Lecture 16: Orthonormal Bases

MATH 110-3

Franny Dean

July 19, 2023

Inner Products and Norms

■ Example
■ Cauchy-Schwarz Inequality

Inner Products and Norms

- Example

■ Cauchy-Schwarz Inequality

Def'n:

Two vectors $u, v \in V$ are orthogonal if $\langle u, v\rangle=0$.

Definitions

Def'n:

A list of vectors is called orthonormal if each vector in the list has norm 1 and is orthogonal to all other vectors.

Definitions

Def'n:

A list of vectors is called orthonormal if each vector in the list has norm 1 and is orthogonal to all other vectors.

Examples:

■ The standard basis of \mathbb{F}^{n}

Definitions

Def'n:

A list of vectors is called orthonormal if each vector in the list has norm 1 and is orthogonal to all other vectors.

Examples:

■ The standard basis of \mathbb{F}^{n}
■ $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right),\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)$

Definitions

Def'n:

A list of vectors is called orthonormal if each vector in the list has norm 1 and is orthogonal to all other vectors.

Examples:

- The standard basis of \mathbb{F}^{n}
- $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right),\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)$

Def'n:

An orthonormal basis of V is an orthonormal list of vectors in V that is also a basis of V.

Orthonormal Lists are Nice Because...

Orthonormal Lists are Nice Because...

Prop'n:

If e_{1}, \ldots, e_{m} is an orthonormal list of vectors in V, then

$$
\left\|a_{1} e_{1}+\ldots+a_{m} e_{m}\right\|^{2}=\left|a_{1}\right|^{2}+\ldots+\left|a_{m}\right|^{2}
$$

for all $a_{1}, \ldots, a_{m} \in \mathbb{F}$.

Orthonormal Lists are Nice Because...

Prop'n:

If e_{1}, \ldots, e_{m} is an orthonormal list of vectors in V, then

$$
\left\|a_{1} e_{1}+\ldots+a_{m} e_{m}\right\|^{2}=\left|a_{1}\right|^{2}+\ldots+\left|a_{m}\right|^{2}
$$

for all $a_{1}, \ldots, a_{m} \in \mathbb{F}$.

Proof.

Orthonormal Lists are Nice Because...

Prop'n:

If e_{1}, \ldots, e_{m} is an orthonormal list of vectors in V, then

$$
\left\|a_{1} e_{1}+\ldots+a_{m} e_{m}\right\|^{2}=\left|a_{1}\right|^{2}+\ldots+\left|a_{m}\right|^{2}
$$

for all $a_{1}, \ldots, a_{m} \in \mathbb{F}$.

Proof. Use Pythagorean theorem, repeatedly.

Orthonormal Lists are Nice Because...

Prop'n:

If e_{1}, \ldots, e_{m} is an orthonormal list of vectors in V, then

$$
\left\|a_{1} e_{1}+\ldots+a_{m} e_{m}\right\|^{2}=\left|a_{1}\right|^{2}+\ldots+\left|a_{m}\right|^{2}
$$

for all $a_{1}, \ldots, a_{m} \in \mathbb{F}$.

Proof. Use Pythagorean theorem, repeatedly.

Corollary:

Every orthonormal list of vectors is linearly independent.

Orthonormal Lists are Nice Because...

Prop'n:

If e_{1}, \ldots, e_{m} is an orthonormal list of vectors in V, then

$$
\left\|a_{1} e_{1}+\ldots+a_{m} e_{m}\right\|^{2}=\left|a_{1}\right|^{2}+\ldots+\left|a_{m}\right|^{2}
$$

for all $a_{1}, \ldots, a_{m} \in \mathbb{F}$.

Proof. Use Pythagorean theorem, repeatedly.

Corollary:

Every orthonormal list of vectors is linearly independent.
Proof. What does the previous result say about the following a_{i} ?

$$
a_{1} e_{1}+\ldots+a_{m} e_{m}=0
$$

Orthonormal Lists are Nice Because...

Orthonormal Lists are Nice Because...

Prop'n:

S'pose e_{1}, \ldots, e_{m} is an orthonormal basis of V and $v \in V$. Then

$$
v=\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{n}\right\rangle e_{n}
$$

and

$$
\|v\|^{2}=\left|\left\langle v, e_{1}\right\rangle\right|^{2}+\ldots+\left|\left\langle v, e_{n}\right\rangle\right|^{2}
$$

Orthonormal Lists are Nice Because...

Prop'n:

S'pose e_{1}, \ldots, e_{m} is an orthonormal basis of V and $v \in V$. Then

$$
v=\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{n}\right\rangle e_{n}
$$

and

$$
\|v\|^{2}=\left|\left\langle v, e_{1}\right\rangle\right|^{2}+\ldots+\left|\left\langle v, e_{n}\right\rangle\right|^{2}
$$

Proof.

Orthonormal Lists are Nice Because...

Prop'n:

S'pose e_{1}, \ldots, e_{m} is an orthonormal basis of V and $v \in V$. Then

$$
v=\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{n}\right\rangle e_{n}
$$

and

$$
\|v\|^{2}=\left|\left\langle v, e_{1}\right\rangle\right|^{2}+\ldots+\left|\left\langle v, e_{n}\right\rangle\right|^{2}
$$

Proof.

$$
v=a_{1} e_{1}+\ldots+a_{n} e_{n}
$$

Orthonormal Lists are Nice Because...

Prop'n:

S'pose e_{1}, \ldots, e_{m} is an orthonormal basis of V and $v \in V$. Then

$$
v=\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{n}\right\rangle e_{n}
$$

and

$$
\|v\|^{2}=\left|\left\langle v, e_{1}\right\rangle\right|^{2}+\ldots+\left|\left\langle v, e_{n}\right\rangle\right|^{2}
$$

Proof.

$$
v=a_{1} e_{1}+\ldots+a_{n} e_{n}
$$

Take the inner product of both sides with each e_{i}.

Gram-Schmidt Algorithm

Algorithm [Axl14]

Inputs: v_{1}, \ldots, v_{m} a list of linearly independent vectors in V

Gram-Schmidt Algorithm

Algorithm [Axl14]

Inputs: v_{1}, \ldots, v_{m} a list of linearly independent vectors in V
Outputs: e_{1}, \ldots, e_{m} an orthonormal list of vectors in V such that

$$
\operatorname{span}\left(v_{1}, \ldots, v_{j}\right)=\operatorname{span}\left(e_{1}, \ldots, e_{j}\right)
$$

for $j \in[m]$

Gram-Schmidt Algorithm

Algorithm [Axl14]

Inputs: v_{1}, \ldots, v_{m} a list of linearly independent vectors in V
Outputs: e_{1}, \ldots, e_{m} an orthonormal list of vectors in V such that

$$
\operatorname{span}\left(v_{1}, \ldots, v_{j}\right)=\operatorname{span}\left(e_{1}, \ldots, e_{j}\right)
$$

for $j \in[m]$
How:

Gram-Schmidt Algorithm

Algorithm [Axl14]

Inputs: v_{1}, \ldots, v_{m} a list of linearly independent vectors in V
Outputs: e_{1}, \ldots, e_{m} an orthonormal list of vectors in V such that

$$
\operatorname{span}\left(v_{1}, \ldots, v_{j}\right)=\operatorname{span}\left(e_{1}, \ldots, e_{j}\right)
$$

for $j \in[m]$
How:

- $e_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}$

Gram-Schmidt Algorithm

Algorithm [Axl14]

Inputs: v_{1}, \ldots, v_{m} a list of linearly independent vectors in V
Outputs: e_{1}, \ldots, e_{m} an orthonormal list of vectors in V such that

$$
\operatorname{span}\left(v_{1}, \ldots, v_{j}\right)=\operatorname{span}\left(e_{1}, \ldots, e_{j}\right)
$$

for $j \in[m]$
How:

- $e_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}$
$■ e_{j}=\frac{v_{j}-\left\langle v_{j}, e_{1}\right\rangle e_{1}-\ldots-\left\langle v_{j}, e_{j-1}\right\rangle e_{j-1}}{\left\|v_{j}-\left\langle v_{j}, e_{1}\right\rangle e_{1}-\ldots-\left\langle v_{j}, e_{j-1}\right\rangle e_{j-1}\right\|}$

Example

On $\mathcal{P}_{2}(\mathbb{R})$ consider the inner product given by

$$
\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x
$$

Apply Gram-Schmidt to $1, x, x^{2}$ to get an orthonormal basis.

Consequences of Gram-Schmidt

Prop'n 6.34:
Every finite-dimensional inner product space has an orthonormal basis.

Consequences of Gram-Schmidt

Prop'n 6.34:

Every finite-dimensional inner product space has an orthonormal basis.

Prop'n 6.35:

Suppose V is finite-dimensional. Then every orthonormal list of vectors in V can be extended to an orthonormal basis of V.

Schur's Theorem

Schur's Theorem:

S'pose V is a finite dimensional \mathbb{C}-vector space. Then $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some orthonormal basis.

Schur's Theorem

Schur's Theorem:

S'pose V is a finite dimensional \mathbb{C}-vector space. Then $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some orthonormal basis.

Proof.

Schur's Theorem

Schur's Theorem:

S'pose V is a finite dimensional \mathbb{C}-vector space. Then $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some orthonormal basis.

Proof.
■ T has an upper triangular matrix with respect to some basis

Schur's Theorem

Schur's Theorem:

S'pose V is a finite dimensional \mathbb{C}-vector space. Then $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some orthonormal basis.

Proof.
■ T has an upper triangular matrix with respect to some basis

- Apply Gram-Schmidt

Schur's Theorem

Schur's Theorem:

S'pose V is a finite dimensional \mathbb{C}-vector space. Then $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some orthonormal basis.

Proof.
■ T has an upper triangular matrix with respect to some basis

- Apply Gram-Schmidt

■ Recall...

Schur's Theorem

Schur's Theorem:

S'pose V is a finite dimensional \mathbb{C}-vector space. Then $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some orthonormal basis.

Proof.

■ T has an upper triangular matrix with respect to some basis

- Apply Gram-Schmidt

■ Recall...

Criteria for Upper-Triangular Matrix:

S'pose $T \in \mathcal{L}(V)$ and v_{1}, \ldots, v_{n} is a basis of V. TFAE:
■ the matrix of T with respect to v_{1}, \ldots, v_{n} is upper triangular
$\square \operatorname{span}\left(v_{1}, \ldots, v_{j}\right)$ is invariant under T for each $j=1, \ldots, n$

Schur's Theorem

Schur's Theorem:

S'pose V is a finite dimensional \mathbb{C}-vector space. Then $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some orthonormal basis.

Proof.

■ T has an upper triangular matrix with respect to some basis

- Apply Gram-Schmidt

■ Recall...

Criteria for Upper-Triangular Matrix:

S'pose $T \in \mathcal{L}(V)$ and v_{1}, \ldots, v_{n} is a basis of V. TFAE:
■ the matrix of T with respect to v_{1}, \ldots, v_{n} is upper triangular
$■ \operatorname{span}\left(v_{1}, \ldots, v_{j}\right)$ is invariant under T for each $j=1, \ldots, n$

- Gram-Schmidt fixes the span

Linear Functionals Return!

Linear Functionals Return!

Def'n:

Recall, linear functionals are just linear maps $V \rightarrow \mathbb{F}$ for \mathbb{F}-vector space V.

Linear Functionals Return!

Def'n:

Recall, linear functionals are just linear maps $V \rightarrow \mathbb{F}$ for \mathbb{F}-vector space V.

If $u \in V$, then $v \rightarrow\langle v, u\rangle$ is a linear functional on V.

Linear Functionals Return!

Def'n:

Recall, linear functionals are just linear maps $V \rightarrow \mathbb{F}$ for \mathbb{F}-vector space V.

If $u \in V$, then $v \rightarrow\langle v, u\rangle$ is a linear functional on V.

Riesz Representation Theorem

S'pose V is finite dimensional and ϕ is a linear functional on V. Then there is a unique $u \in V$ such that

$$
\phi(v)=\langle v, u\rangle
$$

for every $v \in V$.

Proof of Riesz Representation Theorem

Existence:

Proof of Riesz Representation Theorem

Existence:

$$
\begin{aligned}
\phi(v) & =\phi\left(\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{n}\right\rangle e_{n}\right) \\
& =\left\langle v, e_{1}\right\rangle \phi\left(e_{1}\right)+\ldots+\left\langle v, e_{n}\right\rangle \phi\left(e_{n}\right) \\
& =\left\langle v, \overline{\phi\left(e_{1}\right)} e_{1}+\ldots+\overline{\phi\left(e_{n}\right)} e_{n}\right\rangle
\end{aligned}
$$

Proof of Riesz Representation Theorem

Existence:

$$
\begin{aligned}
\phi(v) & =\phi\left(\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{n}\right\rangle e_{n}\right) \\
& =\left\langle v, e_{1}\right\rangle \phi\left(e_{1}\right)+\ldots+\left\langle v, e_{n}\right\rangle \phi\left(e_{n}\right) \\
& =\left\langle v, \overline{\phi\left(e_{1}\right)} e_{1}+\ldots+\overline{\phi\left(e_{n}\right)} e_{n}\right\rangle
\end{aligned}
$$

Uniqueness:

Proof of Riesz Representation Theorem

Existence:

$$
\begin{aligned}
\phi(v) & =\phi\left(\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{n}\right\rangle e_{n}\right) \\
& =\left\langle v, e_{1}\right\rangle \phi\left(e_{1}\right)+\ldots+\left\langle v, e_{n}\right\rangle \phi\left(e_{n}\right) \\
& =\left\langle v, \overline{\phi\left(e_{1}\right)} e_{1}+\ldots+\overline{\phi\left(e_{n}\right)} e_{n}\right\rangle
\end{aligned}
$$

Uniqueness:

Suppose there are two u_{1}, u_{2}.

Proof of Riesz Representation Theorem

Existence:

$$
\begin{aligned}
\phi(v) & =\phi\left(\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{n}\right\rangle e_{n}\right) \\
& =\left\langle v, e_{1}\right\rangle \phi\left(e_{1}\right)+\ldots+\left\langle v, e_{n}\right\rangle \phi\left(e_{n}\right) \\
& =\left\langle v, \overline{\phi\left(e_{1}\right)} e_{1}+\ldots+\overline{\phi\left(e_{n}\right)} e_{n}\right\rangle
\end{aligned}
$$

Uniqueness:

Suppose there are two u_{1}, u_{2}.
Then $\phi(v)=\left\langle v, u_{1}\right\rangle=\left\langle v, u_{2}\right\rangle$.

Proof of Riesz Representation Theorem

Existence:

$$
\begin{aligned}
\phi(v) & =\phi\left(\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{n}\right\rangle e_{n}\right) \\
& =\left\langle v, e_{1}\right\rangle \phi\left(e_{1}\right)+\ldots+\left\langle v, e_{n}\right\rangle \phi\left(e_{n}\right) \\
& =\left\langle v, \overline{\phi\left(e_{1}\right)} e_{1}+\ldots+\overline{\phi\left(e_{n}\right)} e_{n}\right\rangle
\end{aligned}
$$

Uniqueness:

Suppose there are two u_{1}, u_{2}.
Then $\phi(v)=\left\langle v, u_{1}\right\rangle=\left\langle v, u_{2}\right\rangle$.
$0=\left\langle v, u_{1}\right\rangle-\left\langle v, u_{2}\right\rangle=\left\langle v, u_{1}-u_{2}\right\rangle$ for every v.

Proof of Riesz Representation Theorem

Existence:

$$
\begin{aligned}
\phi(v) & =\phi\left(\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{n}\right\rangle e_{n}\right) \\
& =\left\langle v, e_{1}\right\rangle \phi\left(e_{1}\right)+\ldots+\left\langle v, e_{n}\right\rangle \phi\left(e_{n}\right) \\
& =\left\langle v, \overline{\phi\left(e_{1}\right)} e_{1}+\ldots+\overline{\phi\left(e_{n}\right)} e_{n}\right\rangle
\end{aligned}
$$

Uniqueness:

Suppose there are two u_{1}, u_{2}.
Then $\phi(v)=\left\langle v, u_{1}\right\rangle=\left\langle v, u_{2}\right\rangle$.
$0=\left\langle v, u_{1}\right\rangle-\left\langle v, u_{2}\right\rangle=\left\langle v, u_{1}-u_{2}\right\rangle$ for every v. Implies $u_{1}-u_{2}=0$.

Break

Discussion Questions

1. Suppose $T \in \mathcal{L}(V)$ and $T^{2}=I$ and -1 is not an eigenvalue of T. Prove that $T=I$.
2. Suppose $T \in \mathcal{L}\left(\mathbb{F}^{5}\right)$ and $\operatorname{dim} E(8, T)=4$. Prove that $T-2 l$ or $T-6 /$ is invertible.
3. Find $T \in \mathcal{L}\left(\mathbb{C}^{3}\right)$ such that 6 and 7 are eigenvalues of T and such that T does not have a diagonal matrix with respect to any basis of \mathbb{C}^{3}.
4. Show that the function that takes the pair of \mathbb{R}^{3} vectors $\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right)$ to $x_{1} y_{1}+x_{3} y_{3}$ is not an inner product on \mathbb{R}^{3}.

Discussion Questions

5. Suppose u, v are nonzero vectors in \mathbb{R}^{2}. Prove that $\langle u, v\rangle=\|u\|\| \| v \| \cos \theta$, where θ is the angle between u and v. Hint: Draw the triangle formed by $u, v, u-v$ and envoke the law of cosines.
6. Suppose $\theta \in \mathbb{R}$. Show that $(\cos \theta, \sin \theta),(-\sin \theta, \cos \theta)$ and $(\cos \theta, \sin \theta),(\sin \theta,-\cos \theta)$ are orthonormal bases of \mathbb{R}^{2}.
7. Suppose $T \in \mathcal{L}\left(\mathbb{R}^{3}\right)$ has an upper triangular matrix with respect to the basis $(1,0,0),(1,1,1),(1,1,2)$. Find an orthonormal basis of \mathbb{R}^{3} with respect to which T has an upper triangular matrix.
8. Prove that if V is a real innner product space, then for all u, v,

$$
\langle u, v\rangle=\frac{\|u+v\|^{2}-\|u-v\|^{2}}{4} .
$$

Discussion Question Hints/Solutions

1. Write $T^{2}=I$ as $(T-I)(T+I) v=0$ for all v. Then if -1 is not an eigenvalue then $T+l$ is injective, thus, $(T-l) v=0$ for all v and $T=l$.
2. The sum of the dimensions of the eigenspaces is less than or equal to $\operatorname{dim} \mathbb{F}^{5}=5$. Thus, at least one of $E(2, T)$ and $E(6, T)$ must be zero-dimensional implying that either 2 or 6 respectively is not an eigenvalue.
3. $T(x, y, z)=(6 x+y, 6 y, 7 z)$ works. We needed a matrix with $\operatorname{dim} E(6, T)=\operatorname{dim} E(7, T)=1$ and no other eigenvalues.
4. One property that fails is that $\langle(0,1,0),(0,1,0)\rangle=0$.

Discussion Question Hints/Solutions

5. Law of cosines: $\|u-v\|^{2}=\|u\|^{2}+\|\mid v\|^{2}-2\|u\|\| \| v \| \cos \theta$. Using norm/inner product:
$\|u-v\|^{2}=\langle u-v, u-v\rangle=\ldots=\|u\|^{2}+\|v\|^{2}-2\langle u, v\rangle$. Equate to get desired formula.
6. Must show that each vector has norm 1 and that pairs are orthogonal.
7. Apply Gram-Schmidt to the given basis. Solution:

$$
(1,0,0),(0, \sqrt{2} / 2, \sqrt{2} / 2),(0,-\sqrt{2} / 2, \sqrt{2} / 2)
$$

8.

$$
\begin{array}{r}
\frac{\|u+v\|^{2}-\|u-v\|^{2}}{4}=\frac{\langle u+v, u+v\rangle-\langle u-v, u-v\rangle}{4} \\
=\frac{\|u\|^{2}+2\langle u, v\rangle+\|v\|^{2}-\left(\|u\|^{2}-2\langle u, v\rangle+\|v\|^{2}\right)}{4} \\
=\frac{4\langle u, v\rangle}{4}=\langle u, v\rangle
\end{array}
$$

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

