

Lecture 17: Orthogonal Complements and Minimization Problems

MATH 110-3

Franny Dean

July 20, 2023

Important things from last lecture:

Def'n:

A list is **orthonormal** is each vector in the list has norm 1 and is orthogonal to every other vector. (Often denoted e_1, \ldots, e_m).

Important things from last lecture:

Def'n:

A list is **orthonormal** is each vector in the list has norm 1 and is orthogonal to every other vector. (Often denoted e_1, \ldots, e_m).

A basis is an **orthonormal basis** if it is an orthonormal list that forms a basis (linearly independent and spans).

Important things from last lecture:

Def'n:

A list is **orthonormal** is each vector in the list has norm 1 and is orthogonal to every other vector. (Often denoted e_1, \ldots, e_m).

A basis is an **orthonormal basis** if it is an orthonormal list that forms a basis (linearly independent and spans).

Prop'n:

Orthonormal lists are automatically linearly independent! Yay!

Important things from last lecture:

Def'n:

A list is **orthonormal** is each vector in the list has norm 1 and is orthogonal to every other vector. (Often denoted e_1, \ldots, e_m).

A basis is an **orthonormal basis** if it is an orthonormal list that forms a basis (linearly independent and spans).

Prop'n:

Orthonormal lists are automatically linearly independent! Yay!

Vector as linear combo of orthonormal basis has a formula:

 e_1, \ldots, e_n is an orthonormal basis, $v \in V$:

$$v = \langle v, e_1 \rangle e_1 + \ldots + \langle v, e_n \rangle e_n$$

Def'n:

Let $U \subseteq V$, then the **orthogonal complement** of *U*, denoted U^{\perp} , is the set of all vectors in *V* that are orthogonal to every vector in *U*.

Def'n:

Let $U \subseteq V$, then the **orthogonal complement** of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U.

 $U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}$

Def'n:

Let $U \subseteq V$, then the **orthogonal complement** of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U.

 $U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}$

Example:

Def'n:

Let $U \subseteq V$, then the **orthogonal complement** of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U.

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}$$

Example:

If *U* is a line in \mathbb{R}^3 , U^{\perp} is the perpendicular plane.

Def'n:

Let $U \subseteq V$, then the **orthogonal complement** of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U.

```
U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}
```

Example:

If *U* is a line in \mathbb{R}^3 , U^{\perp} is the perpendicular plane.

What if *U* is a plane in \mathbb{R}^3 ?

Def'n:

Let $U \subseteq V$, then the **orthogonal complement** of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U.

$$U^{\perp} = \{ oldsymbol{v} \in oldsymbol{V} : \langle oldsymbol{v}, u
angle = oldsymbol{0} ext{ for every } u \in U \}$$

Example:

If *U* is a line in \mathbb{R}^3 , U^{\perp} is the perpendicular plane.

What if *U* is a plane in \mathbb{R}^3 ?

Let $U = \{(x, 3x, 0) | x \in \mathbb{R}\}$. Find U^{\perp} .

Def'n:

Let $U \subseteq V$, then the **orthogonal complement** of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U.

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}$$

Example:

If *U* is a line in \mathbb{R}^3 , U^{\perp} is the perpendicular plane.

What if *U* is a plane in \mathbb{R}^3 ?

Let $U = \{(x, 3x, 0) | x \in \mathbb{R}\}$. Find U^{\perp} . We can calculate $U^{\perp} = \{(y, -1/3y, z) | z, y \in \mathbb{R}\}.$

Prop'n [Axl14]:

1. *U* a subset of *V* implies U^{\perp} is a subspace of *V*

Prop'n [Axl14]:

1. *U* a subset of *V* implies U^{\perp} is a subspace of *V* 2. $\{0\}^{\perp} = V$

Prop'n [Axl14]:

U a subset of *V* implies *U*[⊥] is a subspace of *V* {0}[⊥] = *V V*[⊥] = {0}

Prop'n [Axl14]:

- 1. *U* a subset of *V* implies U^{\perp} is a subspace of *V*
- **2.** $\{0\}^{\perp} = V$
- 3. $V^{\perp} = \{0\}$
- 4. *U* a subset of *V* implies $U \cap U^{\perp} \subset \{0\}$

Prop'n [Axl14]:

- 1. *U* a subset of *V* implies U^{\perp} is a subspace of *V*
- **2.** $\{0\}^{\perp} = V$
- 3. $V^{\perp} = \{0\}$
- 4. *U* a subset of *V* implies $U \cap U^{\perp} \subset \{0\}$
- 5. U, W are subsets of V and $U \subset W$, then $W^{\perp} \subset U^{\perp}$

Prop'n [Axl14]:

- 1. *U* a subset of *V* implies U^{\perp} is a subspace of *V*
- **2.** $\{0\}^{\perp} = V$
- 3. $V^{\perp} = \{0\}$
- 4. *U* a subset of *V* implies $U \cap U^{\perp} \subset \{0\}$
- 5. U, W are subsets of V and $U \subset W$, then $W^{\perp} \subset U^{\perp}$

Proof of 1. Use properties of dot product, subspace criteria.

Prop'n [Axl14]:

- 1. *U* a subset of *V* implies U^{\perp} is a subspace of *V*
- **2.** $\{0\}^{\perp} = V$
- 3. $V^{\perp} = \{0\}$
- 4. *U* a subset of *V* implies $U \cap U^{\perp} \subset \{0\}$
- 5. U, W are subsets of V and $U \subset W$, then $W^{\perp} \subset U^{\perp}$

Proof of 1. Use properties of dot product, subspace criteria. *Proof of 5*.

Prop'n [Axl14]:

- 1. *U* a subset of *V* implies U^{\perp} is a subspace of *V*
- **2.** $\{0\}^{\perp} = V$

3.
$$V^{\perp} = \{0\}$$

- 4. *U* a subset of *V* implies $U \cap U^{\perp} \subset \{0\}$
- 5. U, W are subsets of V and $U \subset W$, then $W^{\perp} \subset U^{\perp}$

Proof of 1. Use properties of dot product, subspace criteria.

Proof of 5. S'pose $v \in W^{\perp}$. Then $\langle v, u \rangle = 0$ for all $u \in W$ and so also all $u \in U \subset W$.

Prop'n:

S'pose *U* is a finite-dimensional subspace of *V*. Then $V = U \oplus U^{\perp}$.

Prop'n:

S'pose *U* is a finite-dimensional subspace of *V*. Then $V = U \oplus U^{\perp}$.

Prop'n:

S'pose *U* is a finite-dimensional subspace of *V*. Then $V = U \oplus U^{\perp}$.

Proof.

Step 1: Prove $V = U + U^{\perp}$.

Prop'n:

S'pose *U* is a finite-dimensional subspace of *V*. Then $V = U \oplus U^{\perp}$.

Proof.

Step 1: Prove $V = U + U^{\perp}$.

Let e_1, \ldots, e_m form an **orthonormal** basis of *U*.

Prop'n:

S'pose *U* is a finite-dimensional subspace of *V*. Then $V = U \oplus U^{\perp}$.

Proof.

Step 1: Prove $V = U + U^{\perp}$.

Let e_1, \ldots, e_m form an **orthonormal** basis of *U*.

 $v = \langle v, e_1 \rangle e_1 + \ldots + \langle v, e_m \rangle e_m + v - \langle v, e_1 \rangle e_1 - \ldots - \langle v, e_m \rangle e_m$

Prop'n:

S'pose *U* is a finite-dimensional subspace of *V*. Then $V = U \oplus U^{\perp}$.

Proof.

Step 1: Prove $V = U + U^{\perp}$.

Let e_1, \ldots, e_m form an **orthonormal** basis of *U*.

$$v = \langle v, e_1 \rangle e_1 + \ldots + \langle v, e_m \rangle e_m + v - \langle v, e_1 \rangle e_1 - \ldots - \langle v, e_m \rangle e_m$$

Let $u = \langle v, e_1 \rangle e_1 + \ldots + \langle v, e_m \rangle e_m$. And $w = v - \langle v, e_1 \rangle e_1 - \ldots - \langle v, e_m \rangle e_m$. Show w is orthogonal to each e_j . Then $w \in U^{\perp}$.

Prop'n:

S'pose *U* is a finite-dimensional subspace of *V*. Then $V = U \oplus U^{\perp}$.

Proof.

Step 1: Prove $V = U + U^{\perp}$.

Let e_1, \ldots, e_m form an **orthonormal** basis of U.

$$v = \langle v, e_1 \rangle e_1 + \ldots + \langle v, e_m \rangle e_m + v - \langle v, e_1 \rangle e_1 - \ldots - \langle v, e_m \rangle e_m$$

Let $u = \langle v, e_1 \rangle e_1 + \ldots + \langle v, e_m \rangle e_m$. And $w = v - \langle v, e_1 \rangle e_1 - \ldots - \langle v, e_m \rangle e_m$. Show w is orthogonal to each e_j . Then $w \in U^{\perp}$.

Step 2: Prove direct sum.

FD • MATH 110 • July 20, 2023

Prop'n:

V finite dimensional, U subspace of V

 $\dim U^{\perp} = \dim V - \dim U$

Prop'n:

V finite dimensional, U subspace of V

$$\dim U^{\perp} = \dim V - \dim U$$

Prop'n:

U finite-dimensional subspace of V

$$U = (U^{\perp})^{\perp}$$

Prop'n:

V finite dimensional, U subspace of V

$$\dim U^{\perp} = \dim V - \dim U$$

Prop'n:

U finite-dimensional subspace of V

$$U = (U^{\perp})^{\perp}$$

Prop'n:

 ${\it U}$ finite-dimensional subspace of ${\it V}$

$$U = (U^{\perp})^{\perp}$$

Prop'n:

 ${\it U}$ finite-dimensional subspace of ${\it V}$

$$U = (U^{\perp})^{\perp}$$

Prop'n:

 ${\it U}$ finite-dimensional subspace of ${\it V}$

$$U = (U^{\perp})^{\perp}$$

First
$$U \subseteq (U^{\perp})^{\perp}$$
:
 $u \in U$.

Prop'n:

 ${\it U}$ finite-dimensional subspace of ${\it V}$

$$U = (U^{\perp})^{\perp}$$

First
$$U \subseteq (U^{\perp})^{\perp}$$
:
 $u \in U$. Then $\langle u, v \rangle = 0$ for every $v \in U^{\perp}$ by definition.

Prop'n:

 ${\it U}$ finite-dimensional subspace of ${\it V}$

$$U = (U^{\perp})^{\perp}$$

First
$$U \subseteq (U^{\perp})^{\perp}$$
:
 $u \in U$. Then $\langle u, v \rangle = 0$ for every $v \in U^{\perp}$ by definition. So $u \in (U^{\perp})^{\perp}$.

Prop'n:

U finite-dimensional subspace of V

$$U = (U^{\perp})^{\perp}$$

Proof.

First
$$U \subseteq (U^{\perp})^{\perp}$$
:
 $u \in U$. Then $\langle u, v \rangle = 0$ for every $v \in U^{\perp}$ by definition. So $u \in (U^{\perp})^{\perp}$.

Then $U \supseteq (U^{\perp})^{\perp}$:
Prop'n:

 ${\it U}$ finite-dimensional subspace of ${\it V}$

$$U = (U^{\perp})^{\perp}$$

First
$$U \subseteq (U^{\perp})^{\perp}$$
:
 $u \in U$. Then $\langle u, v \rangle = 0$ for every $v \in U^{\perp}$ by definition. So $u \in (U^{\perp})^{\perp}$.

Then
$$U \supseteq (U^{\perp})^{\perp}$$
:
 $v \in (U^{\perp})^{\perp}$. Write $v = u + w \in U \oplus U^{\perp}$ because $U \subset (U^{\perp})^{\perp}$.

Prop'n:

 ${\it U}$ finite-dimensional subspace of ${\it V}$

$$U = (U^{\perp})^{\perp}$$

First
$$U \subseteq (U^{\perp})^{\perp}$$
:
 $u \in U$. Then $\langle u, v \rangle = 0$ for every $v \in U^{\perp}$ by definition. So $u \in (U^{\perp})^{\perp}$.

Then
$$U \supseteq (U^{\perp})^{\perp}$$
:
 $v \in (U^{\perp})^{\perp}$. Write $v = u + w \in U \oplus U^{\perp}$ because $U \subset (U^{\perp})^{\perp}$.
 $v - u \in U^{\perp}$. Why?

Prop'n:

 ${\it U}$ finite-dimensional subspace of ${\it V}$

$$U = (U^{\perp})^{\perp}$$

First
$$U \subseteq (U^{\perp})^{\perp}$$
:
 $u \in U$. Then $\langle u, v \rangle = 0$ for every $v \in U^{\perp}$ by definition. So $u \in (U^{\perp})^{\perp}$.

Then
$$U \supseteq (U^{\perp})^{\perp}$$
:
 $v \in (U^{\perp})^{\perp}$. Write $v = u + w \in U \oplus U^{\perp}$ because $U \subset (U^{\perp})^{\perp}$.
 $v - u \in U^{\perp}$. Why?
 $v - u \in (U^{\perp})^{\perp}$. Why?

Prop'n:

 ${\it U}$ finite-dimensional subspace of ${\it V}$

$$U = (U^{\perp})^{\perp}$$

First
$$U \subseteq (U^{\perp})^{\perp}$$
:
 $u \in U$. Then $\langle u, v \rangle = 0$ for every $v \in U^{\perp}$ by definition. So $u \in (U^{\perp})^{\perp}$.

Then
$$U \supseteq (U^{\perp})^{\perp}$$
:
 $v \in (U^{\perp})^{\perp}$. Write $v = u + w \in U \oplus U^{\perp}$ because $U \subset (U^{\perp})^{\perp}$.
 $v - u \in U^{\perp}$. Why?
 $v - u \in (U^{\perp})^{\perp}$. Why?
 $w = w - u \in U^{\perp} \cap (U^{\perp})^{\perp}$.

Prop'n:

 ${\it U}$ finite-dimensional subspace of ${\it V}$

$$U = (U^{\perp})^{\perp}$$

First
$$U \subseteq (U^{\perp})^{\perp}$$
:
 $u \in U$. Then $\langle u, v \rangle = 0$ for every $v \in U^{\perp}$ by definition. So $u \in (U^{\perp})^{\perp}$.

Then
$$U \supseteq (U^{\perp})^{\perp}$$
:
• $v \in (U^{\perp})^{\perp}$. Write $v = u + w \in U \oplus U^{\perp}$ because $U \subset (U^{\perp})^{\perp}$.
• $v - u \in U^{\perp}$. Why?
• $v - u \in (U^{\perp})^{\perp}$. Why?
• $\Rightarrow v - u \in U^{\perp} \cap (U^{\perp})^{\perp}$
• $\Rightarrow v - u = 0 \implies v = u \in U$

Prop'n:

 ${\it U}$ finite-dimensional subspace of ${\it V}$

$$U = (U^{\perp})^{\perp}$$

First
$$U \subseteq (U^{\perp})^{\perp}$$
:
 $u \in U$. Then $\langle u, v \rangle = 0$ for every $v \in U^{\perp}$ by definition. So $u \in (U^{\perp})^{\perp}$.

Then
$$U \supseteq (U^{\perp})^{\perp}$$
:
• $v \in (U^{\perp})^{\perp}$. Write $v = u + w \in U \oplus U^{\perp}$ because $U \subset (U^{\perp})^{\perp}$.
• $v - u \in U^{\perp}$. Why?
• $v - u \in (U^{\perp})^{\perp}$. Why?
• $\Rightarrow v - u \in U^{\perp} \cap (U^{\perp})^{\perp}$
• $\Rightarrow v - u = 0 \implies v = u \in U$ Done! \Box

Def'n:

S'pose *U* is a finite-dimensional subspace of *V*. The **orthogonal projection** of *V* onto *U* is the operator $P_U \in \mathcal{L}(V)$ defined as follows:

For $v \in V$, write v = u + w, for $u \in U$ and $w \in U^{\perp}$. Then $P_U(v) = u$.

Def'n:

S'pose *U* is a finite-dimensional subspace of *V*. The **orthogonal projection** of *V* onto *U* is the operator $P_U \in \mathcal{L}(V)$ defined as follows:

For $v \in V$, write v = u + w, for $u \in U$ and $w \in U^{\perp}$. Then $P_U(v) = u$.

How do we know this is well defined?

Def'n:

S'pose *U* is a finite-dimensional subspace of *V*. The **orthogonal projection** of *V* onto *U* is the operator $P_U \in \mathcal{L}(V)$ defined as follows:

For $v \in V$, write v = u + w, for $u \in U$ and $w \in U^{\perp}$. Then $P_U(v) = u$.

How do we know this is well defined? $V = U \oplus U^{\perp}$.

Example: Let $U = \{(x, 3x, 0) | x \in \mathbb{R}\}, U^{\perp} = \{(y, -1/3y, z) | y, z \in \mathbb{R}\}.$

Example: Let $U = \{(x, 3x, 0) | x \in \mathbb{R}\}$, $U^{\perp} = \{(y, -1/3y, z) | y, z \in \mathbb{R}\}$.What is $P_U(3, 4, 5)$?

Example: Let $U = \{(x, 3x, 0) | x \in \mathbb{R}\},\$ $U^{\perp} = \{(y, -1/3y, z) | y, z \in \mathbb{R}\}.$ What is $P_U(3, 4, 5)$?

What is an orthonormal basis for U?

Example: Let $U = \{(x, 3x, 0) | x \in \mathbb{R}\},\$ $U^{\perp} = \{(y, -1/3y, z) | y, z \in \mathbb{R}\}.$ What is $P_U(3, 4, 5)$?

■ What is an orthonormal basis for *U*? Then we have a formula for the part of (3, 4, 5) in *U*.

Example: Let $U = \{(x, 3x, 0) | x \in \mathbb{R}\}$,

- What is an orthonormal basis for U? Then we have a formula for the part of (3, 4, 5) in U.
- Recall how we wrote vectors as an orthogonal decomposition in proof of direct sum.

Example: Let $U = \{(x, 3x, 0) | x \in \mathbb{R}\}$,

- What is an orthonormal basis for U? Then we have a formula for the part of (3, 4, 5) in U.
- Recall how we wrote vectors as an orthogonal decomposition in proof of direct sum.

$$U = \text{span}(1, 3, 0) = \text{span}(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0)$$

Example: Let $U = \{(x, 3x, 0) | x \in \mathbb{R}\},\$

- What is an orthonormal basis for U? Then we have a formula for the part of (3, 4, 5) in U.
- Recall how we wrote vectors as an orthogonal decomposition in proof of direct sum.

•
$$U = \text{span}(1, 3, 0) = \text{span}(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0)$$

$$P_U v = \langle v, (\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0) \rangle (\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0)$$

Example: Let $U = \{(x, 3x, 0) | x \in \mathbb{R}\},\$

- What is an orthonormal basis for U? Then we have a formula for the part of (3, 4, 5) in U.
- Recall how we wrote vectors as an orthogonal decomposition in proof of direct sum.

$$U = \operatorname{span}(1,3,0) = \operatorname{span}(\frac{1}{\sqrt{10}},\frac{3}{\sqrt{10}},0)$$
$$P_U v = \langle v, (\frac{1}{\sqrt{10}},\frac{3}{\sqrt{10}},0) \rangle (\frac{1}{\sqrt{10}},\frac{3}{\sqrt{10}},0)$$
$$P_U(3,4,5) = (\frac{3}{2},\frac{9}{2},0)$$

Example: Let $U = \{(x, 3x, 0) | x \in \mathbb{R}\},\$

 $U^{\perp} = \{(y, -1/3y, z) | y, z \in \mathbb{R}\}.$ What is $P_U(3, 4, 5)$?

- What is an orthonormal basis for U? Then we have a formula for the part of (3, 4, 5) in U.
- Recall how we wrote vectors as an orthogonal decomposition in proof of direct sum.

$$U = \operatorname{span}(1, 3, 0) = \operatorname{span}(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0)$$
$$P_U v = \langle v, (\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0) \rangle (\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0)$$
$$P_U(3, 4, 5) = (\frac{3}{2}, \frac{9}{2}, 0)$$

Generalizing...

Example: Let $U = \{(x, 3x, 0) | x \in \mathbb{R}\},$

 $U^{\perp} = \{(y, -1/3y, z) | y, z \in \mathbb{R}\}.$ What is $P_U(3, 4, 5)$?

- What is an orthonormal basis for U? Then we have a formula for the part of (3, 4, 5) in U.
- Recall how we wrote vectors as an orthogonal decomposition in proof of direct sum.

$$U = \operatorname{span}(1, 3, 0) = \operatorname{span}(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0)$$
$$P_U v = \langle v, (\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0) \rangle (\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0)$$
$$P_U(3, 4, 5) = (\frac{3}{2}, \frac{9}{2}, 0)$$

Generalizing... If $x \in V$ and $x \neq 0$ and U = span(x). Then

$$P_U v = \frac{\langle v, x \rangle}{||x||^2} x.$$

Example: Let $U = \{(x, 3x, 0) | x \in \mathbb{R}\},$

 $U^{\perp} = \{(y, -1/3y, z) | y, z \in \mathbb{R}\}.$ What is $P_U(3, 4, 5)$?

- What is an orthonormal basis for U? Then we have a formula for the part of (3, 4, 5) in U.
- Recall how we wrote vectors as an orthogonal decomposition in proof of direct sum.

$$U = \operatorname{span}(1, 3, 0) = \operatorname{span}(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0)$$
$$P_U v = \langle v, (\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0) \rangle (\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0)$$
$$P_U(3, 4, 5) = (\frac{3}{2}, \frac{9}{2}, 0)$$

Generalizing... If $x \in V$ and $x \neq 0$ and U = span(x). Then

$$P_U v = \frac{\langle v, x \rangle}{||x||^2} x.$$

Why?

FD • MATH 110 • July 20, 2023

Example: Let $U = \{(x, 3x, 0) | x \in \mathbb{R}\},\$

 $U^{\perp} = \{(y, -1/3y, z) | y, z \in \mathbb{R}\}.$ What is $P_U(3, 4, 5)$?

- What is an orthonormal basis for U? Then we have a formula for the part of (3, 4, 5) in U.
- Recall how we wrote vectors as an orthogonal decomposition in proof of direct sum.

$$U = \operatorname{span}(1, 3, 0) = \operatorname{span}(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0)$$
$$P_U v = \langle v, (\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0) \rangle (\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0)$$
$$P_U(3, 4, 5) = (\frac{3}{2}, \frac{9}{2}, 0)$$

Generalizing... If $x \in V$ and $x \neq 0$ and U = span(x). Then

$$P_U v = \frac{\langle v, x \rangle}{||x||^2} x.$$

Why?

$$v = rac{\langle v, x
angle}{||x||^2} x + (v - rac{\langle v, x
angle}{||x||^2} x)$$

FD • MATH 110 • July 20, 2023

Prop'n:

Suppose *u* a finite-dimensional subspace of *V* and $v \in V$:

1. $P_U \in \mathcal{L}(V)$

Prop'n:

- 1. $P_U \in \mathcal{L}(V)$
- 2. $P_U u = u$ for every $u \in U$

Prop'n:

- 1. $P_U \in \mathcal{L}(V)$
- 2. $P_U u = u$ for every $u \in U$
- 3. $P_U w = 0$ for every $w \in U^{\perp}$

Prop'n:

- 1. $P_U \in \mathcal{L}(V)$
- 2. $P_U u = u$ for every $u \in U$
- 3. $P_U w = 0$ for every $w \in U^{\perp}$
- 4. range $P_U = U$

Prop'n:

- 1. $P_U \in \mathcal{L}(V)$
- 2. $P_U u = u$ for every $u \in U$
- 3. $P_U w = 0$ for every $w \in U^{\perp}$
- 4. range $P_U = U$
- 5. null $P_U = U^{\perp}$

Prop'n:

- 1. $P_U \in \mathcal{L}(V)$
- 2. $P_U u = u$ for every $u \in U$
- 3. $P_U w = 0$ for every $w \in U^{\perp}$
- 4. range $P_U = U$
- 5. null $P_U = U^{\perp}$
- 6. $v P_U v \in U^{\perp}$

Prop'n:

- 1. $P_U \in \mathcal{L}(V)$
- 2. $P_U u = u$ for every $u \in U$
- 3. $P_U w = 0$ for every $w \in U^{\perp}$
- 4. range $P_U = U$
- 5. null $P_U = U^{\perp}$
- 6. $v P_U v \in U^{\perp}$
- **7.** $P_U^2 = P_U$

Prop'n:

Suppose *u* a finite-dimensional subspace of *V* and $v \in V$:

- 1. $P_U \in \mathcal{L}(V)$
- 2. $P_U u = u$ for every $u \in U$
- 3. $P_U w = 0$ for every $w \in U^{\perp}$
- 4. range $P_U = U$
- 5. null $P_U = U^{\perp}$
- 6. $v P_U v \in U^{\perp}$

7.
$$P_U^2 = P_U$$

8. $||P_U v|| \le ||v||$

Prop'n:

- 1. $P_U \in \mathcal{L}(V)$
- 2. $P_U u = u$ for every $u \in U$
- 3. $P_U w = 0$ for every $w \in U^{\perp}$
- 4. range $P_U = U$
- 5. null $P_U = U^{\perp}$
- 6. $v P_U v \in U^{\perp}$

7.
$$P_U^2 = P_U$$

- 8. $||P_U v|| \le ||v||$
- 9. for orthonormal bases e_1, \ldots, e_m of U,

$$P_U v = \langle v, e_1 \rangle e_1 + \ldots + \langle v, e_m \rangle e_m$$

Question:

Question: Given a subspace *U* of *V* and a point $v \in V$. Find a point $u \in U$ such that ||v - u|| is as small as possible.

Question: Given a subspace *U* of *V* and a point $v \in V$. Find a point $u \in U$ such that ||v - u|| is as small as possible.

Minimizing distance to a subspace:

S'pose *U* a finite-dimensional subspace of *V*, $v \in V$, $u \in U$. Then

$$||v - P_U v|| \le ||v - u||.$$

Further the inequality is equality if and only if $u = P_U v$.

Minimizing distance to a subspace:

$$|\boldsymbol{v} - \boldsymbol{P}_{\boldsymbol{U}}\boldsymbol{v}|| \leq ||\boldsymbol{v} - \boldsymbol{u}||$$

Equality if and only if $u = P_U v$.

Minimizing distance to a subspace:

$$|\mathbf{v} - \mathbf{P}_U \mathbf{v}|| \le ||\mathbf{v} - \mathbf{u}||$$

Equality if and only if $u = P_U v$.

Proof.

Because $||v - P_U v|| \ge 0$, we have

Minimizing distance to a subspace:

$$|\mathbf{v} - \mathbf{P}_U \mathbf{v}|| \le ||\mathbf{v} - \mathbf{u}||$$

Equality if and only if $u = P_U v$.

Proof.

Because $||v - P_U v|| \ge 0$, we have $||v - P_U v||^2 \le ||v - P_U v||^2 + ||P_U v - u||^2$
Minimizing distance to a subspace:

$$|\mathbf{v} - \mathbf{P}_U \mathbf{v}|| \le ||\mathbf{v} - \mathbf{u}||$$

Equality if and only if $u = P_U v$.

Proof.

Because
$$||v - P_U v|| \ge 0$$
, we have
 $||v - P_U v||^2 \le ||v - P_U v||^2 + ||P_U v - u||^2$

but this is

$$= ||(v - P_U v) + (P_U v - u)||^2$$

by the Pythagorean theorem

Minimizing distance to a subspace:

$$|\mathbf{v} - \mathbf{P}_U \mathbf{v}|| \le ||\mathbf{v} - \mathbf{u}||$$

Equality if and only if $u = P_U v$.

Proof.

Because
$$||v - P_U v|| \ge 0$$
, we have
 $||v - P_U v||^2 \le ||v - P_U v||^2 + ||P_U v - u||^2$

but this is

$$= ||(v - P_U v) + (P_U v - u)||^2$$

by the Pythagorean theorem which is

$$= ||v - u||^2.$$

FD • MATH 110 • July 20, 2023

Minimizing distance to a subspace:

$$|\mathbf{v} - \mathbf{P}_U \mathbf{v}|| \le ||\mathbf{v} - \mathbf{u}||$$

Equality if and only if $u = P_U v$.

Proof.

Because
$$||v - P_U v|| \ge 0$$
, we have
 $||v - P_U v||^2 \le ||v - P_U v||^2 + ||P_U v - u||^2$

but this is

$$= ||(v - P_U v) + (P_U v - u)||^2$$

by the Pythagorean theorem which is

$$= ||v - u||^2.$$

We see also that we have equality **iff** $||P_Uv - u|| = 0$, i.e. $u = P_Uv$.

Minimizing distance to a subspace:

$$|\mathbf{v} - \mathbf{P}_U \mathbf{v}|| \le ||\mathbf{v} - \mathbf{u}||$$

Equality if and only if $u = P_U v$.

Proof.

Because
$$||v - P_U v|| \ge 0$$
, we have
 $||v - P_U v||^2 \le ||v - P_U v||^2 + ||P_U v - u||^2$

but this is

$$= ||(v - P_U v) + (P_U v - u)||^2$$

by the Pythagorean theorem which is

$$= ||v - u||^2.$$

We see also that we have equality **iff** $||P_Uv - u|| = 0$, i.e. $u = P_Uv$. \Box

Let U = span((1, 1, 0), (0, 0, 1)) in \mathbb{R}^3 . Find a $u \in U$ such that ||u - (4, 5, 6)|| is as small as possible.

Let U = span((1, 1, 0), (0, 0, 1)) in \mathbb{R}^3 . Find a $u \in U$ such that ||u - (4, 5, 6)|| is as small as possible.

Recall:

for orthonormal bases e_1, \ldots, e_m of U,

$$P_U v = \langle v, e_1 \rangle e_1 + \ldots + \langle v, e_m \rangle e_m$$

Let U = span((1, 1, 0), (0, 0, 1)) in \mathbb{R}^3 . Find a $u \in U$ such that ||u - (4, 5, 6)|| is as small as possible.

Recall:

for orthonormal bases e_1, \ldots, e_m of U,

$$P_U v = \langle v, e_1 \rangle e_1 + \ldots + \langle v, e_m \rangle e_m$$

Orthonormal basis: $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), (0, 0, 1)$

Let U = span((1, 1, 0), (0, 0, 1)) in \mathbb{R}^3 . Find a $u \in U$ such that ||u - (4, 5, 6)|| is as small as possible.

Recall:

for orthonormal bases e_1, \ldots, e_m of U,

$$P_U v = \langle v, e_1 \rangle e_1 + \ldots + \langle v, e_m \rangle e_m$$

Orthonormal basis: $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), (0, 0, 1)$ Should get $P_U(4, 5, 6) = (\frac{9}{2}, \frac{9}{2}, 6).$

Find a polynomial u(x) with real coefficients and degree at most 5 that approximates sin x as well as possible on the interval $[-\pi, \pi]$ in the sense that

$$\int_{-\pi}^{\pi} |\sin x - u(x)|^2 dx$$

is as small as possible.

Find a polynomial u(x) with real coefficients and degree at most 5 that approximates sin x as well as possible on the interval $[-\pi, \pi]$ in the sense that

$$\int_{-\pi}^{\pi} |\sin x - u(x)|^2 dx$$

is as small as possible.

Solution: Turn into a minimization problem as follows.

Find a polynomial u(x) with real coefficients and degree at most 5 that approximates sin x as well as possible on the interval $[-\pi, \pi]$ in the sense that

$$\int_{-\pi}^{\pi} |\sin x - u(x)|^2 dx$$

is as small as possible.

Solution: Turn into a minimization problem as follows. $C_{\mathbb{R}}[-\pi,\pi]$: real inner product space of continuous real-valued functions on $[-\pi,\pi]$ with inner product

$$\langle f,g
angle = \int_{\pi}^{\pi} f(x)g(x)dx.$$

Find a polynomial u(x) with real coefficients and degree at most 5 that approximates sin x as well as possible on the interval $[-\pi, \pi]$ in the sense that

$$\int_{-\pi}^{\pi} |\sin x - u(x)|^2 dx$$

is as small as possible.

Solution: Turn into a minimization problem as follows. $C_{\mathbb{R}}[-\pi,\pi]$: real inner product space of continuous real-valued functions on $[-\pi,\pi]$ with inner product

$$\langle f,g\rangle = \int_{\pi}^{\pi} f(x)g(x)dx.$$

Let $U = \mathcal{P}_5(\mathbb{R})$ and find $u \in U$ such that $||\sin(x) - u||$ is as small as possible.

Things we would then make a computer do:

FD • MATH 110 • July 20, 2023

Things we would then make a computer do:

Compute an orthonormal basis for *U* using Gram-Schmidt and starting with $1, x, x^2, x^3, x^4, x^5$.

Things we would then make a computer do:

- Compute an orthonormal basis for *U* using Gram-Schmidt and starting with $1, x, x^2, x^3, x^4, x^5$.
- Compute $P_U(sin(x))$ using our formula.

Things we would then make a computer do:

- Compute an orthonormal basis for *U* using Gram-Schmidt and starting with $1, x, x^2, x^3, x^4, x^5$.
- Compute $P_U(sin(x))$ using our formula.
- $u(x) = .987862x .155271x^3 + .00564312x^5$

[Ax114] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.