

Lecture 14: Upper Triangular and Diagonal Matrices

MATH 110-3

Franny Dean

July 17, 2023

Announcements

 Midterm expository write up: 2+ pages, explain all of the theory to someone who has not taken the class, one question, any number of points lost

Announcements

- Midterm expository write up: 2+ pages, explain all of the theory to someone who has not taken the class, one question, any number of points lost
- Roughly overall grades, including homework + quizzes:
 - A: 90% and above
 - B: 80-89%
 - C: 67-79%
- Remember homework + quizzes + discussion worth 50% and exams worth 50%

Recall Eigenvectors

One Dimensional Invariant Subspaces

$$egin{aligned} & U = \{\lambda m{v} : \lambda \in \mathbb{F}\} \ & \mathcal{T} m{v} = \lambda m{v} \end{aligned}$$

Def'n:

Suppose $T \in \mathcal{L}(V)$. A number $\lambda \in \mathbb{F}$ is called an **eigenvalue** of T if there exists $v \in V$ such that $v \neq 0$ and $Tv = \lambda v$. We then call v the corresponding **eigenvector**.

Facts we learned:

Prop'n:

Let $T \in \mathcal{L}(V)$. Spose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Then v_1, \ldots, v_m is linearly independent.

Facts we learned:

Prop'n:

Let $T \in \mathcal{L}(V)$. Spose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Then v_1, \ldots, v_m is linearly independent.

Prop'n:

Suppose V is finite-dimensional. Then each operator on V has at most dim V distinct eigenvalues.

Facts we learned:

Prop'n:

Let $T \in \mathcal{L}(V)$. Spose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Then v_1, \ldots, v_m is linearly independent.

Prop'n:

Suppose V is finite-dimensional. Then each operator on V has at most dim V distinct eigenvalues.

Prop'n:

Every operator on a finite-dimensional, non-zero, complex vector space has an eigenvalue.

Matrix of Operators

Def'n:

 $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis for V. We define $\mathcal{M}(T)$ to be the matrix whose entries are defined by

$$T\mathbf{v}_k = A_{1,k}\mathbf{v}_1 + \ldots + A_{n,k}\mathbf{v}_n.$$

Matrix of Operators

Def'n:

 $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis for V. We define $\mathcal{M}(T)$ to be the matrix whose entries are defined by

$$T \mathbf{v}_k = \mathbf{A}_{1,k} \mathbf{v}_1 + \ldots + \mathbf{A}_{n,k} \mathbf{v}_n.$$

Def'n:

The **diagonal** of a square matrix is the entries along the line from the upper left corner to the bottom right corner.

Matrix of Operators

Def'n:

 $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis for V. We define $\mathcal{M}(T)$ to be the matrix whose entries are defined by

$$T \mathbf{v}_k = \mathbf{A}_{1,k} \mathbf{v}_1 + \ldots + \mathbf{A}_{n,k} \mathbf{v}_n.$$

Def'n:

The **diagonal** of a square matrix is the entries along the line from the upper left corner to the bottom right corner.

Def'n:

A matrix is called **upper triangular** if all the entries below the diagonal equal 0.

Prop'n:

Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V. TFAE:

- (a) the matrix of T with respect to v_1, \ldots, v_n is upper triangular
- (b) $Tv_j \in \text{span}(v_1, \ldots, v_j)$ for each $j = 1, \ldots, n$
- (c) span (v_1, \ldots, v_j) is invariant under *T* for each $j = 1, \ldots, n$

Prop'n:

Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V. TFAE:

- (a) the matrix of T with respect to v_1, \ldots, v_n is upper triangular
- (b) $Tv_j \in \text{span}(v_1, \ldots, v_j)$ for each $j = 1, \ldots, n$
- (c) span (v_1, \ldots, v_j) is invariant under T for each $j = 1, \ldots, n$

Proof.

■ (a) ⇔ (b) by definition

Prop'n:

Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V. TFAE:

- (a) the matrix of T with respect to v_1, \ldots, v_n is upper triangular
- (b) $Tv_j \in \text{span}(v_1, \ldots, v_j)$ for each $j = 1, \ldots, n$
- (c) span (v_1, \ldots, v_j) is invariant under *T* for each $j = 1, \ldots, n$

Prop'n:

Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V. TFAE:

- (a) the matrix of T with respect to v_1, \ldots, v_n is upper triangular
- (b) $Tv_j \in \text{span}(v_1, \ldots, v_j)$ for each $j = 1, \ldots, n$
- (c) span (v_1, \ldots, v_j) is invariant under *T* for each $j = 1, \ldots, n$

Proof.

■ (a)
$$\Leftrightarrow$$
 (b) by definition
■ (b) \implies (c): $Tv_1 \in \text{span}(v_1) \subset \text{span}(v_1, \dots, v_j)$

$$Tv_j \in \operatorname{span}(v_1,\ldots,v_j)$$

:

Prop'n:

Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V. TFAE:

- (a) the matrix of T with respect to v_1, \ldots, v_n is upper triangular
- (b) $Tv_j \in \text{span}(v_1, \ldots, v_j)$ for each $j = 1, \ldots, n$
- (c) span (v_1, \ldots, v_j) is invariant under *T* for each $j = 1, \ldots, n$

Proof.

■ (a)
$$\Leftrightarrow$$
 (b) by definition
■ (b) \implies (c): $Tv_1 \in \text{span}(v_1) \subset \text{span}(v_1, \dots, v_j)$

$$Tv_j \in \operatorname{span}(v_1,\ldots,v_j)$$

:

• (c) \implies (b):

FD • MATH 110 • July 17, 2023

Prop'n:

Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V. TFAE:

- (a) the matrix of T with respect to v_1, \ldots, v_n is upper triangular
- (b) $Tv_j \in \text{span}(v_1, \ldots, v_j)$ for each $j = 1, \ldots, n$
- (c) span (v_1, \ldots, v_j) is invariant under *T* for each $j = 1, \ldots, n$

Proof.

■ (a)
$$\Leftrightarrow$$
 (b) by definition
■ (b) \implies (c): $Tv_1 \in \text{span}(v_1) \subset \text{span}(v_1, \dots, v_j)$

$$\mathit{Tv}_j \in \mathsf{span}(v_1, \ldots, v_j)$$

:

(c)
$$\implies$$
 (b): span (v_1, \ldots, v_j) invariant implies
 $Tv_j \in \text{span}(v_1, \ldots, v_j)$
(D • MATH 110 • July 17, 2023

Every Operator has an Upper-Triangular Form over $\ensuremath{\mathbb{C}}$

Prop'n:

Suppose V is a finite-dimensional \mathbb{C} -vector space and $T \in \mathcal{L}(V)$. Then T has an upper triangular matrix with respect to some basis of V.

Prop'n:

Suppose V is a finite-dimensional \mathbb{C} -vector space and $T \in \mathcal{L}(V)$. Then T has an upper triangular matrix with respect to some basis of V.

Proof.

By induction on dimension.

Every Operator has an Upper-Triangular Form over $\ensuremath{\mathbb{C}}$

Prop'n:

Suppose V is a finite-dimensional \mathbb{C} -vector space and $T \in \mathcal{L}(V)$. Then T has an upper triangular matrix with respect to some basis of V.

- By induction on dimension.
- Base case: dim V = 1.

Prop'n:

Suppose V is a finite-dimensional \mathbb{C} -vector space and $T \in \mathcal{L}(V)$. Then T has an upper triangular matrix with respect to some basis of V.

- By induction on dimension.
- Base case: dim V = 1. 1×1 matrix is upper triangular.

Prop'n:

Suppose V is a finite-dimensional \mathbb{C} -vector space and $T \in \mathcal{L}(V)$. Then T has an upper triangular matrix with respect to some basis of V.

- By induction on dimension.
- Base case: dim V = 1. 1×1 matrix is upper triangular.
- Induction step: Let dim V > 1 and the claim is true for U with dim U < dim V.</p>

Prop'n:

Suppose V is a finite-dimensional \mathbb{C} -vector space and $T \in \mathcal{L}(V)$. Then T has an upper triangular matrix with respect to some basis of V.

- By induction on dimension.
- Base case: dim V = 1. 1×1 matrix is upper triangular.
- Induction step: Let dim V > 1 and the claim is true for U with dim U < dim V.</p>
- **T** has an eigenvalue λ .

Prop'n:

Suppose V is a finite-dimensional \mathbb{C} -vector space and $T \in \mathcal{L}(V)$. Then T has an upper triangular matrix with respect to some basis of V.

- By induction on dimension.
- Base case: dim V = 1. 1×1 matrix is upper triangular.
- Induction step: Let dim V > 1 and the claim is true for U with dim U < dim V.</p>
- **T** has an eigenvalue λ .
- T λI is not surjective. So U = range $(T \lambda I)$ is a proper subset of V.

Prop'n:

Suppose V is a finite-dimensional \mathbb{C} -vector space and $T \in \mathcal{L}(V)$. Then T has an upper triangular matrix with respect to some basis of V.

- By induction on dimension.
- Base case: dim V = 1. 1×1 matrix is upper triangular.
- Induction step: Let dim V > 1 and the claim is true for U with dim U < dim V.</p>
- **T** has an eigenvalue λ .
- $T \lambda I$ is not surjective. So U = range $(T \lambda I)$ is a proper subset of V.
- U is invariant under T:

Prop'n:

Suppose V is a finite-dimensional \mathbb{C} -vector space and $T \in \mathcal{L}(V)$. Then T has an upper triangular matrix with respect to some basis of V.

- By induction on dimension.
- Base case: dim V = 1. 1×1 matrix is upper triangular.
- Induction step: Let dim V > 1 and the claim is true for U with dim U < dim V.</p>
- **T** has an eigenvalue λ .
- $T \lambda I$ is not surjective. So U = range $(T \lambda I)$ is a proper subset of V.
- *U* is invariant under *T*: $Tu = (T \lambda I)u + \lambda u$

Prop'n:

Suppose V is a finite-dimensional \mathbb{C} -vector space and $T \in \mathcal{L}(V)$. Then T has an upper triangular matrix with respect to some basis of V.

- By induction on dimension.
- Base case: dim V = 1. 1×1 matrix is upper triangular.
- Induction step: Let dim V > 1 and the claim is true for U with dim U < dim V.</p>
- **T** has an eigenvalue λ .
- $T \lambda I$ is not surjective. So U = range $(T \lambda I)$ is a proper subset of V.
- *U* is invariant under *T*: $Tu = (T \lambda I)u + \lambda u$
- **T** $|_U$ is an operator with an upper triangular matrix.

Prop'n:

Suppose V is a finite-dimensional \mathbb{C} -vector space and $T \in \mathcal{L}(V)$. Then T has an upper triangular matrix with respect to some basis of V.

- By induction on dimension.
- Base case: dim V = 1. 1×1 matrix is upper triangular.
- Induction step: Let dim V > 1 and the claim is true for U with dim U < dim V.</p>
- **T** has an eigenvalue λ .
- $T \lambda I$ is not surjective. So U = range $(T \lambda I)$ is a proper subset of V.
- *U* is invariant under *T*: $Tu = (T \lambda I)u + \lambda u$
- **T** $|_U$ is an operator with an upper triangular matrix.
- Let u_1, \ldots, u_n be a basis of U.

Prop'n:

Suppose V is a finite-dimensional \mathbb{C} -vector space and $T \in \mathcal{L}(V)$. Then T has an upper triangular matrix with respect to some basis of V.

Proof.

- By induction on dimension.
- Base case: dim V = 1. 1×1 matrix is upper triangular.
- Induction step: Let dim V > 1 and the claim is true for U with dim U < dim V.</p>
- **T** has an eigenvalue λ .
- T λI is not surjective. So U = range $(T \lambda I)$ is a proper subset of V.
- *U* is invariant under *T*: $Tu = (T \lambda I)u + \lambda u$
- **T** $|_U$ is an operator with an upper triangular matrix.
- Let u_1, \ldots, u_n be a basis of U. Extend to basis of V:

 $u_1,\ldots,u_n,v_1,\ldots,v_m$

FD • MATH 110 • July 17, 2023

Proof every operator has upper triangular (Cont'd).

Every Operator has an Upper-Triangular Form over $\ensuremath{\mathbb{C}}$

Proof every operator has upper triangular (Cont'd). Basis of *V*:

 $u_1,\ldots,u_n,v_1,\ldots,v_m$

Proof every operator has upper triangular (Cont'd). Basis of *V*:

 $u_1,\ldots,u_n,v_1,\ldots,v_m$

$$Tu_j = (T|_U)(u_j) \in \operatorname{span}(u_1, \ldots, u_j)$$

Proof every operator has upper triangular (Cont'd). Basis of *V*:

 $u_1,\ldots,u_n,v_1,\ldots,v_m$

$$Tu_j = (T|_U)(u_j) \in \operatorname{span}(u_1, \ldots, u_j)$$

Every Operator has an Upper-Triangular Form over $\ensuremath{\mathbb{C}}$

Proof every operator has upper triangular (Cont'd). Basis of *V*:

 $u_1,\ldots,u_n,v_1,\ldots,v_m$

• $Tu_j = (T|_U)(u_j) \in \operatorname{span}(u_1, \ldots, u_j)$

Conditions for Upper-Triangular Matrix:

Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V. TFAE:

- (a) the matrix of T with respect to v_1, \ldots, v_n is upper triangular
- (b) $Tv_j \in \text{span}(v_1, \ldots, v_j)$ for each $j = 1, \ldots, n$
- (c) span (v_1, \ldots, v_j) is invariant under T for each $j = 1, \ldots, n$

Every Operator has an Upper-Triangular Form over $\ensuremath{\mathbb{C}}$

Proof every operator has upper triangular (Cont'd). Basis of *V*:

 $u_1,\ldots,u_n,v_1,\ldots,v_m$

$$Tu_j = (T|_U)(u_j) \in \operatorname{span}(u_1, \ldots, u_j)$$

Conditions for Upper-Triangular Matrix:

Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V. TFAE:

- (a) the matrix of T with respect to v_1, \ldots, v_n is upper triangular
- (b) $Tv_j \in \text{span}(v_1, \dots, v_j)$ for each $j = 1, \dots, n$
- (c) span (v_1, \ldots, v_j) is invariant under T for each $j = 1, \ldots, n$

•
$$Tv_k = (T - \lambda I)v_k + \lambda v_k$$
 implies

$$Tv_k \in \operatorname{span}(u_1,\ldots,u_m,v_1,\ldots,v_k)$$

Utility of Upper-Triangular Form

Prop'n [Axl14]:

Suppose $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some basis of V. Then T is invertible if and only if all the entries on the diagonal of the upper-triangular matrix are nonzero.

Utility of Upper-Triangular Form

Prop'n [Axl14]:

Suppose $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some basis of V. Then T is invertible if and only if all the entries on the diagonal of the upper-triangular matrix are nonzero.

Prop'n [Axl14]:

Suppose $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some basis of V. Then the eigenvalues of T are precisely the entries on the diagonal of that upper-triangular matrix.

Utility of Upper-Triangular Form

Prop'n [Axl14]:

Suppose $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some basis of V. Then T is invertible if and only if all the entries on the diagonal of the upper-triangular matrix are nonzero.

Prop'n [Axl14]:

Suppose $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some basis of V. Then the eigenvalues of T are precisely the entries on the diagonal of that upper-triangular matrix.

Example:

$$\left(\begin{array}{rrrrr}
2 & 3 & 4 \\
0 & 1 & 0 \\
0 & 0 & 7
\end{array}\right)$$

Def'n:

A **diagonal matrix** is a square matrix that is 0 everywhere except possibly along the diagonal.

Def'n:

A **diagonal matrix** is a square matrix that is 0 everywhere except possibly along the diagonal.

Def'n:

Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. The **eigenspace** of *T* corresponding to λ is

$$E(\lambda, T) :=$$
null $(T - \lambda I)$.

Def'n:

A **diagonal matrix** is a square matrix that is 0 everywhere except possibly along the diagonal.

Def'n:

Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. The **eigenspace** of *T* corresponding to λ is

$$\mathsf{E}(\lambda,T) := \mathsf{null} (T - \lambda I).$$

*This is just the set of all eigenvectors of T corresponding to λ along with 0.

Def'n:

A **diagonal matrix** is a square matrix that is 0 everywhere except possibly along the diagonal.

Def'n:

Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. The **eigenspace** of *T* corresponding to λ is

$$\mathsf{E}(\lambda,T) := \mathsf{null} (T - \lambda I).$$

*This is just the set of all eigenvectors of *T* corresponding to λ along with 0.

Example:

$$\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 3
\end{array}\right)$$

FD • MATH 110 • July 17, 2023

Diagonalizable

Def'n:

An operator $T \in \mathcal{L}(V)$ is called **diagonalizable** if the operator has a diagonal matrix with respect to some basis of *V*.

Diagonalizable

Def'n:

An operator $T \in \mathcal{L}(V)$ is called **diagonalizable** if the operator has a diagonal matrix with respect to some basis of *V*.

Example:

$$T(x,y) = (41x + 7y, -20x + 74y)$$

With respect to the basis (1, 4), (7, 5) the matrix is

$$\left(\begin{array}{cc} 69 & 0\\ 0 & 46 \end{array}\right)$$

Conditions for Diagonalizability

Prop'n:

V finite-dimensional, $T \in \mathcal{L}(V)$ and $\lambda_1, \ldots, \lambda_m$ *distinct* eigenvalues. TFAE:

- (a) T is diagonalizable
- (b) V has a basis of eigenvectors of T
- (c) there exist 1-dimensional subspaces U_1, \ldots, U_n of V each invariant under T such that $V = U_1 \oplus \cdots \oplus U_n$

(d)
$$V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$$

(e) dim
$$V = \dim E(\lambda_1, T) + \ldots + \dim E(\lambda_m, T)$$

(a) \Leftrightarrow (b):

(a)
$$\Leftrightarrow$$
 (b):

$$\mathcal{M}(T) = \begin{pmatrix} \lambda_1 & 0 \\ \vdots \\ 0 & \lambda_n \end{pmatrix} \Leftrightarrow Tv_i = \lambda_i v_i$$

(a)
$$\Leftrightarrow$$
 (b):

$$\mathcal{M}(T) = \begin{pmatrix} \lambda_1 & 0 \\ \vdots \\ 0 & \lambda_n \end{pmatrix} \Leftrightarrow Tv_i = \lambda_i v_i$$

S'pose (b): $U_j := \operatorname{span}(v_j) \dots$

(a)
$$\Leftrightarrow$$
 (b):
$$\mathcal{M}(T) = \begin{pmatrix} \lambda_1 & 0 \\ \vdots \\ 0 & \lambda_n \end{pmatrix} \Leftrightarrow Tv_i = \lambda_i v_i$$

S'pose (b): $U_j := \operatorname{span}(v_j) \dots$

S'pose (c): U_j must also be span (v_j) ...

(a)
$$\Leftrightarrow$$
 (b):
$$\mathcal{M}(T) = \begin{pmatrix} \lambda_1 & 0\\ \vdots & \\ 0 & \lambda_n \end{pmatrix} \Leftrightarrow T v_i = \lambda_i v_i$$

S'pose (b): $U_j := \operatorname{span}(v_j) \dots$

S'pose (c): U_j must also be span (v_j) ...

So we have: (a) \Leftrightarrow (b) \Leftrightarrow (c)

(a)
$$\Leftrightarrow$$
 (b):
$$\mathcal{M}(T) = \begin{pmatrix} \lambda_1 & 0\\ \vdots & \\ 0 & \lambda_n \end{pmatrix} \Leftrightarrow \mathcal{T} v_i = \lambda_i v_i$$

S'pose (b): $U_j := \operatorname{span}(v_j) \dots$

S'pose (c): U_j must also be span (v_j) ...

So we have: (a) \Leftrightarrow (b) \Leftrightarrow (c)

$$\mathsf{WTS:}\,\mathsf{(b)}\implies\mathsf{(d)}\implies\mathsf{(e)}\implies\mathsf{(b)}$$

(b) \implies (d) \implies (e) \implies (b)

(b)
$$\implies$$
 (d) \implies (e) \implies (b)

S'pose (b) again:

(b)
$$\implies$$
 (d) \implies (e) \implies (b)

S'pose (b) again:

Then $V = E(\lambda_1, T) + \ldots + E(\lambda_m, T)$. Show the only way to write $0 = u_1 + \ldots + u_m$ is $u_i = 0$.

(b)
$$\implies$$
 (d) \implies (e) \implies (b)

S'pose (b) again:

Then $V = E(\lambda_1, T) + \ldots + E(\lambda_m, T)$. Show the only way to write $0 = u_1 + \ldots + u_m$ is $u_i = 0$.

S'pose (d):

(b) \implies (d) \implies (e) \implies (b)

S'pose (b) again:

Then $V = E(\lambda_1, T) + \ldots + E(\lambda_m, T)$. Show the only way to write $0 = u_1 + \ldots + u_m$ is $u_i = 0$.

S'pose (d): True fact we didn't prove.

(b) \implies (d) \implies (e) \implies (b)

S'pose (b) again:

Then $V = E(\lambda_1, T) + \ldots + E(\lambda_m, T)$. Show the only way to write $0 = u_1 + \ldots + u_m$ is $u_i = 0$.

S'pose (d): True fact we didn't prove.

S'pose (e):

(b) \implies (d) \implies (e) \implies (b)

S'pose (b) again:

Then $V = E(\lambda_1, T) + \ldots + E(\lambda_m, T)$. Show the only way to write $0 = u_1 + \ldots + u_m$ is $u_i = 0$.

S'pose (d): True fact we didn't prove.

S'pose (e):Pick vectors v_1, \ldots, v_n combining bases for each eigenspace. Show these are linearly independent ...

Corollary:

If $T \in \mathcal{L}(V)$ has dim V distinct eigenvalues, then T is diagonalizable.

[Ax114] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.