dim V .
T has an eigenvalue λ.
T − λI is not surjective. So U = range (T − λI) is a proper subset
of V .
U is invariant under T : Tu = (T − λI)u+ λu
T |U is an operator with an upper triangular matrix.
Let u1, . . . , un be a basis of U. Extend to basis of V :

u1, . . . , un, v1, . . . , vm
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Every Operator has an Upper-Triangular Form over C
Proof every operator has upper triangular (Cont’d).

Basis of V :
u1, . . . , un, v1, . . . , vm

Tuj = (T |U)(uj) ∈ span(u1, . . . , uj)

Conditions for Upper-Triangular Matrix:
Suppose T ∈ L(V) and v1, . . . , vn is a basis of V . TFAE:
(a) the matrix of T with respect to v1, . . . , vn is upper triangular
(b) Tvj ∈ span(v1, . . . , vj) for each j = 1, . . . , n
(c) span(v1, . . . , vj) is invariant under T for each j = 1, . . . , n

Tvk = (T − λI)vk + λvk implies

Tvk ∈ span(u1, . . . , um, v1, . . . , vk)
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Utility of Upper-Triangular Form

Prop’n [Axl14]:
Suppose T ∈ L(V) has an upper triangular matrix with respect to
some basis of V . Then T is invertible if and only if all the entries on
the diagonal of the upper-triangular matrix are nonzero.

Prop’n [Axl14]:
Suppose T ∈ L(V) has an upper triangular matrix with respect to
some basis of V . Then the eigenvalues of T are precisely the entries
on the diagonal of that upper-triangular matrix.

Example:  2 3 4
0 1 0
0 0 7
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Diagonal Matrices

Def’n:
A diagonal matrix is a square matrix that is 0 everywhere except
possibly along the diagonal.

Def’n:
Suppose T ∈ L(V) and λ ∈ F. The eigenspace of T corresponding to
λ is

E(λ, T) := null (T − λI).

*This is just the set of all eigenvectors of T corresponding to λ along
with 0.

Example:  3 0 0
0 5 0
0 0 3
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λ is

E(λ, T) := null (T − λI).

*This is just the set of all eigenvectors of T corresponding to λ along
with 0.

Example:  3 0 0
0 5 0
0 0 3
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Diagonalizable

Def’n:
An operator T ∈ L(V) is called diagonalizable if the operator has a
diagonal matrix with respect to some basis of V .

Example:
T(x, y) = (41x + 7y,−20x + 74y)

With respect to the basis (1, 4), (7, 5) the matrix is(
69 0
0 46

)
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Conditions for Diagonalizability

Prop’n:
V finite-dimensional, T ∈ L(V) and λ1, . . . , λm distinct eigenvalues.
TFAE:
(a) T is diagonalizable
(b) V has a basis of eigenvectors of T
(c) there exist 1-dimensional subspaces U1, . . . ,Un of V each

invariant under T such that V = U1 ⊕ · · · ⊕ Un
(d) V = E(λ1, T)⊕ · · · ⊕ E(λm, T)
(e) dim V = dim E(λ1, T) + . . .+ dim E(λm, T)
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Proof.

(a)⇔ (b):

M(T) =

 λ1 0
...

0 λn

 ⇔ Tvi = λivi

S’pose (b): Uj := span(vj) . . .

S’pose (c): Uj must also be span(vj) . . .

So we have: (a)⇔ (b)⇔ (c)

WTS: (b) =⇒ (d) =⇒ (e) =⇒ (b)
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Proof (Cont’d).

(b) =⇒ (d) =⇒ (e) =⇒ (b)

S’pose (b) again:

Then V = E(λ1, T) + . . .+ E(λm, T). Show the only way to write
0 = u1 + . . .+ um is ui = 0.

S’pose (d): True fact we didn’t prove.

S’pose (e):Pick vectors v1, . . . , vn combining bases for each
eigenspace. Show these are linearly independent . . .
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Corollary

Corollary:
If T ∈ L(V) has dim V distinct eigenvalues, then T is diagonalizable.
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