Lecture 15: Inner Products and Norms

MATH 110-3

Franny Dean

July 18, 2023

Motivation

■ Length or norm of a vector in $\mathbb{R}^{2}, \mathbb{R}^{3}$

Motivation

■ Length or norm of a vector in $\mathbb{R}^{2}, \mathbb{R}^{3}$
■ $\|x\|=\sqrt{x_{1}^{2}+\ldots+x^{n}}$

Motivation

- Length or norm of a vector in $\mathbb{R}^{2}, \mathbb{R}^{3}$

■ $\|x\|=\sqrt{x_{1}^{2}+\ldots+x^{n}}$
■ Norm is not linear so...

Dot Product

Dot Product

For $x, y \in \mathbb{R}^{n}$, the dot product of x and y denoted $x \cdot y$ is defined

$$
\begin{aligned}
& \qquad x \cdot y=x_{1} y_{1}+\ldots+x_{n} y_{n} \\
& \text { where } x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) .
\end{aligned}
$$

Dot Product

Dot Product

For $x, y \in \mathbb{R}^{n}$, the dot product of x and y denoted $x \cdot y$ is defined

$$
x \cdot y=x_{1} y_{1}+\ldots+x_{n} y_{n}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$.

Properties of the dot product:
$\square x \cdot x=\|x\|^{2}$ for all $x \in \mathbb{R}^{n}$

Dot Product

Dot Product

For $x, y \in \mathbb{R}^{n}$, the dot product of x and y denoted $x \cdot y$ is defined

$$
x \cdot y=x_{1} y_{1}+\ldots+x_{n} y_{n}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$.

Properties of the dot product:
$\square x \cdot x=\|x\|^{2}$ for all $x \in \mathbb{R}^{n}$
$\square x \cdot x \geq 0$ for all $x \in \mathbb{R}^{n}$

Dot Product

Dot Product

For $x, y \in \mathbb{R}^{n}$, the dot product of x and y denoted $x \cdot y$ is defined

$$
x \cdot y=x_{1} y_{1}+\ldots+x_{n} y_{n}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$.

Properties of the dot product:
$\square x \cdot x=\|x\|^{2}$ for all $x \in \mathbb{R}^{n}$
$\square x \cdot x \geq 0$ for all $x \in \mathbb{R}^{n}$
$\square x \cdot x=0$ if and only if $x=0$

Dot Product

Dot Product

For $x, y \in \mathbb{R}^{n}$, the dot product of x and y denoted $x \cdot y$ is defined

$$
x \cdot y=x_{1} y_{1}+\ldots+x_{n} y_{n}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$.

Properties of the dot product:
$■ x \cdot x=\|x\|^{2}$ for all $x \in \mathbb{R}^{n}$
$\square x \cdot x \geq 0$ for all $x \in \mathbb{R}^{n}$
$\square x \cdot x=0$ if and only if $x=0$
■ $T(x)=x \cdot y$ for fixed $y \in \mathbb{R}^{n}$ is linear

Dot Product

Dot Product

For $x, y \in \mathbb{R}^{n}$, the dot product of x and y denoted $x \cdot y$ is defined

$$
x \cdot y=x_{1} y_{1}+\ldots+x_{n} y_{n}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$.

Properties of the dot product:
$\square x \cdot x=\|x\|^{2}$ for all $x \in \mathbb{R}^{n}$
■ $x \cdot x \geq 0$ for all $x \in \mathbb{R}^{n}$
$\square x \cdot x=0$ if and only if $x=0$
$\square T(x)=x \cdot y$ for fixed $y \in \mathbb{R}^{n}$ is linear
$\square x \cdot y=y \cdot x$ for all $x, y \in \mathbb{R}^{n}$

Dot Product

Dot Product

For $x, y \in \mathbb{R}^{n}$, the dot product of x and y denoted $x \cdot y$ is defined

$$
x \cdot y=x_{1} y_{1}+\ldots+x_{n} y_{n}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$.

Properties of the dot product:
$\square x \cdot x=\|x\|^{2}$ for all $x \in \mathbb{R}^{n}$
$\square x \cdot x \geq 0$ for all $x \in \mathbb{R}^{n}$
$\square x \cdot x=0$ if and only if $x=0$
$\square T(x)=x \cdot y$ for fixed $y \in \mathbb{R}^{n}$ is linear
$\square x \cdot y=y \cdot x$ for all $x, y \in \mathbb{R}^{n}$
The inner product generalizes the dot product.

What should the inner product look like for \mathbb{C} ?

■ $\lambda=a+b i$ for $a, b \in \mathbb{R}$

What should the inner product look like for \mathbb{C} ?

■ $\lambda=a+b i$ for $a, b \in \mathbb{R}$
■ $|\lambda|=\sqrt{a^{2}+b^{2}}$

What should the inner product look like for \mathbb{C} ?

■ $\lambda=a+b i$ for $a, b \in \mathbb{R}$

- $|\lambda|=\sqrt{a^{2}+b^{2}}$

■ $\bar{\lambda}=a-b i$

What should the inner product look like for \mathbb{C} ?

■ $\lambda=a+b i$ for $a, b \in \mathbb{R}$

- $|\lambda|=\sqrt{a^{2}+b^{2}}$

■ $\bar{\lambda}=a-b i$
■ $|\lambda|^{2}=\lambda \bar{\lambda}$

What should the inner product look like for \mathbb{C} ?

■ $\lambda=a+b i$ for $a, b \in \mathbb{R}$

- $|\lambda|=\sqrt{a^{2}+b^{2}}$

■ $\bar{\lambda}=a-b i$
■ $|\lambda|^{2}=\lambda \bar{\lambda}$
■ define the norm as $\|z\|=\sqrt{\left|z_{1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}}$

What should the inner product look like for \mathbb{C} ?

■ $\lambda=a+b i$ for $a, b \in \mathbb{R}$

- $|\lambda|=\sqrt{a^{2}+b^{2}}$

■ $\bar{\lambda}=a-b i$
■ $|\lambda|^{2}=\lambda \bar{\lambda}$
\square define the norm as $\|z\|=\sqrt{\left|z_{1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}}$
\square define inner product of $w=\left(w_{1}, \ldots, w_{n}\right)$ and $z=\left(z_{1}, \ldots, z_{n}\right)$ as

$$
w_{1} \overline{z_{1}}+\ldots+w_{n} \overline{z_{n}}
$$

Inner Product

Def'n:

An inner product on V is a function that takes each ordered pair (u, v) of elements of V to a number $\langle u, v\rangle \in \mathbb{F}$ and has the following properties:

```
positivity
    \(\langle v, v\rangle \geq 0\) for all \(v \in V ;\)
definiteness
    \(\langle v, v\rangle=0\) if and only if \(v=0 ;\)
additivity in first slot
    \(\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle\) for all \(u, v, w \in V ;\)
homogeneity in first slot
    \(\langle\lambda u, v\rangle=\lambda\langle u, v\rangle\) for all \(\lambda \in \mathbf{F}\) and all \(u, v \in V ;\)
conjugate symmetry
    \(\langle u, v\rangle=\overline{\langle v, u\rangle}\) for all \(u, v \in V\).
```


Examples

- The Euclidean inner product on \mathbb{F}^{n} is defined

$$
\left.\left\langle w_{1}, \ldots, w_{n}\right),\left(z_{1}, \ldots, z_{n}\right)\right\rangle=w_{1} \overline{z_{1}}+\ldots+w_{n} \overline{z_{n}}
$$

Examples

■ The Euclidean inner product on \mathbb{F}^{n} is defined

$$
\left.\left\langle w_{1}, \ldots, w_{n}\right),\left(z_{1}, \ldots, z_{n}\right)\right\rangle=w_{1} \overline{z_{1}}+\ldots+w_{n} \overline{z_{n}}
$$

■ If c_{1}, \ldots, c_{n} are positive numbers, then we can define on \mathbb{F}^{n}

$$
\left.\left\langle w_{1}, \ldots, w_{n}\right),\left(z_{1}, \ldots, z_{n}\right)\right\rangle=c_{1} w_{1} \overline{z_{1}}+\ldots+c_{n} w_{n} \overline{z_{n}} .
$$

Examples

■ The Euclidean inner product on \mathbb{F}^{n} is defined

$$
\left.\left\langle w_{1}, \ldots, w_{n}\right),\left(z_{1}, \ldots, z_{n}\right)\right\rangle=w_{1} \overline{z_{1}}+\ldots+w_{n} \overline{z_{n}}
$$

- If c_{1}, \ldots, c_{n} are positive numbers, then we can define on \mathbb{F}^{n}

$$
\left.\left\langle w_{1}, \ldots, w_{n}\right),\left(z_{1}, \ldots, z_{n}\right)\right\rangle=c_{1} w_{1} \overline{z_{1}}+\ldots+c_{n} w_{n} \overline{z_{n}} .
$$

■ An inner product on the vector space of real-valued functions on $[-1,1], \mathbb{R}^{[-1,1]}$, defined

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

Examples

■ The Euclidean inner product on \mathbb{F}^{n} is defined

$$
\left.\left\langle w_{1}, \ldots, w_{n}\right),\left(z_{1}, \ldots, z_{n}\right)\right\rangle=w_{1} \overline{z_{1}}+\ldots+w_{n} \overline{z_{n}}
$$

■ If c_{1}, \ldots, c_{n} are positive numbers, then we can define on \mathbb{F}^{n}

$$
\left.\left\langle w_{1}, \ldots, w_{n}\right),\left(z_{1}, \ldots, z_{n}\right)\right\rangle=c_{1} w_{1} \overline{z_{1}}+\ldots+c_{n} w_{n} \overline{z_{n}} .
$$

■ An inner product on the vector space of real-valued functions on $[-1,1], \mathbb{R}^{[-1,1]}$, defined

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

- An inner product on $\mathcal{P}(\mathbb{R})$ could be

$$
\langle p, q\rangle=\int_{0}^{\infty} p(x) q(x) e^{-x} d x
$$

Inner Product Space

Def'n:

An inner product space is a vector space V along with an inner product on V.

Inner Product Space

Def'n:

An inner product space is a vector space V along with an inner product on V.

Example:

Inner Product Space

Def'n:

An inner product space is a vector space V along with an inner product on V.

Example:

■ \mathbb{F}^{n} with the Euclidean inner product

Inner Product Space

Def'n:

An inner product space is a vector space V along with an inner product on V.

Example:

■ \mathbb{F}^{n} with the Euclidean inner product (assume this one)

Basic Properties

6.7 Basic properties of an inner product
(a) For each fixed $u \in V$, the function that takes v to $\langle v, u\rangle$ is a linear map from V to \mathbf{F}.
(b) $\quad\langle 0, u\rangle=0$ for every $u \in V$.
(c) $\langle u, 0\rangle=0$ for every $u \in V$.
(d) $\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle$ for all $u, v, w \in V$.
(e) $\langle u, \lambda v\rangle=\bar{\lambda}\langle u, v\rangle$ for all $\lambda \in \mathbf{F}$ and $u, v \in V$.

Norms

A general inner product allows us to define for any inner product...

Def'n:

For $v \in V$, the norm of v, denoted $\|v\|$ is defined by

$$
\|v\|=\sqrt{\langle v, v\rangle} .
$$

Norms

A general inner product allows us to define for any inner product...

Def'n:

For $v \in V$, the norm of v, denoted $\|v\|$ is defined by

$$
\|v\|=\sqrt{\langle v, v\rangle} .
$$

Examples:

Norms

A general inner product allows us to define for any inner product...

Def'n:

For $v \in V$, the norm of v, denoted $\|v\|$ is defined by

$$
\|v\|=\sqrt{\langle v, v\rangle} .
$$

Examples:

$\square\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{F}^{n}$,

$$
\left\|\left(z_{1}, \ldots, z_{n}\right)\right\|=\sqrt{\left|z_{1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}}
$$

Norms

A general inner product allows us to define for any inner product...

Def'n:

For $v \in V$, the norm of v, denoted $\|v\|$ is defined by

$$
\|v\|=\sqrt{\langle v, v\rangle} .
$$

Examples:

$■\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{F}^{n}$,

$$
\left\|\left(z_{1}, \ldots, z_{n}\right)\right\|=\sqrt{\left|z_{1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}}
$$

■ $\mathbb{R}^{[-1,1]}$ with inner product defined as previously,

$$
\|f\|=\sqrt{\int_{-1}^{1}(f(x))^{2} d x}
$$

Basic Properties

6.10 Basic properties of the norm

Suppose $v \in V$.
(a) $\|v\|=0$ if and only if $v=0$.
(b) $\quad\|\lambda v\|=|\lambda|\|v\|$ for all $\lambda \in \mathbf{F}$.

Orthogonality

Def'n:

Two vectors $u, v \in V$ are orthogonal if $\langle u, v\rangle=0$.

Orthogonality

Def'n:

Two vectors $u, v \in V$ are orthogonal if $\langle u, v\rangle=0$.

Example:

■ $(1,-1),(2,2)$ are orthogonal in \mathbb{R}^{2}

Orthogonality

Def'n:

Two vectors $u, v \in V$ are orthogonal if $\langle u, v\rangle=0$.

Example:

■ $(1,-1),(2,2)$ are orthogonal in \mathbb{R}^{2}
■ corresponds to right angles because $\langle u, v\rangle=\|u\|\|v\| \cos \theta$ in \mathbb{R}^{2}

Orthogonality

Def'n:

Two vectors $u, v \in V$ are orthogonal if $\langle u, v\rangle=0$.

Example:

■ $(1,-1),(2,2)$ are orthogonal in \mathbb{R}^{2}
■ corresponds to right angles because $\langle u, v\rangle=\|u\|\| \| v \| \cos \theta$ in \mathbb{R}^{2}

Prop'n 6.12 [Axl14]:

■ 0 is orthogonal to every vector in V
■ 0 is the only vector orthogonal to itself

Pythagorean Theorem

Prop'n:

Suppose u and v are orthogonal vectors in V. Then

$$
\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2} .
$$

Pythagorean Theorem

Prop'n:

Suppose u and v are orthogonal vectors in V. Then

$$
\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2} .
$$

Proof.

$$
\begin{aligned}
\|u+v\|^{2} & =\langle u+v, u+v\rangle \\
& =\langle u, u\rangle+\langle u, v\rangle+\langle v, u\rangle+\langle v, v\rangle \\
& =\|u\|^{2}+\|v\|^{2}
\end{aligned}
$$

Orthogonal Decomposition

Orthogonal Decomposition

Goal: Write u as a scalar multiple of a vector v plus a vector orthogonal to v

Orthogonal Decomposition

Goal: Write u as a scalar multiple of a vector v plus a vector orthogonal to v

Let $c \in \mathbb{F}$ so that

$$
u=c v+(u-c v)
$$

Orthogonal Decomposition

Goal: Write u as a scalar multiple of a vector v plus a vector orthogonal to v

Let $c \in \mathbb{F}$ so that

$$
u=c v+(u-c v)
$$

Need to choose a c :

Orthogonal Decomposition

Goal: Write u as a scalar multiple of a vector v plus a vector orthogonal to v

Let $c \in \mathbb{F}$ so that

$$
u=c v+(u-c v)
$$

Need to choose a c:
We want

$$
0=\langle u-c v, v\rangle=\langle u, v\rangle-c\|v\|^{2}
$$

Orthogonal Decomposition

Goal: Write u as a scalar multiple of a vector v plus a vector orthogonal to v

Let $c \in \mathbb{F}$ so that

$$
u=c v+(u-c v)
$$

Need to choose a c:
We want

$$
0=\langle u-c v, v\rangle=\langle u, v\rangle-c\|v\|^{2}
$$

So let

$$
c=\frac{\langle u, v\rangle}{\|v\|^{2}} .
$$

Orthogonal Decomposition

Prop'n:

Suppose $u, v \in V$ with $v \neq 0$. Set $c=\frac{\langle u, v\rangle}{\|v\|^{2}}$ and $w=u-\frac{\langle u, v\rangle}{\|v\|^{2}} v$. Then

$$
\langle w, v\rangle=0
$$

and

$$
u=c v+w
$$

Cauchy-Schwarz

Prop'n:

Suppose $u, v \in V$. Then

$$
|\langle u, v\rangle| \leq\|u\|\| \| v \| .
$$

Equality is reached if and only if one of u or v is a scalar multiple of the other.

Cauchy-Schwarz

Prop'n:

Suppose $u, v \in V$. Then

$$
|\langle u, v\rangle| \leq\|u\|\| \| v \| .
$$

Equality is reached if and only if one of u or v is a scalar multiple of the other.

Proof.

- Orthogonal decomposition
- Pythagorean theorem

Triangle Inequality

Prop'n:

$$
\|u+v\| \leq\|u\|+\|v\|
$$

and equality is obtained if and only if one of u, v is a non-negative multiple of the other.

Triangle Inequality

Prop'n:

$$
\|u+v\| \leq\|u\|+\|v\|
$$

and equality is obtained if and only if one of u, v is a non-negative multiple of the other.

Proof.

$$
\begin{aligned}
\|u+v\|^{2} & =\langle u+v, u+v\rangle \\
& =\langle u, u\rangle+\langle v, v\rangle+\langle u, v\rangle+\langle v, u\rangle \\
& =\langle u, u\rangle+\langle v, v\rangle+\langle u, v\rangle+\overline{\langle u, v\rangle} \\
& =\|u\|^{2}+\|v\|^{2}+2 \operatorname{Re}\langle u, v\rangle \\
& \leq\|u\|^{2}+\|v\|^{2}+2|\langle u, v\rangle| \\
& \leq\|u\|^{2}+\|v\|^{2}+2\|u\|\|v\| \\
& =(\|u\|+\|v\|)^{2}
\end{aligned}
$$

Triangle Inequality (Cont'd)

Prop'n:

$$
\|u+v\| \leq\|u\|+\|v\|
$$

and equality is obtained if and only if one of u, v is a non-negative multiple of the other.

Proof (Cont'd).
Notice equality holds if and only if $\langle u, v\rangle=\|u\|\|v\|$.

Triangle Inequality (Cont'd)

Prop'n:

$$
\|u+v\| \leq\|u\|+\|v\|
$$

and equality is obtained if and only if one of u, v is a non-negative multiple of the other.

Proof (Cont'd).
Notice equality holds if and only if $\langle u, v\rangle=\|u\|\|v\|$.
Using Cauchy-Inequality, true iff u, v are non-negative scalar multiples of each other.

Latex Asides

$\langle u, v\rangle$ is coded langle u, v rangle
$\bar{\lambda}$ is bar\{lambda\}
$\overline{\langle u, v\rangle}$ is overline\{langle u, v rangle $\}$

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

