

Lecture 15: Inner Products and Norms

MATH 110-3

Franny Dean

July 18, 2023

• Length or norm of a vector in $\mathbb{R}^2, \mathbb{R}^3$

Motivation

Motivation

• Length or norm of a vector in $\mathbb{R}^2, \mathbb{R}^3$

$$||x|| = \sqrt{x_1^2 + \ldots + x^n}$$

Norm is not linear so...

Dot Product

For $x, y \in \mathbb{R}^n$, the **dot product** of *x* and *y* denoted $x \cdot y$ is defined

 $x \cdot y = x_1 y_1 + \ldots + x_n y_n$

where $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$.

Dot Product

For $x, y \in \mathbb{R}^n$, the **dot product** of *x* and *y* denoted $x \cdot y$ is defined

$$x \cdot y = x_1 y_1 + \ldots + x_n y_n$$

where $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$.

Properties of the dot product: $x \cdot x = ||x||^2$ for all $x \in \mathbb{R}^n$

Dot Product

For $x, y \in \mathbb{R}^n$, the **dot product** of *x* and *y* denoted $x \cdot y$ is defined

$$x \cdot y = x_1 y_1 + \ldots + x_n y_n$$

where $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$.

Properties of the dot product: $x \cdot x = ||x||^2$ for all $x \in \mathbb{R}^n$ $x \cdot x > 0$ for all $x \in \mathbb{R}^n$

Dot Product

For $x, y \in \mathbb{R}^n$, the **dot product** of *x* and *y* denoted $x \cdot y$ is defined

$$x \cdot y = x_1 y_1 + \ldots + x_n y_n$$

where $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$.

Properties of the dot product:

•
$$x \cdot x = ||x||^2$$
 for all $x \in \mathbb{R}^n$

- $x \cdot x \ge 0$ for all $x \in \mathbb{R}^n$
- $x \cdot x = 0$ if and only if x = 0

Dot Product

For $x, y \in \mathbb{R}^n$, the **dot product** of *x* and *y* denoted $x \cdot y$ is defined

$$x \cdot y = x_1 y_1 + \ldots + x_n y_n$$

where $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$.

Properties of the dot product:

•
$$x \cdot x = ||x||^2$$
 for all $x \in \mathbb{R}^n$

- $x \cdot x \ge 0$ for all $x \in \mathbb{R}^n$
- $x \cdot x = 0$ if and only if x = 0
- $T(x) = x \cdot y$ for fixed $y \in \mathbb{R}^n$ is linear

Dot Product

For $x, y \in \mathbb{R}^n$, the **dot product** of *x* and *y* denoted $x \cdot y$ is defined

$$x \cdot y = x_1 y_1 + \ldots + x_n y_n$$

where $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$.

Properties of the dot product:

•
$$x \cdot x = ||x||^2$$
 for all $x \in \mathbb{R}^n$

• $x \cdot x \ge 0$ for all $x \in \mathbb{R}^n$

•
$$x \cdot x = 0$$
 if and only if $x = 0$

T
$$(x) = x \cdot y$$
 for fixed $y \in \mathbb{R}^n$ is linear

•
$$x \cdot y = y \cdot x$$
 for all $x, y \in \mathbb{R}^n$

Dot Product

For $x, y \in \mathbb{R}^n$, the **dot product** of *x* and *y* denoted $x \cdot y$ is defined

$$x \cdot y = x_1 y_1 + \ldots + x_n y_n$$

where $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$.

Properties of the dot product:

•
$$x \cdot x = ||x||^2$$
 for all $x \in \mathbb{R}^n$

• $x \cdot x \ge 0$ for all $x \in \mathbb{R}^n$

•
$$x \cdot x = 0$$
 if and only if $x = 0$

■
$$T(x) = x \cdot y$$
 for fixed $y \in \mathbb{R}^n$ is linear

•
$$x \cdot y = y \cdot x$$
 for all $x, y \in \mathbb{R}^n$

The inner product generalizes the dot product.

• $\lambda = a + bi$ for $a, b \in \mathbb{R}$

$$\lambda = a + bi \text{ for } a, b \in \mathbb{R}$$
$$|\lambda| = \sqrt{a^2 + b^2}$$

$$\lambda = a + bi \text{ for } a, b \in \mathbb{R}$$
$$|\lambda| = \sqrt{a^2 + b^2}$$
$$\bar{\lambda} = a - bi$$

$$\begin{array}{l} \lambda = a + bi \text{ for } a, b \in \mathbb{R} \\ |\lambda| = \sqrt{a^2 + b^2} \\ \overline{\lambda} = a - bi \\ |\lambda|^2 = \lambda \overline{\lambda} \end{array}$$

$$\lambda = a + bi \text{ for } a, b \in \mathbb{R}$$
$$|\lambda| = \sqrt{a^2 + b^2}$$
$$\bar{\lambda} = a - bi$$
$$|\lambda|^2 = \lambda \bar{\lambda}$$

• define the norm as $||z|| = \sqrt{|z_1|^2 + ... + |z_n|^2}$

- $\lambda = a + bi$ for $a, b \in \mathbb{R}$
- $|\lambda| = \sqrt{a^2 + b^2}$
- $\bar{\lambda} = a bi$
- $|\lambda|^2 = \lambda \bar{\lambda}$
- define the norm as $||z|| = \sqrt{|z_1|^2 + ... + |z_n|^2}$
- define inner product of $w = (w_1, \ldots, w_n)$ and $z = (z_1, \ldots, z_n)$ as

$$w_1 \bar{z_1} + \ldots + w_n \bar{z_n}$$

Inner Product

Def'n:

An **inner product** on *V* is a function that takes each ordered pair (u, v) of elements of *V* to a number $\langle u, v \rangle \in \mathbb{F}$ and has the following properties:

positivity $\langle v, v \rangle \ge 0$ for all $v \in V$; **definiteness** $\langle v, v \rangle = 0$ if and only if v = 0; **additivity in first slot** $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ for all $u, v, w \in V$; **homogeneity in first slot** $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$ for all $\lambda \in \mathbf{F}$ and all $u, v \in V$; **conjugate symmetry** $\langle u, v \rangle = \overline{\langle v, u \rangle}$ for all $u, v \in V$.

The Euclidean inner product on \mathbb{F}^n is defined

 $\langle w_1,\ldots,w_n\rangle,(z_1,\ldots,z_n)\rangle=w_1\bar{z_1}+\ldots+w_n\bar{z_n}.$

The Euclidean inner product on \mathbb{F}^n is defined

$$\langle w_1,\ldots,w_n\rangle,(z_1,\ldots,z_n)\rangle=w_1\bar{z_1}+\ldots+w_n\bar{z_n}.$$

If c_1, \ldots, c_n are positive numbers, then we can define on \mathbb{F}^n $\langle w_1, \ldots, w_n \rangle, (z_1, \ldots, z_n) \rangle = c_1 w_1 \overline{z_1} + \ldots + c_n w_n \overline{z_n}.$

The Euclidean inner product on \mathbb{F}^n is defined

$$\langle w_1,\ldots,w_n\rangle,(z_1,\ldots,z_n)\rangle=w_1\bar{z_1}+\ldots+w_n\bar{z_n}.$$

- If c_1, \ldots, c_n are positive numbers, then we can define on \mathbb{F}^n $\langle w_1, \ldots, w_n \rangle, (z_1, \ldots, z_n) \rangle = c_1 w_1 \overline{z_1} + \ldots + c_n w_n \overline{z_n}.$
- An inner product on the vector space of real-valued functions on [-1, 1], $\mathbb{R}^{[-1,1]}$, defined

$$\langle f,g\rangle=\int_{-1}^{1}f(x)g(x)dx.$$

The Euclidean inner product on \mathbb{F}^n is defined

$$\langle w_1,\ldots,w_n\rangle,(z_1,\ldots,z_n)\rangle=w_1\bar{z_1}+\ldots+w_n\bar{z_n}.$$

If c_1, \ldots, c_n are positive numbers, then we can define on \mathbb{F}^n $\langle w_1, \ldots, w_n \rangle, (z_1, \ldots, z_n) \rangle = c_1 w_1 \overline{z_1} + \ldots + c_n w_n \overline{z_n}.$

An inner product on the vector space of real-valued functions on [-1, 1], $\mathbb{R}^{[-1,1]}$, defined

$$\langle f,g\rangle = \int_{-1}^{1} f(x)g(x)dx.$$

An inner product on $\mathcal{P}(\mathbb{R})$ could be

$$\langle p,q\rangle = \int_0^\infty p(x)q(x)e^{-x}dx.$$

Def'n:

An **inner product space** is a vector space *V* along with an inner product on *V*.

Def'n:

An **inner product space** is a vector space *V* along with an inner product on *V*.

Example:

Def'n:

An **inner product space** is a vector space *V* along with an inner product on *V*.

Example:

\blacksquare \mathbb{F}^n with the Euclidean inner product

Def'n:

An **inner product space** is a vector space *V* along with an inner product on *V*.

Example:

\blacksquare \mathbb{F}^n with the Euclidean inner product (assume this one)

Basic Properties

6.7 Basic properties of an inner product

(a) For each fixed $u \in V$, the function that takes v to $\langle v, u \rangle$ is a linear map from V to F.

(b)
$$\langle 0, u \rangle = 0$$
 for every $u \in V$.

(c)
$$\langle u, 0 \rangle = 0$$
 for every $u \in V$.

(d)
$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$$
 for all $u, v, w \in V$.

(e)
$$\langle u, \lambda v \rangle = \overline{\lambda} \langle u, v \rangle$$
 for all $\lambda \in \mathbf{F}$ and $u, v \in V$.

A general inner product allows us to define for any inner product...

Def'n:

For $v \in V$, the **norm** of *v*, denoted ||v|| is defined by

$$||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}.$$

A general inner product allows us to define for any inner product...

Def'n:

For $v \in V$, the **norm** of v, denoted ||v|| is defined by

$$||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}.$$

Examples:

A general inner product allows us to define for any inner product...

Def'n:

For $v \in V$, the **norm** of *v*, denoted ||v|| is defined by

$$||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}.$$

Examples:

•
$$(z_1, \ldots, z_n) \in \mathbb{F}^n$$
,
 $||(z_1, \ldots, z_n)|| = \sqrt{|z_1|^2 + \ldots + |z_n|^2}$

A general inner product allows us to define for any inner product...

Def'n:

For $v \in V$, the **norm** of *v*, denoted ||v|| is defined by

$$||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}.$$

Examples:

•
$$(z_1, \ldots, z_n) \in \mathbb{F}^n$$
,
 $||(z_1, \ldots, z_n)|| = \sqrt{|z_1|^2 + \ldots + |z_n|^2}$

\square $\mathbb{R}^{[-1,1]}$ with inner product defined as previously,

$$||f|| = \sqrt{\int_{-1}^{1} (f(x))^2 dx}.$$

Basic Properties

6.10 Basic properties of the norm

Suppose $v \in V$.

(a)
$$||v|| = 0$$
 if and only if $v = 0$.

(b)
$$\|\lambda v\| = |\lambda| \|v\|$$
 for all $\lambda \in \mathbf{F}$.

Def'n:

Two vectors $u, v \in V$ are **orthogonal** if $\langle u, v \rangle = 0$.

Def'n:

Two vectors $u, v \in V$ are **orthogonal** if $\langle u, v \rangle = 0$.

Example:

• (1, -1), (2, 2) are orthogonal in \mathbb{R}^2

Def'n:

Two vectors $u, v \in V$ are **orthogonal** if $\langle u, v \rangle = 0$.

Example:

- (1, -1), (2, 2) are orthogonal in \mathbb{R}^2
- corresponds to right angles because $\langle u, v \rangle = ||u|| ||v|| \cos \theta$ in \mathbb{R}^2

Def'n:

Two vectors $u, v \in V$ are **orthogonal** if $\langle u, v \rangle = 0$.

Example:

- (1, -1), (2, 2) are orthogonal in \mathbb{R}^2
- corresponds to right angles because $\langle u, v \rangle = ||u|| ||v|| \cos \theta$ in \mathbb{R}^2

Prop'n 6.12 [Axl14]:

- 0 is orthogonal to every vector in V
- 0 is the only vector orthogonal to itself

Pythagorean Theorem

Prop'n:

Suppose u and v are orthogonal vectors in V. Then

$$||u + v||^2 = ||u||^2 + ||v||^2.$$

Pythagorean Theorem

Prop'n:

Suppose u and v are orthogonal vectors in V. Then

$$||u + v||^2 = ||u||^2 + ||v||^2.$$

Proof.

$$||u + v||^{2} = \langle u + v, u + v \rangle$$

= $\langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$
= $||u||^{2} + ||v||^{2}$

Goal: Write *u* as a scalar multiple of a vector *v* plus a vector orthogonal to *v*

Goal: Write *u* as a scalar multiple of a vector *v* plus a vector orthogonal to *v*

Let $c \in \mathbb{F}$ so that

$$u=cv+(u-cv).$$

Goal: Write *u* as a scalar multiple of a vector *v* plus a vector orthogonal to *v*

Let $c \in \mathbb{F}$ so that

$$u=cv+(u-cv).$$

Need to choose a *c*:

Goal: Write *u* as a scalar multiple of a vector *v* plus a vector orthogonal to *v*

Let $c \in \mathbb{F}$ so that

$$u=cv+(u-cv).$$

Need to choose a *c*:

We want

$$0 = \langle u - cv, v \rangle = \langle u, v \rangle - c ||v||^2.$$

Goal: Write *u* as a scalar multiple of a vector *v* plus a vector orthogonal to *v*

Let $c \in \mathbb{F}$ so that

$$u=cv+(u-cv).$$

Need to choose a c:

We want

$$0 = \langle u - cv, v \rangle = \langle u, v \rangle - c ||v||^2.$$

So let

$$c=\frac{\langle u,v\rangle}{||v||^2}.$$

Prop'n:

Suppose
$$u, v \in V$$
 with $v \neq 0$. Set $c = \frac{\langle u, v \rangle}{||v||^2}$ and $w = u - \frac{\langle u, v \rangle}{||v||^2}v$. Then
 $\langle w, v \rangle = 0$
and
 $u = cv + w$.

Cauchy-Schwarz

Prop'n:

Suppose $u, v \in V$. Then

 $|\langle u,v\rangle| \leq ||u||||v||.$

Equality is reached if and only if one of u or v is a scalar multiple of the other.

Cauchy-Schwarz

Prop'n:

Suppose $u, v \in V$. Then

 $|\langle u,v\rangle| \leq ||u||||v||.$

Equality is reached if and only if one of u or v is a scalar multiple of the other.

Proof.

- Orthogonal decomposition
- Pythagorean theorem

Triangle Inequality

Prop'n:

$||u + v|| \le ||u|| + ||v||$

and equality is obtained if and only if one of u, v is a non-negative multiple of the other.

Triangle Inequality

Prop'n:

$$||u + v|| \le ||u|| + ||v||$$

and equality is obtained if and only if one of u, v is a non-negative multiple of the other.

Proof.

$$||u + v||^{2} = \langle u + v, u + v \rangle$$

$$= \langle u, u \rangle + \langle v, v \rangle + \langle u, v \rangle + \langle v, u \rangle$$

$$= \langle u, u \rangle + \langle v, v \rangle + \langle u, v \rangle + \overline{\langle u, v \rangle}$$

$$= ||u||^{2} + ||v||^{2} + 2\text{Re}\langle u, v \rangle$$

$$\leq ||u||^{2} + ||v||^{2} + 2|\langle u, v \rangle|$$

$$\leq ||u||^{2} + ||v||^{2} + 2||u||||v||$$

$$= (||u|| + ||v||)^{2}$$

Triangle Inequality (Cont'd)

Prop'n:

$$||u + v|| \le ||u|| + ||v||$$

and equality is obtained if and only if one of u, v is a non-negative multiple of the other.

Proof (Cont'd).

Notice equality holds if and only if $\langle u, v \rangle = ||u||||v||$.

Triangle Inequality (Cont'd)

Prop'n:

$$||u + v|| \le ||u|| + ||v||$$

and equality is obtained if and only if one of u, v is a non-negative multiple of the other.

Proof (Cont'd).

Notice equality holds if and only if $\langle u, v \rangle = ||u|| ||v||$.

Using Cauchy-Inequality, true **iff** u, v are *non-negative* scalar multiples of each other.

 $\langle u,v \rangle$ is coded langle u, v rangle

 $\bar{\lambda}$ is bar{lambda}

 $\overline{\langle u, v \rangle}$ is overline{langle u,v rangle}

[Ax114] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.