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Inner Products and Norms

Example
Cauchy-Schwarz Inequality

Def’n:
Two vectors u, v ∈ V are orthogonal if ⟨u, v⟩ = 0.
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Definitions

Def’n:
A list of vectors is called orthonormal if each vector in the list has
norm 1 and is orthogonal to all other vectors.

Examples:
The standard basis of Fn
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3
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3
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3
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2
, 0), ( 1√

6
, 1√

6
, 2√

6
)

Def’n:
An orthonormal basis of V is an orthonormal list of vectors in V that
is also a basis of V .
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Orthonormal Lists are Nice Because...

Prop’n:
If e1, . . . , em is an orthonormal list of vectors in V , then

||a1e1 + . . .+ amem||2 = |a1|2 + . . .+ |am|2

for all a1, . . . , am ∈ F.

Proof. Use Pythagorean theorem, repeatedly.

Corollary:
Every orthonormal list of vectors is linearly independent.

Proof. What does the previous result say about the following ai?

a1e1 + . . .+ amem = 0
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Orthonormal Lists are Nice Because...

Prop’n:
S’pose e1, . . . , em is an orthonormal basis of V and v ∈ V . Then

v = ⟨v, e1⟩e1 + . . .+ ⟨v, en⟩en

and
||v||2 = |⟨v, e1⟩|2 + . . .+ |⟨v, en⟩|2.

Proof.
v = a1e1 + . . .+ anen

Take the inner product of both sides with each ei .
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Gram-Schmidt Algorithm

Algorithm [Axl14]
Inputs: v1, . . . , vm a list of linearly independent vectors in V

Outputs: e1, . . . , em an orthonormal list of vectors in V such that

span(v1, . . . , vj) = span(e1, . . . , ej)

for j ∈ [m]

How:
e1 =

v1
||v1||

ej =
vj − ⟨vj, e1⟩e1 − . . .− ⟨vj, ej−1⟩ej−1

||vj − ⟨vj, e1⟩e1 − . . .− ⟨vj, ej−1⟩ej−1||
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Example

On P2(R) consider the inner product given by

⟨p, q⟩ =
∫ 1

−1
p(x)q(x)dx.

Apply Gram-Schmidt to 1, x, x2 to get an orthonormal basis.
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Consequences of Gram-Schmidt

Prop’n 6.34:
Every finite-dimensional inner product space has an orthonormal
basis.

Prop’n 6.35:
Suppose V is finite-dimensional. Then every orthonormal list of
vectors in V can be extended to an orthonormal basis of V .
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Schur’s Theorem
Schur’s Theorem:
S’pose V is a finite dimensional C-vector space. Then T ∈ L(V) has
an upper triangular matrix with respect to some orthonormal basis.

Proof.
T has an upper triangular matrix with respect to some basis
Apply Gram-Schmidt
Recall...

Criteria for Upper-Triangular Matrix:
S’pose T ∈ L(V) and v1, . . . , vn is a basis of V . TFAE:

the matrix of T with respect to v1, . . . , vn is upper triangular

span(v1, . . . , vj) is invariant under T for each j = 1, . . . , n

Gram-Schmidt fixes the span
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Linear Functionals Return!

Def’n:
Recall, linear functionals are just linear maps V → F for F-vector
space V .

If u ∈ V , then v → ⟨v, u⟩ is a linear functional on V .

Riesz Representation Theorem
S’pose V is finite dimensional and ϕ is a linear functional on V . Then
there is a unique u ∈ V such that

ϕ(v) = ⟨v, u⟩

for every v ∈ V .
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Proof of Riesz Representation Theorem

Existence:

ϕ(v) = ϕ(⟨v, e1⟩e1 + . . .+ ⟨v, en⟩en)
= ⟨v, e1⟩ϕ(e1) + . . .+ ⟨v, en⟩ϕ(en)
= ⟨v, ϕ(e1)e1 + . . .+ ϕ(en)en⟩

Uniqueness:

Suppose there are two u1, u2.

Then ϕ(v) = ⟨v, u1⟩ = ⟨v, u2⟩.

0 = ⟨v, u1⟩ − ⟨v, u2⟩ = ⟨v, u1 − u2⟩ for every v. Implies u1 − u2 = 0.
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Break
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Discussion Questions

1. Suppose T ∈ L(V) and T2 = I and −1 is not an eigenvalue of T .
Prove that T = I.

2. Suppose T ∈ L(F5) and dim E(8, T) = 4. Prove that T − 2I or
T − 6I is invertible.

3. Find T ∈ L(C3) such that 6 and 7 are eigenvalues of T and such
that T does not have a diagonal matrix with respect to any basis
of C3.

4. Show that the function that takes the pair of R3 vectors
((x1, x2, x3), (y1, y2, y3)) to x1y1 + x3y3 is not an inner product on
R3.
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Discussion Questions

5. Suppose u, v are nonzero vectors in R2. Prove that
⟨u, v⟩ = ||u||||v|| cos θ, where θ is the angle between u and v.
Hint: Draw the triangle formed by u, v, u− v and envoke the law
of cosines.

6. Suppose θ ∈ R. Show that (cos θ, sin θ), (− sin θ, cos θ) and
(cos θ, sin θ), (sin θ,− cos θ) are orthonormal bases of R2.

7. Suppose T ∈ L(R3) has an upper triangular matrix with respect
to the basis (1, 0, 0), (1, 1, 1), (1, 1, 2). Find an orthonormal basis
of R3 with respect to which T has an upper triangular matrix.

8. Prove that if V is a real innner product space, then for all u, v,

⟨u, v⟩ = ||u+ v||2 − ||u− v||2

4
.
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Discussion Question Hints/Solutions

1. Write T2 = I as (T − I)(T + I)v = 0 for all v. Then if −1 is not an
eigenvalue then T + I is injective, thus, (T − I)v = 0 for all v and
T = I.

2. The sum of the dimensions of the eigenspaces is less than or
equal to dimF5 = 5. Thus, at least one of E(2, T) and E(6, T)
must be zero-dimensional implying that either 2 or 6
respectively is not an eigenvalue.

3. T(x, y, z) = (6x + y, 6y, 7z) works. We needed a matrix with
dim E(6, T) = dim E(7, T) = 1 and no other eigenvalues.

4. One property that fails is that ⟨(0, 1, 0), (0, 1, 0)⟩ = 0.
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Discussion Question Hints/Solutions
5. Law of cosines: ||u− v||2 = ||u||2 + |||v||2 − 2||u||||v|| cos θ. Using
norm/inner product:
||u− v||2 = ⟨u− v, u− v⟩ = . . . = ||u||2 + ||v||2 − 2⟨u, v⟩. Equate
to get desired formula.

6. Must show that each vector has norm 1 and that pairs are
orthogonal.

7. Apply Gram-Schmidt to the given basis. Solution:
(1, 0, 0), (0,

√
2/2,

√
2/2), (0,−

√
2/2,

√
2/2).

8.
||u+ v||2 − ||u− v||2

4
=

⟨u+ v, u+ v⟩ − ⟨u− v, u− v⟩
4

=
||u||2 + 2⟨u, v⟩+ ||v||2 − (||u||2 − 2⟨u, v⟩+ ||v||2)

4

=
4⟨u, v⟩
4

= ⟨u, v⟩
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