

Lecture 16: Orthonormal Bases

MATH 110-3

Franny Dean

July 19, 2023

Inner Products and Norms

Example

Cauchy-Schwarz Inequality

Inner Products and Norms

Example

Cauchy-Schwarz Inequality

Def'n:

Two vectors $u, v \in V$ are orthogonal if $\langle u, v \rangle = 0$.

A list of vectors is called **orthonormal** if each vector in the list has norm 1 and is orthogonal to all other vectors.

A list of vectors is called **orthonormal** if each vector in the list has norm 1 and is orthogonal to all other vectors.

Examples:

• The standard basis of \mathbb{F}^n

A list of vectors is called **orthonormal** if each vector in the list has norm 1 and is orthogonal to all other vectors.

Examples:

• The standard basis of \mathbb{F}^n

$$(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), (\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}})$$

A list of vectors is called **orthonormal** if each vector in the list has norm 1 and is orthogonal to all other vectors.

Examples:

• The standard basis of \mathbb{F}^n

$$(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), (\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}})$$

Def'n:

An **orthonormal basis** of *V* is an orthonormal list of vectors in *V* that is also a basis of *V*.

Prop'n:

If e_1, \ldots, e_m is an orthonormal list of vectors in V, then

$$||a_1e_1 + \ldots + a_me_m||^2 = |a_1|^2 + \ldots + |a_m|^2$$

for all $a_1, \ldots, a_m \in \mathbb{F}$.

Prop'n:

If e_1, \ldots, e_m is an orthonormal list of vectors in V, then

$$||a_1e_1 + \ldots + a_me_m||^2 = |a_1|^2 + \ldots + |a_m|^2$$

for all $a_1, \ldots, a_m \in \mathbb{F}$.

Proof.

Prop'n:

If e_1, \ldots, e_m is an orthonormal list of vectors in V, then

$$||a_1e_1 + \ldots + a_me_m||^2 = |a_1|^2 + \ldots + |a_m|^2$$

for all $a_1, \ldots, a_m \in \mathbb{F}$.

Proof. Use Pythagorean theorem, repeatedly.

Prop'n:

If e_1, \ldots, e_m is an orthonormal list of vectors in V, then

$$||a_1e_1 + \ldots + a_me_m||^2 = |a_1|^2 + \ldots + |a_m|^2$$

for all $a_1, \ldots, a_m \in \mathbb{F}$.

Proof. Use Pythagorean theorem, repeatedly.

Corollary:

Every orthonormal list of vectors is linearly independent.

Prop'n:

If e_1, \ldots, e_m is an orthonormal list of vectors in V, then

$$||a_1e_1 + \ldots + a_me_m||^2 = |a_1|^2 + \ldots + |a_m|^2$$

for all $a_1, \ldots, a_m \in \mathbb{F}$.

Proof. Use Pythagorean theorem, repeatedly.

Corollary:

Every orthonormal list of vectors is linearly independent.

Proof. What does the previous result say about the following a_i ?

$$a_1e_1+\ldots+a_me_m=0$$

Prop'n:

S'pose e_1, \ldots, e_m is an orthonormal basis of V and $v \in V$. Then

$$v = \langle v, e_1 \rangle e_1 + \ldots + \langle v, e_n \rangle e_n$$

and

$$||\mathbf{v}||^2 = |\langle \mathbf{v}, \mathbf{e}_1 \rangle|^2 + \ldots + |\langle \mathbf{v}, \mathbf{e}_n \rangle|^2.$$

Prop'n:

S'pose e_1, \ldots, e_m is an orthonormal basis of V and $v \in V$. Then

$$v = \langle v, e_1 \rangle e_1 + \ldots + \langle v, e_n \rangle e_n$$

and

$$||\mathbf{v}||^2 = |\langle \mathbf{v}, \mathbf{e}_1 \rangle|^2 + \ldots + |\langle \mathbf{v}, \mathbf{e}_n \rangle|^2.$$

Proof.

Prop'n:

S'pose e_1, \ldots, e_m is an orthonormal basis of V and $v \in V$. Then

$$v = \langle v, e_1 \rangle e_1 + \ldots + \langle v, e_n \rangle e_n$$

and

$$||\mathbf{v}||^2 = |\langle \mathbf{v}, \mathbf{e}_1 \rangle|^2 + \ldots + |\langle \mathbf{v}, \mathbf{e}_n \rangle|^2.$$

Proof.

$$v = a_1e_1 + \ldots + a_ne_n$$

Prop'n:

S'pose e_1, \ldots, e_m is an orthonormal basis of V and $v \in V$. Then

$$v = \langle v, e_1 \rangle e_1 + \ldots + \langle v, e_n \rangle e_n$$

and

$$||\mathbf{v}||^2 = |\langle \mathbf{v}, \mathbf{e}_1 \rangle|^2 + \ldots + |\langle \mathbf{v}, \mathbf{e}_n \rangle|^2.$$

Proof.

$$v = a_1e_1 + \ldots + a_ne_n$$

Take the inner product of both sides with each e_i .

Algorithm [Axl14]

Inputs: v_1, \ldots, v_m a list of linearly independent vectors in V

Algorithm [Axl14]

Inputs: v_1, \ldots, v_m a list of linearly independent vectors in V

Outputs: e_1, \ldots, e_m an orthonormal list of vectors in V such that

$$\operatorname{span}(v_1,\ldots,v_j) = \operatorname{span}(e_1,\ldots,e_j)$$

for $j \in [m]$

Algorithm [Axl14]

Inputs: v_1, \ldots, v_m a list of linearly independent vectors in V

Outputs: e_1, \ldots, e_m an orthonormal list of vectors in V such that

$$\operatorname{span}(v_1,\ldots,v_j) = \operatorname{span}(e_1,\ldots,e_j)$$

for $j \in [m]$

How:

Algorithm [Axl14]

Inputs: v_1, \ldots, v_m a list of linearly independent vectors in V

Outputs: e_1, \ldots, e_m an orthonormal list of vectors in V such that

$$\operatorname{span}(v_1,\ldots,v_j) = \operatorname{span}(e_1,\ldots,e_j)$$

for $j \in [m]$

How:

$$\bullet e_1 = \frac{v_1}{||v_1||}$$

Algorithm [Axl14]

Inputs: v_1, \ldots, v_m a list of linearly independent vectors in V

Outputs: e_1, \ldots, e_m an orthonormal list of vectors in V such that

$$\operatorname{span}(v_1,\ldots,v_j) = \operatorname{span}(e_1,\ldots,e_j)$$

for $j \in [m]$

How:

$$\bullet e_1 = \frac{v_1}{||v_1||}$$
$$\bullet e_j = \frac{v_j - \langle v_j, e_1 \rangle e_1 - \ldots - \langle v_j, e_{j-1} \rangle e_{j-1}}{||v_j - \langle v_j, e_1 \rangle e_1 - \ldots - \langle v_j, e_{j-1} \rangle e_{j-1}||}$$

Example

On $\mathcal{P}_2(\mathbb{R})$ consider the inner product given by

$$\langle p,q\rangle = \int_{-1}^{1} p(x)q(x)dx.$$

Apply Gram-Schmidt to $1, x, x^2$ to get an orthonormal basis.

Consequences of Gram-Schmidt

Prop'n 6.34:

Every finite-dimensional inner product space has an orthonormal basis.

Consequences of Gram-Schmidt

Prop'n 6.34:

Every finite-dimensional inner product space has an orthonormal basis.

Prop'n 6.35:

Suppose V is finite-dimensional. Then every orthonormal list of vectors in V can be extended to an orthonormal basis of V.

Schur's Theorem:

S'pose V is a finite dimensional \mathbb{C} -vector space. Then $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some orthonormal basis.

Schur's Theorem:

S'pose V is a finite dimensional \mathbb{C} -vector space. Then $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some orthonormal basis.

Proof.

Schur's Theorem:

S'pose V is a finite dimensional \mathbb{C} -vector space. Then $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some orthonormal basis.

Proof.

T has an upper triangular matrix with respect to some basis

Schur's Theorem:

S'pose V is a finite dimensional \mathbb{C} -vector space. Then $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some orthonormal basis.

Proof.

- T has an upper triangular matrix with respect to some basis
- Apply Gram-Schmidt

Schur's Theorem:

S'pose V is a finite dimensional \mathbb{C} -vector space. Then $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some orthonormal basis.

Proof.

- T has an upper triangular matrix with respect to some basis
- Apply Gram-Schmidt
- Recall...

Schur's Theorem:

S'pose V is a finite dimensional \mathbb{C} -vector space. Then $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some orthonormal basis.

Proof.

- T has an upper triangular matrix with respect to some basis
- Apply Gram-Schmidt
- Recall...

Criteria for Upper-Triangular Matrix:

S'pose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V. TFAE:

• the matrix of T with respect to v_1, \ldots, v_n is upper triangular

span (v_1, \ldots, v_j) is invariant under *T* for each $j = 1, \ldots, n$

Schur's Theorem:

S'pose V is a finite dimensional \mathbb{C} -vector space. Then $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some orthonormal basis.

Proof.

- T has an upper triangular matrix with respect to some basis
- Apply Gram-Schmidt
- Recall...

Criteria for Upper-Triangular Matrix:

S'pose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V. TFAE:

• the matrix of T with respect to v_1, \ldots, v_n is upper triangular

span (v_1, \ldots, v_j) is invariant under *T* for each $j = 1, \ldots, n$

Gram-Schmidt fixes the span

Linear Functionals Return!

Linear Functionals Return!

Def'n:

Recall, **linear functionals** are just linear maps $V \to \mathbb{F}$ for \mathbb{F} -vector space V.

Linear Functionals Return!

Def'n:

Recall, **linear functionals** are just linear maps $V \to \mathbb{F}$ for \mathbb{F} -vector space V.

If $u \in V$, then $v \to \langle v, u \rangle$ is a linear functional on V.

Linear Functionals Return!

Def'n:

Recall, **linear functionals** are just linear maps $V \to \mathbb{F}$ for \mathbb{F} -vector space V.

If $u \in V$, then $v \to \langle v, u \rangle$ is a linear functional on V.

Riesz Representation Theorem

S'pose V is finite dimensional and ϕ is a linear functional on V. Then there is a unique $u \in V$ such that

$$\phi(\mathbf{v}) = \langle \mathbf{v}, \mathbf{u} \rangle$$

for every $v \in V$.

Existence:

Existence:

$$\phi(\mathbf{v}) = \phi(\langle \mathbf{v}, \mathbf{e}_1 \rangle \mathbf{e}_1 + \ldots + \langle \mathbf{v}, \mathbf{e}_n \rangle \mathbf{e}_n)$$

= $\langle \mathbf{v}, \mathbf{e}_1 \rangle \phi(\mathbf{e}_1) + \ldots + \langle \mathbf{v}, \mathbf{e}_n \rangle \phi(\mathbf{e}_n)$
= $\langle \mathbf{v}, \overline{\phi(\mathbf{e}_1)} \mathbf{e}_1 + \ldots + \overline{\phi(\mathbf{e}_n)} \mathbf{e}_n \rangle$

Existence:

$$\phi(\mathbf{v}) = \phi(\langle \mathbf{v}, \mathbf{e}_1 \rangle \mathbf{e}_1 + \ldots + \langle \mathbf{v}, \mathbf{e}_n \rangle \mathbf{e}_n)$$

= $\langle \mathbf{v}, \mathbf{e}_1 \rangle \phi(\mathbf{e}_1) + \ldots + \langle \mathbf{v}, \mathbf{e}_n \rangle \phi(\mathbf{e}_n)$
= $\langle \mathbf{v}, \overline{\phi(\mathbf{e}_1)} \mathbf{e}_1 + \ldots + \overline{\phi(\mathbf{e}_n)} \mathbf{e}_n \rangle$

Uniqueness:

Existence:

$$\phi(\mathbf{v}) = \phi(\langle \mathbf{v}, \mathbf{e}_1 \rangle \mathbf{e}_1 + \ldots + \langle \mathbf{v}, \mathbf{e}_n \rangle \mathbf{e}_n)$$

= $\langle \mathbf{v}, \mathbf{e}_1 \rangle \phi(\mathbf{e}_1) + \ldots + \langle \mathbf{v}, \mathbf{e}_n \rangle \phi(\mathbf{e}_n)$
= $\langle \mathbf{v}, \overline{\phi(\mathbf{e}_1)} \mathbf{e}_1 + \ldots + \overline{\phi(\mathbf{e}_n)} \mathbf{e}_n \rangle$

Uniqueness:

Suppose there are two u_1, u_2 .

Existence:

$$\phi(\mathbf{v}) = \phi(\langle \mathbf{v}, \mathbf{e}_1 \rangle \mathbf{e}_1 + \ldots + \langle \mathbf{v}, \mathbf{e}_n \rangle \mathbf{e}_n)$$

= $\langle \mathbf{v}, \mathbf{e}_1 \rangle \phi(\mathbf{e}_1) + \ldots + \langle \mathbf{v}, \mathbf{e}_n \rangle \phi(\mathbf{e}_n)$
= $\langle \mathbf{v}, \overline{\phi(\mathbf{e}_1)} \mathbf{e}_1 + \ldots + \overline{\phi(\mathbf{e}_n)} \mathbf{e}_n \rangle$

Uniqueness:

Suppose there are two u_1, u_2 .

Then $\phi(\mathbf{v}) = \langle \mathbf{v}, u_1 \rangle = \langle \mathbf{v}, u_2 \rangle$.

Existence:

$$\phi(\mathbf{v}) = \phi(\langle \mathbf{v}, \mathbf{e}_1 \rangle \mathbf{e}_1 + \ldots + \langle \mathbf{v}, \mathbf{e}_n \rangle \mathbf{e}_n)$$

= $\langle \mathbf{v}, \mathbf{e}_1 \rangle \phi(\mathbf{e}_1) + \ldots + \langle \mathbf{v}, \mathbf{e}_n \rangle \phi(\mathbf{e}_n)$
= $\langle \mathbf{v}, \overline{\phi(\mathbf{e}_1)} \mathbf{e}_1 + \ldots + \overline{\phi(\mathbf{e}_n)} \mathbf{e}_n \rangle$

Uniqueness:

Suppose there are two u_1, u_2 .

Then
$$\phi(\mathbf{v}) = \langle \mathbf{v}, u_1 \rangle = \langle \mathbf{v}, u_2 \rangle$$
.
 $\mathbf{0} = \langle \mathbf{v}, u_1 \rangle - \langle \mathbf{v}, u_2 \rangle = \langle \mathbf{v}, u_1 - u_2 \rangle$ for every \mathbf{v} .

Existence:

$$\phi(\mathbf{v}) = \phi(\langle \mathbf{v}, \mathbf{e}_1 \rangle \mathbf{e}_1 + \ldots + \langle \mathbf{v}, \mathbf{e}_n \rangle \mathbf{e}_n)$$

= $\langle \mathbf{v}, \mathbf{e}_1 \rangle \phi(\mathbf{e}_1) + \ldots + \langle \mathbf{v}, \mathbf{e}_n \rangle \phi(\mathbf{e}_n)$
= $\langle \mathbf{v}, \overline{\phi(\mathbf{e}_1)} \mathbf{e}_1 + \ldots + \overline{\phi(\mathbf{e}_n)} \mathbf{e}_n \rangle$

Uniqueness:

Suppose there are two u_1, u_2 .

Then $\phi(\mathbf{v}) = \langle \mathbf{v}, u_1 \rangle = \langle \mathbf{v}, u_2 \rangle$. $0 = \langle \mathbf{v}, u_1 \rangle - \langle \mathbf{v}, u_2 \rangle = \langle \mathbf{v}, u_1 - u_2 \rangle$ for every \mathbf{v} . Implies $u_1 - u_2 = 0$.

Discussion Questions

- 1. Suppose $T \in \mathcal{L}(V)$ and $T^2 = I$ and -1 is not an eigenvalue of T. Prove that T = I.
- 2. Suppose $T \in \mathcal{L}(\mathbb{F}^5)$ and dim E(8, T) = 4. Prove that T 2I or T 6I is invertible.
- 3. Find $T \in \mathcal{L}(\mathbb{C}^3)$ such that 6 and 7 are eigenvalues of T and such that T does not have a diagonal matrix with respect to any basis of \mathbb{C}^3 .
- 4. Show that the function that takes the pair of \mathbb{R}^3 vectors $((x_1, x_2, x_3), (y_1, y_2, y_3))$ to $x_1y_1 + x_3y_3$ is not an inner product on \mathbb{R}^3 .

Discussion Questions

- 5. Suppose u, v are nonzero vectors in \mathbb{R}^2 . Prove that $\langle u, v \rangle = ||u|| ||v|| \cos \theta$, where θ is the angle between u and v. *Hint:* Draw the triangle formed by u, v, u v and envoke the law of cosines.
- 6. Suppose $\theta \in \mathbb{R}$. Show that $(\cos \theta, \sin \theta), (-\sin \theta, \cos \theta)$ and $(\cos \theta, \sin \theta), (\sin \theta, -\cos \theta)$ are orthonormal bases of \mathbb{R}^2 .
- 7. Suppose $T \in \mathcal{L}(\mathbb{R}^3)$ has an upper triangular matrix with respect to the basis (1, 0, 0), (1, 1, 1), (1, 1, 2). Find an orthonormal basis of \mathbb{R}^3 with respect to which T has an upper triangular matrix.
- 8. Prove that if V is a real innner product space, then for all u, v,

$$\langle u, v \rangle = \frac{||u+v||^2 - ||u-v||^2}{4}.$$

Discussion Question Hints/Solutions

- 1. Write $T^2 = I$ as (T I)(T + I)v = 0 for all v. Then if -1 is not an eigenvalue then T + I is injective, thus, (T I)v = 0 for all v and T = I.
- 2. The sum of the dimensions of the eigenspaces is less than or equal to dim $\mathbb{F}^5 = 5$. Thus, at least one of E(2, T) and E(6, T) must be zero-dimensional implying that either 2 or 6 respectively is not an eigenvalue.
- 3. T(x, y, z) = (6x + y, 6y, 7z) works. We needed a matrix with dim $E(6, T) = \dim E(7, T) = 1$ and no other eigenvalues.
- 4. One property that fails is that $\langle (0,1,0), (0,1,0) \rangle = 0$.

Discussion Question Hints/Solutions

- 5. Law of cosines: $||u v||^2 = ||u||^2 + |||v||^2 2||u||||v|| \cos \theta$. Using norm/inner product: $||u - v||^2 = \langle u - v, u - v \rangle = ... = ||u||^2 + ||v||^2 - 2\langle u, v \rangle$. Equate to get desired formula.
- 6. Must show that each vector has norm 1 and that pairs are orthogonal.
- 7. Apply Gram-Schmidt to the given basis. Solution: (1,0,0), $(0,\sqrt{2}/2,\sqrt{2}/2), (0,-\sqrt{2}/2,\sqrt{2}/2).$ 8.

$$\frac{||u+v||^2 - ||u-v||^2}{4} = \frac{\langle u+v, u+v \rangle - \langle u-v, u-v \rangle}{4}$$
$$= \frac{||u||^2 + 2\langle u, v \rangle + ||v||^2 - (||u||^2 - 2\langle u, v \rangle + ||v||^2)}{4}$$
$$= \frac{4\langle u, v \rangle}{4} = \langle u, v \rangle$$

[Ax114] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.