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Recall!
Important things from last lecture:

A list is orthonormal is each vector in the list has norm 1 and is
orthogonal to every other vector. (Often denoted e, ..., en).
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Recall!
Important things from last lecture:

A list is orthonormal is each vector in the list has norm 1 and is
orthogonal to every other vector. (Often denoted e, ..., en).

A basis is an orthonormal basis if it is an orthonormal list that forms
a basis (linearly independent and spans).

Orthonormal lists are automatically linearly independent! Yay!

Vector as linear combo of orthonormal basis has a formula:
é1,...,enis an orthonormal basis, v € V:

v={(v,er)e1 + ...+ {v,enen
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Definition

Let U C V, then the orthogonal complement of U, denoted UL, is the
set of all vectors in V that are orthogonal to every vector in U.
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Definition

Let U C V, then the orthogonal complement of U, denoted UL, is the
set of all vectors in V that are orthogonal to every vector in U.

Ut ={veV:(v,u) =0 forevery u € U}

Example:

If Uis a line in R3, Ut is the perpendicular plane.
What if U is a plane in R3?

Let U = {(x, 3x,0)|x € R}. Find U*.

FD - MATH 110 - July 20, 2023 3/16



Definition

Let U C V, then the orthogonal complement of U, denoted UL, is the
set of all vectors in V that are orthogonal to every vector in U.

Ut ={veV:(v,u) =0 forevery u € U}

Example:
If Uis a line in R3, Ut is the perpendicular plane.
What if U is a plane in R3?

Let U = {(x, 3x,0)|x € R}. Find U*. We can calculate
UL = {(ya _1/3yaz)|zzy € R}
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Basic Properties

Propn [Axl14]:

1. U a subset of V implies U is a subspace of V
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2. {0}t =V
3. v+ = {0}
4. U a subset of V implies UN U+ c {0}
5. U, W are subsets of V and U c W, then W+ c U+

Proof of 1. Use properties of dot product, subspace criteria.

FD - MATH 110 - July 20, 2023 4/16



Basic Properties

Prop'n [Axl14]:
1. U a subset of V implies U is a subspace of V
2. {0}t =V
3. v+ = {0}
4. U a subset of V implies UN U+ c {0}
5. U, W are subsets of V and U c W, then W+ c U+

Proof of 1. Use properties of dot product, subspace criteria.

Proof of 5.

FD - MATH 110 - July 20, 2023 4/16



Basic Properties

Prop'n [Axl14]:
1. U a subset of V implies U is a subspace of V
2. {0}t =V
3. v+ = {0}
4. U a subset of V implies UN U+ c {0}
5. U, W are subsets of V and U c W, then W+ c U+

Proof of 1. Use properties of dot product, subspace criteria.

Proof of 5. Spose v € W, Then (v,u) = 0 for all u € W and so also
allue UcC W.
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Direct Sum and Orthogonal Complement

S’pose U is a finite-dimensional subspace of V. Then V = U @ U~.
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Direct Sum and Orthogonal Complement

S’pose U is a finite-dimensional subspace of V. Then V = U @ U~.

Proof.
Step 1: Prove V = U + U™t
Let eq,...,en form an orthonormal basis of U.
v=(v,er)er + ...+ (v.emen+v—(v,er)er — ... — (V,em)em

Letu=(v,e1)e; + ...+ (v,em)em. And
w=v—(v,er)er —... — (V,em)em. Show w is orthogonal to each e;.
Thenw € U+,
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Direct Sum and Orthogonal Complement

S’pose U is a finite-dimensional subspace of V. Then V = U @ U~.

Proof.
Step 1: Prove V = U + U™t
Let eq,...,en form an orthonormal basis of U.
v=(v,er)er + ...+ (v.emen+v—(v,er)er — ... — (V,em)em

Letu=(v,e1)e; + ...+ (v,em)em. And
w=v—(v,er)er —... — (V,em)em. Show w is orthogonal to each e;.
Thenw € U+,

Step 2: Prove direct sum.
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Consequences

V finite dimensional, U subspace of V

dim U+ = dimV — dim U
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Double Perp = Original

U finite-dimensional subspace of V

U=(UhH)*t
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Proof.
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m u € U. Then (u,v) = 0 for every v € U by definition.
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Double Perp = Original

U finite-dimensional subspace of V

U=(UhH)*t

Proof.

First U C (U+)*:
m u € U. Then (u,v) = 0 for every v € U+ by definition. So
ue (UhH)*

Then U D (U+)*:

ve (Uh)t Writev = u+w € U@ Ut because U C (UH)*.

v —ue Ut Why?

v—ue (UH)* Why?

= v—uecUtnUuh)t

= v—u=0= v=uecl
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Double Perp = Original

U finite-dimensional subspace of V

U=(UhH)*t

Proof.

First U C (U+)*:
m u € U. Then (u,v) = 0 for every v € U+ by definition. So
ue (UhH)*

Then U D (U+)*:

ve (Uh)t Writev = u+w € U@ Ut because U C (UH)*.

v —ue Ut Why?

v—ue (UH)* Why?

= v—uecUtnUuh)t

— v—u=0 = v=ueUDone!
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Orthogonal Projection, Py

S’pose U is a finite-dimensional subspace of V. The orthogonal
projection of V onto U is the operator Py € £(V) defined as follows:

Forv € V,write v =u+w, foru € Uand w € U*-. Then Py(v) = w.
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projection of V onto U is the operator Py € £(V) defined as follows:

Forv € V,write v =u+w, foru € Uand w € U*-. Then Py(v) = w.

How do we know this is well defined?
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Orthogonal Projection, Py

S’pose U is a finite-dimensional subspace of V. The orthogonal
projection of V onto U is the operator Py € £(V) defined as follows:

Forv € V,write v =u+w, foru € Uand w € U*-. Then Py(v) = w.

How do we know this is well defined? V = U & U+,
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Orthogonal Projection, Py

Example: Let U = {(x, 3x,0)|x € R},
UL = {(ya _1/3yaz)|yvz € R}
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Orthogonal Projection, Py

Example: Let U = {(x, 3x,0)|x € R},
U+ = {(y,—1/3y,2)ly,z € R}.What is Py(3,4,5)?
m What is an orthonormal basis for U? Then we have a formula for
the part of (3,4,5) in U.
m Recall how we wrote vectors as an orthogonal decomposition in
proof of direct sum.

m U =span(1,3,0) = span(—2

3
vior vio' %)
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Orthogonal Projection, Py

Example: Let U = {(x, 3x,0)|x € R},
U+ = {(y,—1/3y,2)ly,z € R}.What is Py(3,4,5)?
m What is an orthonormal basis for U? Then we have a formula for
the part of (3,4,5) in U.
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Orthogonal Projection, Py

Example: Let U = {(x, 3x,0)|x € R},
U+ = {(y,—1/3y,2)ly,z € R}.What is Py(3,4,5)?
m What is an orthonormal basis for U? Then we have a formula for
the part of (3,4,5) in U.
m Recall how we wrote vectors as an orthogonal decomposition in
proof of direct sum.

m U= span(,3,0) = span( 5, 5. 0)
_ 13 13
m Py = (v, (% ?’O»(maﬁvo)

Generalizing...
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Orthogonal Projection, Py

Example: Let U = {(x, 3x,0)|x € R},
U+ = {(y,—1/3y,2)ly,z € R}.What is Py(3,4,5)?
m What is an orthonormal basis for U? Then we have a formula for
the part of (3,4,5) in U.
m Recall how we wrote vectors as an orthogonal decomposition in
proof of direct sum.

m U= span(,3,0) = span( 5, 5. 0)
u PUV: <v’(\/*v\/j 0)>(ﬁa¢%vo)

= Py(3,4.5) =(3.3.0)
Generalizing... If x € V and x # 0 and U = span(x). Then
(v, %)
Pyv = X.
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Orthogonal Projection, Py

Example: Let U = {(x, 3x,0)|x € R},
U+ = {(y,—1/3y,2)ly,z € R}.What is Py(3,4,5)?
m What is an orthonormal basis for U? Then we have a formula for
the part of (3,4,5) in U.
m Recall how we wrote vectors as an orthogonal decomposition in
proof of direct sum.

m U= span(,3,0) = span( 5, 5. 0)
u PUV: <v’(\/*v\/j 0)>(ﬁa¢%vo)

= Py(3,4.5) =(3.3.0)
Generalizing... If x € V and x # 0 and U = span(x). Then
(v, %)
Pyv = X.
1112

Why?

FD - MATH 110 - July 20, 2023 9/16



Orthogonal Projection, Py

Example: Let U = {(x, 3x,0)|x € R},
U+ = {(y,—1/3y,2)ly,z € R}.What is Py(3,4,5)?
m What is an orthonormal basis for U? Then we have a formula for
the part of (3,4,5) in U.
m Recall how we wrote vectors as an orthogonal decomposition in
proof of direct sum.

m U= span(,3,0) = span( 5, 5. 0)
u PUV: <v’(\/*v\/j 0)>(ﬁa¢%vo)

= Py(3,4,5)=(3.3.0)

Generalizing... If x € V and x # 0 and U = span(x). Then

(v, x)

Pyv = X.

|Ix12

Why?
_ %) (v, x)
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Properties of the Orthogonal Projection

Suppose u a finite-dimensional subspace of V and v € V:
1. Py e L(V)
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3. Pyw = 0 for every w € Ut
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Properties of the Orthogonal Projection

Propn:

Suppose u a finite-dimensional subspace of V and v € V:
1. Py e L(V)
2. Pyu=uforeveryue U

3. Pyw = 0 for every w € Ut
4. range Py = U
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Properties of the Orthogonal Projection

Suppose u a finite-dimensional subspace of V and v € V:
1. Py e L(V)

2. Pyu=uforeveryue U

3. Pyw = 0 for every w € Ut
4. range Py = U

5. null Py = U+
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Properties of the Orthogonal Projection

Suppose u a finite-dimensional subspace of V and v € V:
1. Py e L(V)
Pyu = u foreveryu e U

Pyw = 0O for every w € U+
range Py = U
null Py = U*
v —Pyv e Ut
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Properties of the Orthogonal Projection

Suppose u a finite-dimensional subspace of V and v € V:
1. Py e L(V)
Pyu = u foreveryu e U

Pyw = 0O for every w € U+
range Py = U

null Py = U*

v —Pyv e Ut

P =Py
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Properties of the Orthogonal Projection

Suppose u a finite-dimensional subspace of V and v € V:
1. Py e L(V)
Pyu = u foreveryu e U

Pyw = 0O for every w € U+
range Py = U

null Py = U*

v —Pyv e Ut

P =Py

1Pl < [Vl
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Properties of the Orthogonal Projection

Suppose u a finite-dimensional subspace of V and v € V:
1. Py e L(V)
Pyu = u foreveryu e U

Pyw = 0 for every w € U+

range Py = U

null Py = U+

v —Pyv e Ut

PLZ, =Py

PuvIl < lIv]

for orthonormal bases eq, ..., ey of U,

O O o

Pyv = (v,e1)e1 + ...+ (v,em)ém
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Minimization Problems

Question:
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Minimization Problems

Question: Given a subspace U of V and a point v € V. Find a point
u € Usuchthat ||v — ul| is as small as possible.
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Minimization Problems

Question: Given a subspace U of V and a point v € V. Find a point
u € Usuchthat ||v — ul| is as small as possible.

Minimizing distance to a subspace:
S’pose U a finite-dimensional subspace of V,v € V, u € U. Then

v = Pyvi] < |lv —ul]

Further the inequality is equality if and only if u = Pyv.
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Minimization Problems

Minimizing distance to a subspace:

v = Pyv]] <|lv —ull

Equality if and only if u = Pyv.

Proof.
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Minimization Problems

Minimizing distance to a subspace:

v = Pyv]] <|lv —ull

Equality if and only if u = Pyv.

Proof.
Because ||v — Pyv|| > 0, we have
[lv = Puvil? < [lv = Pyv|* +||Pyv — u]|?

but this is
= I(v = Pyv) + (Pyv — u)||?
by the Pythagorean theorem
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Minimization Problems

Minimizing distance to a subspace:

v = Pyv]] <|lv —ull

Equality if and only if u = Pyv.

Proof.
Because ||v — Pyv|| > 0, we have
v = Puv||* < |Iv = Pyvl® +[|Pyv — ul|?
but this is
=[|(v = Pyv) + (Pyv — )||?
by the Pythagorean theorem which is

2
= [lv—ull".
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Minimization Problems

Minimizing distance to a subspace:

v = Pyv]] <|lv —ull

Equality if and only if u = Pyv.

Proof.
Because ||v — Pyv|| > 0, we have
[lv = Puvil? < [lv = Pyv|* +||Pyv — u]|?
but this is
= [|(v = Pyv) + (Pyv — u)||?
by the Pythagorean theorem which is
= [lv —ull®.
We see also that we have equality iff ||Pyv — u|| = 0, i.e. u = Pyv.

FD - MATH 110 - July 20, 2023 12/16



Minimization Problems

Minimizing distance to a subspace:

v = Pyv]] <|lv —ull

Equality if and only if u = Pyv.

Proof.
Because ||v — Pyv|| > 0, we have
[lv = Puvil? < [lv = Pyv|* +||Pyv — u]|?
but this is
= [|(v = Pyv) + (Pyv — u)||?
by the Pythagorean theorem which is
= [lv —ull®.
We see also that we have equality iff ||Pyv — u|| =0, i.e. u = Pyv. O
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Example 1

Let U = span((1,1,0),(0,0,1)) in R3. Find a u € U such that
|lu—(4,5,6)|| is as small as possible.
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Example 1

Let U = span((1,1,0),(0,0,1)) in R3. Find a u € U such that
|lu—(4,5,6)|| is as small as possible.

for orthonormal bases eq, ..., e, of U,

Orthonormal basis: (- ,0),(0,0,1)
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Example 1

Let U = span((1,1,0),(0,0,1)) in R3. Find a u € U such that
|lu—(4,5,6)|| is as small as possible.

for orthonormal bases eq, ..., e, of U,

Orthonormal basis: (%, 1.0),(0,0,1)

Should get Py(4,5,6) = (%, %, 6).
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Example 2

Find a polynomial u(x) with real coefficients and degree at most 5
that approximates sin x as well as possible on the interval [—m, 7] in

the sense that .
/ | sin x — u(x)|?dx

—Tr

is as small as possible.
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Find a polynomial u(x) with real coefficients and degree at most 5
that approximates sin x as well as possible on the interval [—m, 7] in
the sense that

/ | sin x — u(x)|?dx

—Tr

is as small as possible.

Solution: Turn into a minimization problem as follows.
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Example 2

Find a polynomial u(x) with real coefficients and degree at most 5
that approximates sin x as well as possible on the interval [—m, 7] in

the sense that .
/ | sin x — u(x)|?dx

—Tr

is as small as possible.

Solution: Turn into a minimization problem as follows.
Cr[—m, 7] : real inner product space of continuous real-valued
functions on [—m, 7] with inner product

9= [ " FO0)g(x) .
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Example 2

Find a polynomial u(x) with real coefficients and degree at most 5
that approximates sin x as well as possible on the interval [—m, 7] in
the sense that

/ | sin x — u(x)|?dx

—Tr

is as small as possible.

Solution: Turn into a minimization problem as follows.
Cr[—m, 7] : real inner product space of continuous real-valued
functions on [—m, 7] with inner product

9= [ " FO0)g(x) .

Let U = P5(R) and find u € U such that || sin(x) — u|| is as small as
possible.
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Example 2 (Cont’d)
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Example 2 (Cont’d)

Things we would then make a computer do:
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Example 2 (Cont’d)

Things we would then make a computer do:
m Compute an orthonormal basis for U using Gram-Schmidt and

starting with 1, x, x%, x3, x*, x°.
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Things we would then make a computer do:
m Compute an orthonormal basis for U using Gram-Schmidt and
starting with 1, x, x%, x3, x*, x°.

m Compute Py(sin(x)) using our formula.
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Example 2 (Cont’d)

Things we would then make a computer do:
m Compute an orthonormal basis for U using Gram-Schmidt and
starting with 1, x, x%, x3, x*, x°.
m Compute Py(sin(x)) using our formula.

m u(x) = .987862x — .155271x3 + .00564312x5
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