Lecture 17: Orthogonal Complements and Minimization Problems

MATH 110-3

Franny Dean

July 20, 2023

Recall!

Important things from last lecture:

Def'n:

A list is orthonormal is each vector in the list has norm 1 and is orthogonal to every other vector. (Often denoted e_{1}, \ldots, e_{m}).

Recall!

Important things from last lecture:

Def'n:

A list is orthonormal is each vector in the list has norm 1 and is orthogonal to every other vector. (Often denoted e_{1}, \ldots, e_{m}).

A basis is an orthonormal basis if it is an orthonormal list that forms a basis (linearly independent and spans).

Recall!

Important things from last lecture:

Def'n:

A list is orthonormal is each vector in the list has norm 1 and is orthogonal to every other vector. (Often denoted e_{1}, \ldots, e_{m}).

A basis is an orthonormal basis if it is an orthonormal list that forms a basis (linearly independent and spans).

Prop'n:

Orthonormal lists are automatically linearly independent! Yay!

Recall!

Important things from last lecture:

Def'n:

A list is orthonormal is each vector in the list has norm 1 and is orthogonal to every other vector. (Often denoted e_{1}, \ldots, e_{m}).

A basis is an orthonormal basis if it is an orthonormal list that forms a basis (linearly independent and spans).

Prop'n:

Orthonormal lists are automatically linearly independent! Yay!

Vector as linear combo of orthonormal basis has a formula:

e_{1}, \ldots, e_{n} is an orthonormal basis, $v \in V$:

$$
v=\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{n}\right\rangle e_{n}
$$

Definition

Def'n:

Let $U \subseteq V$, then the orthogonal complement of U, denoted U^{\perp}, is the set of all vectors in V that are orthogonal to every vector in U.

Definition

Def'n:

Let $U \subseteq V$, then the orthogonal complement of U, denoted U^{\perp}, is the set of all vectors in V that are orthogonal to every vector in U.

$$
U^{\perp}=\{v \in V:\langle v, u\rangle=0 \text { for every } u \in U\}
$$

Definition

Def'n:

Let $U \subseteq V$, then the orthogonal complement of U, denoted U^{\perp}, is the set of all vectors in V that are orthogonal to every vector in U.

$$
U^{\perp}=\{v \in V:\langle v, u\rangle=0 \text { for every } u \in U\}
$$

Example:

Definition

Def'n:

Let $U \subseteq V$, then the orthogonal complement of U, denoted U^{\perp}, is the set of all vectors in V that are orthogonal to every vector in U.

$$
U^{\perp}=\{v \in V:\langle v, u\rangle=0 \text { for every } u \in U\}
$$

Example:

If U is a line in $\mathbb{R}^{3}, U^{\perp}$ is the perpendicular plane.

Definition

Def'n:

Let $U \subseteq V$, then the orthogonal complement of U, denoted U^{\perp}, is the set of all vectors in V that are orthogonal to every vector in U.

$$
U^{\perp}=\{v \in V:\langle v, u\rangle=0 \text { for every } u \in U\}
$$

Example:

If U is a line in $\mathbb{R}^{3}, U^{\perp}$ is the perpendicular plane.
What if U is a plane in \mathbb{R}^{3} ?

Definition

Def'n:

Let $U \subseteq V$, then the orthogonal complement of U, denoted U^{\perp}, is the set of all vectors in V that are orthogonal to every vector in U.

$$
U^{\perp}=\{v \in V:\langle v, u\rangle=0 \text { for every } u \in U\}
$$

Example:

If U is a line in $\mathbb{R}^{3}, U^{\perp}$ is the perpendicular plane.
What if U is a plane in \mathbb{R}^{3} ?
Let $U=\{(x, 3 x, 0) \mid x \in \mathbb{R}\}$. Find U^{\perp}.

Definition

Def'n:

Let $U \subseteq V$, then the orthogonal complement of U, denoted U^{\perp}, is the set of all vectors in V that are orthogonal to every vector in U.

$$
U^{\perp}=\{v \in V:\langle v, u\rangle=0 \text { for every } u \in U\}
$$

Example:

If U is a line in $\mathbb{R}^{3}, U^{\perp}$ is the perpendicular plane.
What if U is a plane in \mathbb{R}^{3} ?
Let $U=\{(x, 3 x, 0) \mid x \in \mathbb{R}\}$. Find U^{\perp}. We can calculate $U^{\perp}=\{(y,-1 / 3 y, z) \mid z, y \in \mathbb{R}\}$.

Basic Properties

Prop'n [Axl14]:

1. U a subset of V implies U^{\perp} is a subspace of V

Basic Properties

Prop'n [Axl14]:

1. U a subset of V implies U^{\perp} is a subspace of V
2. $\{0\}^{\perp}=V$

Basic Properties

Prop'n [Axl14]:

1. U a subset of V implies U^{\perp} is a subspace of V
2. $\{0\}^{\perp}=V$
3. $V^{\perp}=\{0\}$

Basic Properties

Prop'n [Axl14]:

1. U a subset of V implies U^{\perp} is a subspace of V
2. $\{0\}^{\perp}=V$
3. $V^{\perp}=\{0\}$
4. U a subset of V implies $U \cap U^{\perp} \subset\{0\}$

Basic Properties

Prop'n [Axl14]:

1. U a subset of V implies U^{\perp} is a subspace of V
2. $\{0\}^{\perp}=V$
3. $V^{\perp}=\{0\}$
4. U a subset of V implies $U \cap U^{\perp} \subset\{0\}$
5. U, W are subsets of V and $U \subset W$, then $W^{\perp} \subset U^{\perp}$

Basic Properties

Prop'n [Axl14]:

1. U a subset of V implies U^{\perp} is a subspace of V
2. $\{0\}^{\perp}=V$
3. $V^{\perp}=\{0\}$
4. U a subset of V implies $U \cap U^{\perp} \subset\{0\}$
5. U, W are subsets of V and $U \subset W$, then $W^{\perp} \subset U^{\perp}$

Proof of 1. Use properties of dot product, subspace criteria.

Basic Properties

Prop'n [AxL14]:

1. U a subset of V implies U^{\perp} is a subspace of V
2. $\{0\}^{\perp}=V$
3. $V^{\perp}=\{0\}$
4. U a subset of V implies $U \cap U^{\perp} \subset\{0\}$
5. U, W are subsets of V and $U \subset W$, then $W^{\perp} \subset U^{\perp}$

Proof of 1. Use properties of dot product, subspace criteria.
Proof of 5 .

Basic Properties

Prop'n [AxL14]:

1. U a subset of V implies U^{\perp} is a subspace of V
2. $\{0\}^{\perp}=V$
3. $V^{\perp}=\{0\}$
4. U a subset of V implies $U \cap U^{\perp} \subset\{0\}$
5. U, W are subsets of V and $U \subset W$, then $W^{\perp} \subset U^{\perp}$

Proof of 1. Use properties of dot product, subspace criteria.
Proof of 5. S'pose $v \in W^{\perp}$. Then $\langle v, u\rangle=0$ for all $u \in W$ and so also all $u \in U \subset W$.

Direct Sum and Orthogonal Complement

Prop'n:

S'pose U is a finite-dimensional subspace of V. Then $V=U \oplus U^{\perp}$.

Direct Sum and Orthogonal Complement

Prop'n:

S'pose U is a finite-dimensional subspace of V. Then $V=U \oplus U^{\perp}$.

Proof.

Direct Sum and Orthogonal Complement

Prop'n:
S'pose U is a finite-dimensional subspace of V. Then $V=U \oplus U^{\perp}$.

Proof.
Step 1: Prove $V=U+U^{\perp}$.

Direct Sum and Orthogonal Complement

Prop'n:
S'pose U is a finite-dimensional subspace of V. Then $V=U \oplus U^{\perp}$.

Proof.
Step 1: Prove $V=U+U^{\perp}$.
Let e_{1}, \ldots, e_{m} form an orthonormal basis of U.

Direct Sum and Orthogonal Complement

Prop'n:

S'pose U is a finite-dimensional subspace of V. Then $V=U \oplus U^{\perp}$.

Proof.
Step 1: Prove $V=U+U^{\perp}$.
Let e_{1}, \ldots, e_{m} form an orthonormal basis of U.

$$
v=\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{m}\right\rangle e_{m}+v-\left\langle v, e_{1}\right\rangle e_{1}-\ldots-\left\langle v, e_{m}\right\rangle e_{m}
$$

Direct Sum and Orthogonal Complement

Prop'n:

S'pose U is a finite-dimensional subspace of V. Then $V=U \oplus U^{\perp}$.

Proof.
Step 1: Prove $V=U+U^{\perp}$.
Let e_{1}, \ldots, e_{m} form an orthonormal basis of U.

$$
v=\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{m}\right\rangle e_{m}+v-\left\langle v, e_{1}\right\rangle e_{1}-\ldots-\left\langle v, e_{m}\right\rangle e_{m}
$$

Let $u=\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{m}\right\rangle e_{m}$. And
$w=v-\left\langle v, e_{1}\right\rangle e_{1}-\ldots-\left\langle v, e_{m}\right\rangle e_{m}$. Show w is orthogonal to each e_{j}.
Then $w \in U^{\perp}$.

Direct Sum and Orthogonal Complement

Prop'n:

S'pose U is a finite-dimensional subspace of V. Then $V=U \oplus U^{\perp}$.

Proof.
Step 1: Prove $V=U+U^{\perp}$.
Let e_{1}, \ldots, e_{m} form an orthonormal basis of U.

$$
v=\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{m}\right\rangle e_{m}+v-\left\langle v, e_{1}\right\rangle e_{1}-\ldots-\left\langle v, e_{m}\right\rangle e_{m}
$$

Let $u=\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{m}\right\rangle e_{m}$. And
$w=v-\left\langle v, e_{1}\right\rangle e_{1}-\ldots-\left\langle v, e_{m}\right\rangle e_{m}$. Show w is orthogonal to each e_{j}.
Then $w \in U^{\perp}$.
Step 2: Prove direct sum.

Consequences

Prop'n:

V finite dimensional, U subspace of V

$$
\operatorname{dim} U^{\perp}=\operatorname{dim} V-\operatorname{dim} U
$$

Consequences

Prop'n:

V finite dimensional, U subspace of V

$$
\operatorname{dim} U^{\perp}=\operatorname{dim} V-\operatorname{dim} U
$$

Prop'n:

U finite-dimensional subspace of V

$$
U=\left(U^{\perp}\right)^{\perp}
$$

Consequences

Prop'n:

V finite dimensional, U subspace of V

$$
\operatorname{dim} U^{\perp}=\operatorname{dim} V-\operatorname{dim} U
$$

Prop'n:

U finite-dimensional subspace of V

$$
U=\left(U^{\perp}\right)^{\perp}
$$

Double Perp = Original

Prop'n:

U finite-dimensional subspace of V

$$
U=\left(U^{\perp}\right)^{\perp}
$$

Double Perp = Original

Prop'n:

U finite-dimensional subspace of V

$$
U=\left(U^{\perp}\right)^{\perp}
$$

Proof.

Double Perp = Original

Prop'n:

U finite-dimensional subspace of V

$$
U=\left(U^{\perp}\right)^{\perp}
$$

Proof.
First $U \subseteq\left(U^{\perp}\right)^{\perp}$:
$\square u \in U$.

Double Perp = Original

Prop'n:

U finite-dimensional subspace of V

$$
U=\left(U^{\perp}\right)^{\perp}
$$

Proof.
First $U \subseteq\left(U^{\perp}\right)^{\perp}$:
■ $u \in U$. Then $\langle u, v\rangle=0$ for every $v \in U^{\perp}$ by definition.

Double Perp = Original

Prop'n:

U finite-dimensional subspace of V

$$
U=\left(U^{\perp}\right)^{\perp}
$$

Proof.
First $U \subseteq\left(U^{\perp}\right)^{\perp}$:
$\square u \in U$. Then $\langle u, v\rangle=0$ for every $v \in U^{\perp}$ by definition. So $u \in\left(U^{\perp}\right)^{\perp}$.

Double Perp = Original

Prop'n:

U finite-dimensional subspace of V

$$
U=\left(U^{\perp}\right)^{\perp}
$$

Proof.
First $U \subseteq\left(U^{\perp}\right)^{\perp}$:
$\square u \in U$. Then $\langle u, v\rangle=0$ for every $v \in U^{\perp}$ by definition. So $u \in\left(U^{\perp}\right)^{\perp}$.

Then $U \supseteq\left(U^{\perp}\right)^{\perp}$:

Double Perp = Original

Prop'n:

U finite-dimensional subspace of V

$$
U=\left(U^{\perp}\right)^{\perp}
$$

Proof.
First $U \subseteq\left(U^{\perp}\right)^{\perp}$:
$\square u \in U$. Then $\langle u, v\rangle=0$ for every $v \in U^{\perp}$ by definition. So $u \in\left(U^{\perp}\right)^{\perp}$.

Then $U \supseteq\left(U^{\perp}\right)^{\perp}$:
$■ v \in\left(U^{\perp}\right)^{\perp}$. Write $v=u+w \in U \oplus U^{\perp}$ because $U \subset\left(U^{\perp}\right)^{\perp}$.

Double Perp = Original

Prop'n:

U finite-dimensional subspace of V

$$
U=\left(U^{\perp}\right)^{\perp}
$$

Proof.
First $U \subseteq\left(U^{\perp}\right)^{\perp}$:
$\square u \in U$. Then $\langle u, v\rangle=0$ for every $v \in U^{\perp}$ by definition. So $u \in\left(U^{\perp}\right)^{\perp}$.

Then $U \supseteq\left(U^{\perp}\right)^{\perp}$:
$■ v \in\left(U^{\perp}\right)^{\perp}$. Write $v=u+w \in U \oplus U^{\perp}$ because $U \subset\left(U^{\perp}\right)^{\perp}$.
$\square v-u \in U^{\perp}$. Why?

Double Perp = Original

Prop'n:

U finite-dimensional subspace of V

$$
U=\left(U^{\perp}\right)^{\perp}
$$

Proof.
First $U \subseteq\left(U^{\perp}\right)^{\perp}$:
■ $u \in U$. Then $\langle u, v\rangle=0$ for every $v \in U^{\perp}$ by definition. So $u \in\left(U^{\perp}\right)^{\perp}$.

Then $U \supseteq\left(U^{\perp}\right)^{\perp}$:
$■ v \in\left(U^{\perp}\right)^{\perp}$. Write $v=u+w \in U \oplus U^{\perp}$ because $U \subset\left(U^{\perp}\right)^{\perp}$.
■ $v-u \in U^{\perp}$. Why?
$\square v-u \in\left(U^{\perp}\right)^{\perp}$. Why?

Double Perp = Original

Prop'n:

U finite-dimensional subspace of V

$$
U=\left(U^{\perp}\right)^{\perp}
$$

Proof.
First $U \subseteq\left(U^{\perp}\right)^{\perp}$:
$\square u \in U$. Then $\langle u, v\rangle=0$ for every $v \in U^{\perp}$ by definition. So $u \in\left(U^{\perp}\right)^{\perp}$.

Then $U \supseteq\left(U^{\perp}\right)^{\perp}$:
$\square v \in\left(U^{\perp}\right)^{\perp}$. Write $v=u+w \in U \oplus U^{\perp}$ because $U \subset\left(U^{\perp}\right)^{\perp}$.
■ $v-u \in U^{\perp}$. Why?
■ $v-u \in\left(U^{\perp}\right)^{\perp}$. Why?
$■ \Longrightarrow v-u \in U^{\perp} \cap\left(U^{\perp}\right)^{\perp}$

Double Perp = Original

Prop'n:

U finite-dimensional subspace of V

$$
U=\left(U^{\perp}\right)^{\perp}
$$

Proof.
First $U \subseteq\left(U^{\perp}\right)^{\perp}$:
$\square u \in U$. Then $\langle u, v\rangle=0$ for every $v \in U^{\perp}$ by definition. So $u \in\left(U^{\perp}\right)^{\perp}$.

Then $U \supseteq\left(U^{\perp}\right)^{\perp}$:
$\square v \in\left(U^{\perp}\right)^{\perp}$. Write $v=u+w \in U \oplus U^{\perp}$ because $U \subset\left(U^{\perp}\right)^{\perp}$.
■ $v-u \in U^{\perp}$. Why?
■ $v-u \in\left(U^{\perp}\right)^{\perp}$. Why?
■ $\Longrightarrow v-u \in U^{\perp} \cap\left(U^{\perp}\right)^{\perp}$
$■ \Longrightarrow v-u=0 \Longrightarrow v=u \in U$

Double Perp = Original

Prop'n:

U finite-dimensional subspace of V

$$
U=\left(U^{\perp}\right)^{\perp}
$$

Proof.
First $U \subseteq\left(U^{\perp}\right)^{\perp}$:
$\square u \in U$. Then $\langle u, v\rangle=0$ for every $v \in U^{\perp}$ by definition. So $u \in\left(U^{\perp}\right)^{\perp}$.

Then $U \supseteq\left(U^{\perp}\right)^{\perp}$:
$\square v \in\left(U^{\perp}\right)^{\perp}$. Write $v=u+w \in U \oplus U^{\perp}$ because $U \subset\left(U^{\perp}\right)^{\perp}$.
■ $v-u \in U^{\perp}$. Why?
■ $v-u \in\left(U^{\perp}\right)^{\perp}$. Why?
■ $\Longrightarrow v-u \in U^{\perp} \cap\left(U^{\perp}\right)^{\perp}$
■ $\Longrightarrow v-u=0 \Longrightarrow v=u \in U$ Done! \square

Orthogonal Projection, P_{U}

Def'n:

S'pose U is a finite-dimensional subspace of V. The orthogonal projection of V onto U is the operator $P_{U} \in \mathcal{L}(V)$ defined as follows:

For $v \in V$, write $v=u+w$, for $u \in U$ and $w \in U^{\perp}$. Then $P_{U}(v)=u$.

Orthogonal Projection, P_{U}

Def'n:

S'pose U is a finite-dimensional subspace of V. The orthogonal projection of V onto U is the operator $P_{U} \in \mathcal{L}(V)$ defined as follows:

For $v \in V$, write $v=u+w$, for $u \in U$ and $w \in U^{\perp}$. Then $P_{U}(v)=u$.

How do we know this is well defined?

Orthogonal Projection, P_{U}

Def'n:

S'pose U is a finite-dimensional subspace of V. The orthogonal projection of V onto U is the operator $P_{U} \in \mathcal{L}(V)$ defined as follows:

For $v \in V$, write $v=u+w$, for $u \in U$ and $w \in U^{\perp}$. Then $P_{U}(v)=u$.

How do we know this is well defined? $V=U \oplus U^{\perp}$.

Orthogonal Projection, P_{U}

Example: Let $U=\{(x, 3 x, 0) \mid x \in \mathbb{R}\}$, $U^{\perp}=\{(y,-1 / 3 y, z) \mid y, z \in \mathbb{R}\}$.

Orthogonal Projection, P_{U}

Example: Let $U=\{(x, 3 x, 0) \mid x \in \mathbb{R}\}$,
$U^{\perp}=\{(y,-1 / 3 y, z) \mid y, z \in \mathbb{R}\}$. What is $P_{U}(3,4,5)$?

Orthogonal Projection, P_{U}

Example: Let $U=\{(x, 3 x, 0) \mid x \in \mathbb{R}\}$,
$U^{\perp}=\{(y,-1 / 3 y, z) \mid y, z \in \mathbb{R}\}$. What is $P_{U}(3,4,5)$?

- What is an orthonormal basis for U ?

Orthogonal Projection, P_{U}

Example: Let $U=\{(x, 3 x, 0) \mid x \in \mathbb{R}\}$,
$U^{\perp}=\{(y,-1 / 3 y, z) \mid y, z \in \mathbb{R}\}$. What is $P_{U}(3,4,5)$?
■ What is an orthonormal basis for U ? Then we have a formula for the part of $(3,4,5)$ in U.

Orthogonal Projection, P_{U}

Example: Let $U=\{(x, 3 x, 0) \mid x \in \mathbb{R}\}$,
$U^{\perp}=\{(y,-1 / 3 y, z) \mid y, z \in \mathbb{R}\}$. What is $P_{U}(3,4,5)$?
■ What is an orthonormal basis for U ? Then we have a formula for the part of $(3,4,5)$ in U.

- Recall how we wrote vectors as an orthogonal decomposition in proof of direct sum.

Orthogonal Projection, P_{U}

Example: Let $U=\{(x, 3 x, 0) \mid x \in \mathbb{R}\}$,
$U^{\perp}=\{(y,-1 / 3 y, z) \mid y, z \in \mathbb{R}\}$. What is $P_{U}(3,4,5)$?
■ What is an orthonormal basis for U ? Then we have a formula for the part of $(3,4,5)$ in U.

- Recall how we wrote vectors as an orthogonal decomposition in proof of direct sum.
■ $U=\operatorname{span}(1,3,0)=\operatorname{span}\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0\right)$

Orthogonal Projection, P_{U}

Example: Let $U=\{(x, 3 x, 0) \mid x \in \mathbb{R}\}$,
$U^{\perp}=\{(y,-1 / 3 y, z) \mid y, z \in \mathbb{R}\}$. What is $P_{U}(3,4,5)$?

- What is an orthonormal basis for U ? Then we have a formula for the part of $(3,4,5)$ in U.
- Recall how we wrote vectors as an orthogonal decomposition in proof of direct sum.
- $U=\operatorname{span}(1,3,0)=\operatorname{span}\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0\right)$
- $P_{U V}=\left\langle V,\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0\right)\right\rangle\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0\right)$

Orthogonal Projection, P_{U}

Example: Let $U=\{(x, 3 x, 0) \mid x \in \mathbb{R}\}$,
$U^{\perp}=\{(y,-1 / 3 y, z) \mid y, z \in \mathbb{R}\}$. What is $P_{U}(3,4,5)$?

- What is an orthonormal basis for U ? Then we have a formula for the part of $(3,4,5)$ in U.
- Recall how we wrote vectors as an orthogonal decomposition in proof of direct sum.
- $U=\operatorname{span}(1,3,0)=\operatorname{span}\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0\right)$
- $P_{U V}=\left\langle v,\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0\right)\right\rangle\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0\right)$
- $P_{U}(3,4,5)=\left(\frac{3}{2}, \frac{9}{2}, 0\right)$

Orthogonal Projection, P_{U}

Example: Let $U=\{(x, 3 x, 0) \mid x \in \mathbb{R}\}$,
$U^{\perp}=\{(y,-1 / 3 y, z) \mid y, z \in \mathbb{R}\}$. What is $P_{U}(3,4,5)$?

- What is an orthonormal basis for U ? Then we have a formula for the part of $(3,4,5)$ in U.
- Recall how we wrote vectors as an orthogonal decomposition in proof of direct sum.
- $U=\operatorname{span}(1,3,0)=\operatorname{span}\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0\right)$
- $P_{U V}=\left\langle v,\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0\right)\right\rangle\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0\right)$
- $P_{u}(3,4,5)=\left(\frac{3}{2}, \frac{9}{2}, 0\right)$

Generalizing...

Orthogonal Projection, P_{U}

Example: Let $U=\{(x, 3 x, 0) \mid x \in \mathbb{R}\}$,
$U^{\perp}=\{(y,-1 / 3 y, z) \mid y, z \in \mathbb{R}\}$.What is $P_{U}(3,4,5)$?
■ What is an orthonormal basis for U ? Then we have a formula for the part of $(3,4,5)$ in U.

- Recall how we wrote vectors as an orthogonal decomposition in proof of direct sum.
- $U=\operatorname{span}(1,3,0)=\operatorname{span}\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0\right)$

■ $P_{U} V=\left\langle v,\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0\right)\right\rangle\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0\right)$

- $P_{U}(3,4,5)=\left(\frac{3}{2}, \frac{9}{2}, 0\right)$

Generalizing... If $x \in V$ and $x \neq 0$ and $U=\operatorname{span}(x)$. Then

$$
P_{U} v=\frac{\langle v, x\rangle}{\|x\|^{2}} x
$$

Orthogonal Projection, P_{U}

Example: Let $U=\{(x, 3 x, 0) \mid x \in \mathbb{R}\}$,
$U^{\perp}=\{(y,-1 / 3 y, z) \mid y, z \in \mathbb{R}\}$. What is $P_{U}(3,4,5)$?
■ What is an orthonormal basis for U ? Then we have a formula for the part of $(3,4,5)$ in U.

- Recall how we wrote vectors as an orthogonal decomposition in proof of direct sum.
■ $U=\operatorname{span}(1,3,0)=\operatorname{span}\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0\right)$
■ $P_{U} V=\left\langle v,\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0\right)\right\rangle\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0\right)$
- $P_{U}(3,4,5)=\left(\frac{3}{2}, \frac{9}{2}, 0\right)$

Generalizing... If $x \in V$ and $x \neq 0$ and $U=\operatorname{span}(x)$. Then

$$
P_{U} v=\frac{\langle v, x\rangle}{\|x\|^{2}} x
$$

Why?

Orthogonal Projection, P_{U}

Example: Let $U=\{(x, 3 x, 0) \mid x \in \mathbb{R}\}$,
$U^{\perp}=\{(y,-1 / 3 y, z) \mid y, z \in \mathbb{R}\}$.What is $P_{U}(3,4,5)$?
■ What is an orthonormal basis for U ? Then we have a formula for the part of $(3,4,5)$ in U.

- Recall how we wrote vectors as an orthogonal decomposition in proof of direct sum.
■ $U=\operatorname{span}(1,3,0)=\operatorname{span}\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0\right)$
■ $P_{U} V=\left\langle v,\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0\right)\right\rangle\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, 0\right)$
- $P_{U}(3,4,5)=\left(\frac{3}{2}, \frac{9}{2}, 0\right)$

Generalizing... If $x \in V$ and $x \neq 0$ and $U=\operatorname{span}(x)$. Then

$$
P_{U} v=\frac{\langle v, x\rangle}{\|x\|^{2}} x
$$

Why?

FD • MATH 110 • July 20, 2023

$$
v=\frac{\langle v, x\rangle}{\|x\|^{2}} x+\left(v-\frac{\langle v, x\rangle}{\|x\|^{2}} x\right)
$$

Properties of the Orthogonal Projection

Prop'n:

Suppose u a finite-dimensional subspace of V and $v \in V$:

1. $P_{u} \in \mathcal{L}(V)$

Properties of the Orthogonal Projection

Prop'n:

Suppose u a finite-dimensional subspace of V and $v \in V$:

1. $P_{u} \in \mathcal{L}(V)$
2. $P_{U} u=u$ for every $u \in U$

Properties of the Orthogonal Projection

Prop'n:

Suppose u a finite-dimensional subspace of V and $v \in V$:

1. $P_{u} \in \mathcal{L}(V)$
2. $P_{U} u=u$ for every $u \in U$
3. $P_{\cup} w=0$ for every $w \in U^{\perp}$

Properties of the Orthogonal Projection

Prop'n:

Suppose u a finite-dimensional subspace of V and $v \in V$:

1. $P_{u} \in \mathcal{L}(V)$
2. $P_{U} u=u$ for every $u \in U$
3. $P_{U} W=0$ for every $w \in U^{\perp}$
4. range $P_{U}=U$

Properties of the Orthogonal Projection

Prop'n:

Suppose u a finite-dimensional subspace of V and $v \in V$:

1. $P_{u} \in \mathcal{L}(V)$
2. $P_{U} u=u$ for every $u \in U$
3. $P_{u} w=0$ for every $w \in U^{\perp}$
4. range $P_{U}=U$
5. null $P_{U}=U^{\perp}$

Properties of the Orthogonal Projection

Prop'n:

Suppose u a finite-dimensional subspace of V and $v \in V$:

1. $P_{u} \in \mathcal{L}(V)$
2. $P_{U} u=u$ for every $u \in U$
3. $P_{u} w=0$ for every $w \in U^{\perp}$
4. range $P_{U}=U$
5. null $P_{U}=U^{\perp}$
6. $v-P_{u} v \in U^{\perp}$

Properties of the Orthogonal Projection

Prop'n:

Suppose u a finite-dimensional subspace of V and $v \in V$:

1. $P_{u} \in \mathcal{L}(V)$
2. $P_{U} u=u$ for every $u \in U$
3. $P_{u} w=0$ for every $w \in U^{\perp}$
4. range $P_{U}=U$
5. null $P_{U}=U^{\perp}$
6. $v-P_{U} v \in U^{\perp}$
7. $P_{U}^{2}=P_{U}$

Properties of the Orthogonal Projection

Prop'n:

Suppose u a finite-dimensional subspace of V and $v \in V$:

1. $P_{u} \in \mathcal{L}(V)$
2. $P_{U} u=u$ for every $u \in U$
3. $P_{u} w=0$ for every $w \in U^{\perp}$
4. range $P_{U}=U$
5. null $P_{U}=U^{\perp}$
6. $v-P_{u} v \in U^{\perp}$
7. $P_{U}^{2}=P_{U}$
8. $\left\|P_{u} v\right\| \leq\|v\|$

Properties of the Orthogonal Projection

Prop'n:

Suppose u a finite-dimensional subspace of V and $v \in V$:

1. $P_{u} \in \mathcal{L}(V)$
2. $P_{U} u=u$ for every $u \in U$
3. $P_{u} w=0$ for every $w \in U^{\perp}$
4. range $P_{U}=U$
5. null $P_{U}=U^{\perp}$
6. $v-P_{u} v \in U^{\perp}$
7. $P_{U}^{2}=P_{U}$
8. $\left\|P_{u} v\right\| \leq\|v\|$
9. for orthonormal bases e_{1}, \ldots, e_{m} of U,

$$
P_{u} v=\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{m}\right\rangle e_{m}
$$

Minimization Problems

Question:

Minimization Problems

Question: Given a subspace U of V and a point $v \in V$. Find a point $u \in U$ such that $\|v-u\|$ is as small as possible.

Minimization Problems

Question: Given a subspace U of V and a point $v \in V$. Find a point $u \in U$ such that $\|v-u\|$ is as small as possible.

Minimizing distance to a subspace:

S'pose U a finite-dimensional subspace of $V, v \in V, u \in U$. Then

$$
\left\|v-P_{u} v\right\| \leq\|v-u\| .
$$

Further the inequality is equality if and only if $u=P_{U} v$.

Minimization Problems

Minimizing distance to a subspace:

$$
\left\|v-P_{U} v\right\| \leq\|v-u\|
$$

Equality if and only if $u=P_{u} v$.

Proof.

Minimization Problems

Minimizing distance to a subspace:

$$
\left\|v-P_{U} v\right\| \leq\|v-u\|
$$

Equality if and only if $u=P_{u} v$.

Proof.
Because $\left\|v-P_{u} v\right\| \geq 0$, we have

Minimization Problems

Minimizing distance to a subspace:

$$
\left\|v-P_{U} v\right\| \leq\|v-u\|
$$

Equality if and only if $u=P_{u} v$.

Proof.
Because $\left\|v-P_{u} v\right\| \geq 0$, we have

$$
\left\|v-P_{u} v\right\|^{2} \leq\left\|v-P_{u} v\right\|^{2}+\left\|P_{u} v-u\right\|^{2}
$$

Minimization Problems

Minimizing distance to a subspace:

$$
\left\|v-P_{U} v\right\| \leq\|v-u\|
$$

Equality if and only if $u=P_{u} v$.

Proof.
Because $\left\|v-P_{U} v\right\| \geq 0$, we have

$$
\left\|v-P_{u} v\right\|^{2} \leq\left\|v-P_{u} v\right\|^{2}+\left\|P_{u} v-u\right\|^{2}
$$

but this is

$$
=\left\|\left(v-P_{u} v\right)+\left(P_{u} v-u\right)\right\|^{2}
$$

by the Pythagorean theorem

Minimization Problems

Minimizing distance to a subspace:

$$
\left\|v-P_{U} v\right\| \leq\|v-u\|
$$

Equality if and only if $u=P_{u} v$.

Proof.
Because $\left\|v-P_{u} v\right\| \geq 0$, we have

$$
\left\|v-P_{u} v\right\|^{2} \leq\left\|v-P_{u} v\right\|^{2}+\left\|P_{u} v-u\right\|^{2}
$$

but this is

$$
=\left\|\left(v-P_{u} v\right)+\left(P_{u} v-u\right)\right\|^{2}
$$

by the Pythagorean theorem which is

$$
=\|v-u\|^{2}
$$

Minimization Problems

Minimizing distance to a subspace:

$$
\left\|v-P_{U} v\right\| \leq\|v-u\|
$$

Equality if and only if $u=P_{u} v$.

Proof.
Because $\left\|v-P_{u} v\right\| \geq 0$, we have

$$
\left\|v-P_{u} v\right\|^{2} \leq\left\|v-P_{u} v\right\|^{2}+\left\|P_{u} v-u\right\|^{2}
$$

but this is

$$
=\left\|\left(v-P_{u} v\right)+\left(P_{u} v-u\right)\right\|^{2}
$$

by the Pythagorean theorem which is

$$
=\|v-u\|^{2}
$$

We see also that we have equality iff $\left\|P_{U} v-u\right\|=0$, i.e. $u=P_{u} v$.

Minimization Problems

Minimizing distance to a subspace:

$$
\left\|v-P_{U} v\right\| \leq\|v-u\|
$$

Equality if and only if $u=P_{u} v$.

Proof.
Because $\left\|v-P_{u} v\right\| \geq 0$, we have

$$
\left\|v-P_{u} v\right\|^{2} \leq\left\|v-P_{u} v\right\|^{2}+\left\|P_{u} v-u\right\|^{2}
$$

but this is

$$
=\left\|\left(v-P_{u} v\right)+\left(P_{u} v-u\right)\right\|^{2}
$$

by the Pythagorean theorem which is

$$
=\|v-u\|^{2}
$$

We see also that we have equality iff $\left\|P_{U} v-u\right\|=0$, i.e. $u=P_{U} v . \square$

Example 1

Let $U=\operatorname{span}((1,1,0),(0,0,1))$ in \mathbb{R}^{3}. Find a $u \in U$ such that $\|u-(4,5,6)\|$ is as small as possible.

Example 1

Let $U=\operatorname{span}((1,1,0),(0,0,1))$ in \mathbb{R}^{3}. Find a $u \in U$ such that $\|u-(4,5,6)\|$ is as small as possible.

Recall:

for orthonormal bases e_{1}, \ldots, e_{m} of U,

$$
P_{u} v=\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{m}\right\rangle e_{m}
$$

Example 1

Let $U=\operatorname{span}((1,1,0),(0,0,1))$ in \mathbb{R}^{3}. Find a $u \in U$ such that $\|u-(4,5,6)\|$ is as small as possible.

Recall:

for orthonormal bases e_{1}, \ldots, e_{m} of U,

$$
P_{u} v=\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{m}\right\rangle e_{m}
$$

Orthonormal basis: $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right),(0,0,1)$

Example 1

Let $U=\operatorname{span}((1,1,0),(0,0,1))$ in \mathbb{R}^{3}. Find a $u \in U$ such that $\|u-(4,5,6)\|$ is as small as possible.

Recall:

for orthonormal bases e_{1}, \ldots, e_{m} of U,

$$
P_{u} v=\left\langle v, e_{1}\right\rangle e_{1}+\ldots+\left\langle v, e_{m}\right\rangle e_{m}
$$

Orthonormal basis: $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right),(0,0,1)$
Should get $P_{U}(4,5,6)=\left(\frac{9}{2}, \frac{9}{2}, 6\right)$.

Example 2

Find a polynomial $u(x)$ with real coefficients and degree at most 5 that approximates $\sin x$ as well as possible on the interval $[-\pi, \pi]$ in the sense that

$$
\int_{-\pi}^{\pi}|\sin x-u(x)|^{2} d x
$$

is as small as possible.

Example 2

Find a polynomial $u(x)$ with real coefficients and degree at most 5 that approximates $\sin x$ as well as possible on the interval $[-\pi, \pi]$ in the sense that

$$
\int_{-\pi}^{\pi}|\sin x-u(x)|^{2} d x
$$

is as small as possible.
Solution: Turn into a minimization problem as follows.

Example 2

Find a polynomial $u(x)$ with real coefficients and degree at most 5 that approximates $\sin x$ as well as possible on the interval $[-\pi, \pi]$ in the sense that

$$
\int_{-\pi}^{\pi}|\sin x-u(x)|^{2} d x
$$

is as small as possible.
Solution: Turn into a minimization problem as follows.
$\mathcal{C}_{\mathbb{R}}[-\pi, \pi]$: real inner product space of continuous real-valued functions on $[-\pi, \pi]$ with inner product

$$
\langle f, g\rangle=\int_{\pi}^{\pi} f(x) g(x) d x
$$

Example 2

Find a polynomial $u(x)$ with real coefficients and degree at most 5 that approximates $\sin x$ as well as possible on the interval $[-\pi, \pi]$ in the sense that

$$
\int_{-\pi}^{\pi}|\sin x-u(x)|^{2} d x
$$

is as small as possible.
Solution: Turn into a minimization problem as follows.
$\mathcal{C}_{\mathbb{R}}[-\pi, \pi]$: real inner product space of continuous real-valued functions on $[-\pi, \pi]$ with inner product

$$
\langle f, g\rangle=\int_{\pi}^{\pi} f(x) g(x) d x
$$

Let $U=\mathcal{P}_{5}(\mathbb{R})$ and find $u \in U$ such that $\|\sin (x)-u\|$ is as small as possible.

Example 2 (Cont'd)

Example 2 (Cont'd)

Things we would then make a computer do:

Example 2 (Cont'd)

Things we would then make a computer do:
■ Compute an orthonormal basis for U using Gram-Schmidt and starting with $1, x, x^{2}, x^{3}, x^{4}, x^{5}$.

Example 2 (Cont'd)

Things we would then make a computer do:
■ Compute an orthonormal basis for U using Gram-Schmidt and starting with $1, x, x^{2}, x^{3}, x^{4}, x^{5}$.
■ Compute $P_{U}(\sin (x))$ using our formula.

Example 2 (Cont'd)

Things we would then make a computer do:
■ Compute an orthonormal basis for U using Gram-Schmidt and starting with $1, x, x^{2}, x^{3}, x^{4}, x^{5}$.
■ Compute $P_{U}(\sin (x))$ using our formula.
$\square u(x)=.987862 x-.155271 x^{3}+.00564312 x^{5}$

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

