

Lecture 18: Adjoints, Self-Adjoint, Normal

MATH 110-3

Franny Dean

July 24, 2023

Today V, W are finite-dimensional \mathbb{C} or \mathbb{R} -vector spaces.

Def'n:

S'pose $T \in \mathcal{L}(V, W)$. The **adjoint** of T is the function $T^* : W \to V$ such that

$$\langle Tv, w \rangle = \langle v, T^*w \rangle$$

for every $v \in V$ and $w \in W$.

Def'n:

S'pose $T \in \mathcal{L}(V, W)$. The **adjoint** of T is the function $T^* : W \to V$ such that

$$\langle Tv, w \rangle = \langle v, T^*w \rangle$$

for every $v \in V$ and $w \in W$.

*This is the *Hermitian* adjoint.

Def'n:

S'pose $T \in \mathcal{L}(V, W)$. The **adjoint** of T is the function $T^* : W \to V$ such that

$$\langle T v, w \rangle = \langle v, T^* w \rangle$$

for every $v \in V$ and $w \in W$.

*This is the *Hermitian* adjoint.

Why/how...?

Def'n:

S'pose $T \in \mathcal{L}(V, W)$. The **adjoint** of T is the function $T^* : W \to V$ such that

$$\langle Tv, w \rangle = \langle v, T^*w \rangle$$

for every $v \in V$ and $w \in W$.

*This is the *Hermitian* adjoint.

Why/how...?

Fix $w \in W$. Consider the linear functional $\mathcal{L}(V, \mathbb{F})$ that sends v to $\langle Tv, w \rangle$.

Def'n:

S'pose $T \in \mathcal{L}(V, W)$. The **adjoint** of T is the function $T^* : W \to V$ such that

$$\langle Tv, w \rangle = \langle v, T^*w \rangle$$

for every $v \in V$ and $w \in W$.

*This is the *Hermitian* adjoint.

Why/how...?

- Fix $w \in W$. Consider the linear functional $\mathcal{L}(V, \mathbb{F})$ that sends v to $\langle Tv, w \rangle$.
- By the Riesz Representation Thm, there is a unique element of V such that this linear functional is given by (v, that vector).

Def'n:

S'pose $T \in \mathcal{L}(V, W)$. The **adjoint** of T is the function $T^* : W \to V$ such that

$$\langle Tv, w \rangle = \langle v, T^*w \rangle$$

for every $v \in V$ and $w \in W$.

*This is the Hermitian adjoint.

Why/how...?

- Fix $w \in W$. Consider the linear functional $\mathcal{L}(V, \mathbb{F})$ that sends v to $\langle Tv, w \rangle$.
- By the Riesz Representation Thm, there is a unique element of V such that this linear functional is given by (v, that vector).
- T*w is that vector

Example

Given $T : \mathbb{R}^3 \to \mathbb{R}^2$ defined $T(x_1, x_2, x_3) = (x_2 + 3x_3, 2x_1)$. Find a formula for T^* .

Example

Given $T : \mathbb{R}^3 \to \mathbb{R}^2$ defined $T(x_1, x_2, x_3) = (x_2 + 3x_3, 2x_1)$. Find a formula for T^* .

Start with

$$\langle (x_1, x_2, x_3), T^*(y_1, y_2) \rangle = \langle T(x_1, x_2, x_3), (y_1, y_2) \rangle$$

Example

Given $T : \mathbb{R}^3 \to \mathbb{R}^2$ defined $T(x_1, x_2, x_3) = (x_2 + 3x_3, 2x_1)$. Find a formula for T^* .

Start with

$$\langle (x_1, x_2, x_3), T^*(y_1, y_2) \rangle = \langle T(x_1, x_2, x_3), (y_1, y_2) \rangle$$

Solution: $T^*(y_1, y_2) = (2y_2, y_1, 3y_1)$.

Prop'n:

If $T \in \mathcal{L}(V, W)$, then $T^* \in \mathcal{L}(W, V)$.

Prop'n:

If $T \in \mathcal{L}(V, W)$, then $T^* \in \mathcal{L}(W, V)$.

Proof.

Prop'n:

If $T \in \mathcal{L}(V, W)$, then $T^* \in \mathcal{L}(W, V)$.

Proof. Additivity:

Prop'n:

If $T \in \mathcal{L}(V, W)$, then $T^* \in \mathcal{L}(W, V)$.

Proof. Additivity:

Prop'n:

If $T \in \mathcal{L}(V, W)$, then $T^* \in \mathcal{L}(W, V)$.

Proof. Additivity:

Homogeneity also uses the proof technique of *flipping* T^* from one side of the inner product to be T on the other side.

1.
$$(S + T)^* = S^* + T^*$$

1.
$$(S + T)^* = S^* + T^*$$

2. $(\lambda T)^* = \overline{\lambda}T^*$

1.
$$(S + T)^* = S^* + T^*$$

2. $(\lambda T)^* = \overline{\lambda}T^*$
3. $(T^*)^* = T$

1.
$$(S + T)^* = S^* + T^*$$

2. $(\lambda T)^* = \overline{\lambda}T^*$
3. $(T^*)^* = T$
4. $I^* = I$

1.
$$(S + T)^* = S^* + T^*$$

2. $(\lambda T)^* = \overline{\lambda}T^*$
3. $(T^*)^* = T$
4. $I^* = I$
5. $(ST)^* = T^*S^*$

Prop'n [Axl14]:

1.
$$(S + T)^* = S^* + T^*$$

2. $(\lambda T)^* = \overline{\lambda}T^*$
3. $(T^*)^* = T$
4. $I^* = I$
5. $(ST)^* = T^*S^*$

Let's prove 1,3.

- $T \in \mathcal{L}(V, W)$
 - 1. null $T^* = (\text{range } T)^{\perp}$
 - 2. range $T^* = (\text{null } T)^{\perp}$
 - 3. null $T = (range T^*)^{\perp}$
 - 4. range $T = (\text{null } T^*)^{\perp}$

Prop'n [Axl14]:

- $T\in\mathcal{L}(V,W)$
 - 1. null $T^* = (\text{range } T)^{\perp}$
 - 2. range $T^* = (\text{null } T)^{\perp}$
 - 3. null $T = (range T^*)^{\perp}$
 - 4. range $T = (\text{null } T^*)^{\perp}$

Proof.

Prop'n [Axl14]:

- $T \in \mathcal{L}(V, W)$
 - 1. null $T^* = (range T)^{\perp}$
 - 2. range $T^* = (\text{null } T)^{\perp}$
 - 3. null $T = (range T^*)^{\perp}$
 - 4. range $T = (\text{null } T^*)^{\perp}$

Proof.

$$w \in \text{null } T^* \Leftrightarrow T^* w = 0$$

$$\Leftrightarrow \langle v, T^* w \rangle = 0 \text{ for all } v \in V$$

$$\Leftrightarrow \langle Tv, w \rangle = 0 \text{ for all } v \in V$$

$$\Leftrightarrow w \in (\text{range } T)^{\perp}$$

Prop'n [Axl14]:

- $T \in \mathcal{L}(V, W)$
 - 1. null $T^* = (range T)^{\perp}$
 - 2. range $T^* = (\text{null } T)^{\perp}$
 - 3. null $T = (range T^*)^{\perp}$
 - 4. range $T = (\text{null } T^*)^{\perp}$

Proof.

$$w \in \text{null } T^* \Leftrightarrow T^* w = 0$$

$$\Leftrightarrow \langle v, T^* w \rangle = 0 \text{ for all } v \in V$$

$$\Leftrightarrow \langle Tv, w \rangle = 0 \text{ for all } v \in V$$

$$\Leftrightarrow w \in (\text{range } T)^{\perp}$$

How can we conclude the rest of the proof?

FD • MATH 110 • July 24, 2023

Prop'n:

 $T \in \mathcal{L}(V, W)$. Orthonormal bases, e_1, \ldots, e_n of V and f_1, \ldots, f_m of W. Then $\mathcal{M}(T^*)$ with respect to these bases is the **conjugate transpose** of $\mathcal{M}(T)$ with these bases.

Prop'n:

 $T \in \mathcal{L}(V, W)$. Orthonormal bases, e_1, \ldots, e_n of V and f_1, \ldots, f_m of W. Then $\mathcal{M}(T^*)$ with respect to these bases is the **conjugate transpose** of $\mathcal{M}(T)$ with these bases.

What's the conjugate transpose?

Prop'n:

 $T \in \mathcal{L}(V, W)$. Orthonormal bases, e_1, \ldots, e_n of V and f_1, \ldots, f_m of W. Then $\mathcal{M}(T^*)$ with respect to these bases is the **conjugate transpose** of $\mathcal{M}(T)$ with these bases.

What's the conjugate transpose?

Transpose

Prop'n:

 $T \in \mathcal{L}(V, W)$. Orthonormal bases, e_1, \ldots, e_n of V and f_1, \ldots, f_m of W. Then $\mathcal{M}(T^*)$ with respect to these bases is the **conjugate transpose** of $\mathcal{M}(T)$ with these bases.

What's the conjugate transpose?

- Transpose
- Take the complex conjugate of each entry

Prop'n:

 $T \in \mathcal{L}(V, W)$. Orthonormal bases, e_1, \ldots, e_n of V and f_1, \ldots, f_m of W. Then $\mathcal{M}(T^*)$ with respect to these bases is the **conjugate transpose** of $\mathcal{M}(T)$ with these bases.

What's the conjugate transpose?

- Transpose
- Take the complex conjugate of each entry

Example:

Prop'n:

 $T \in \mathcal{L}(V, W)$. Orthonormal bases, e_1, \ldots, e_n of V and f_1, \ldots, f_m of W. Then $\mathcal{M}(T^*)$ with respect to these bases is the **conjugate transpose** of $\mathcal{M}(T)$ with these bases.

What's the conjugate transpose?

- Transpose
- Take the complex conjugate of each entry

Example: The complex conjugate of $\begin{pmatrix} 2 & 3+4i & 7-i \\ 3 & 1 & 1-11i \end{pmatrix}$ is

$$\left(\begin{array}{ccc} 2 & 3 \\ 3 - 4i & 1 \\ 7 + i & 1 + 11i \end{array}\right)$$

Proof of Matrix of T*

Prop'n:

 $T \in \mathcal{L}(V, W)$. Orthonormal bases, e_1, \ldots, e_n of V and f_1, \ldots, f_m of W. Then $\mathcal{M}(T^*)$ with respect to these bases is the **conjugate transpose** of $\mathcal{M}(T)$ with these bases.

Proof of Matrix of *T**

Prop'n:

 $T \in \mathcal{L}(V, W)$. Orthonormal bases, e_1, \ldots, e_n of V and f_1, \ldots, f_m of W. Then $\mathcal{M}(T^*)$ with respect to these bases is the **conjugate transpose** of $\mathcal{M}(T)$ with these bases.

Proof.

Proof of Matrix of T*

Prop'n:

 $T \in \mathcal{L}(V, W)$. Orthonormal bases, e_1, \ldots, e_n of V and f_1, \ldots, f_m of W. Then $\mathcal{M}(T^*)$ with respect to these bases is the **conjugate transpose** of $\mathcal{M}(T)$ with these bases.

Proof.

Because the bases are orthonormal, we can read the entries of the columns of $\mathcal{M}(T)$ off of

$$Te_k = \langle Te_k, f_1 \rangle f_1 + \ldots \langle Te_k, f_m \rangle f_m$$

and $\mathcal{M}(T)_{j,k} = \langle Te_k, f_j \rangle$.

Proof of Matrix of T*

Prop'n:

 $T \in \mathcal{L}(V, W)$. Orthonormal bases, e_1, \ldots, e_n of V and f_1, \ldots, f_m of W. Then $\mathcal{M}(T^*)$ with respect to these bases is the **conjugate transpose** of $\mathcal{M}(T)$ with these bases.

Proof.

Because the bases are orthonormal, we can read the entries of the columns of $\mathcal{M}(T)$ off of

$$Te_k = \langle Te_k, f_1 \rangle f_1 + \ldots \langle Te_k, f_m \rangle f_m$$

and $\mathcal{M}(T)_{j,k} = \langle Te_k, f_j \rangle$. We have that the columns of $\mathcal{M}(T^*)$ come from

$$T^*f_k = \langle T^*f_k, e_1 \rangle e_1 + \ldots \langle T^*f_k, e_n \rangle e_n$$

Proof of Matrix of T*

Prop'n:

 $T \in \mathcal{L}(V, W)$. Orthonormal bases, e_1, \ldots, e_n of V and f_1, \ldots, f_m of W. Then $\mathcal{M}(T^*)$ with respect to these bases is the **conjugate transpose** of $\mathcal{M}(T)$ with these bases.

Proof.

Because the bases are orthonormal, we can read the entries of the columns of $\mathcal{M}(T)$ off of

$$Te_k = \langle Te_k, f_1 \rangle f_1 + \ldots \langle Te_k, f_m \rangle f_m$$

and $\mathcal{M}(T)_{j,k} = \langle Te_k, f_j \rangle$. We have that the columns of $\mathcal{M}(T^*)$ come from

$$T^*f_k = \langle T^*f_k, e_1 \rangle e_1 + \ldots \langle T^*f_k, e_n \rangle e_n$$

and $\mathcal{M}(T^*)_{j,k} = \langle T^*f_k, e_j \rangle = \langle f_k, Te_j \rangle = \overline{\langle Te_j, f_k \rangle} = \overline{\mathcal{M}(T)_{k,j}}$

What are the differences between T^* and T'?

$$\blacksquare T^*: W \to V, T': W' \to V'$$

What are the differences between T^* and T'?

- $\blacksquare T^*: W \to V, T': W' \to V'$
- Matrix of T* is the conjugate transpose, Matrix of T' is the transpose

Now consider operators,

Now consider operators,

Def'n:

An operator $T \in \mathcal{L}(V)$ is called **self-adjoint** if $T = T^*$.

Now consider operators,

Def'n: An operator $T \in \mathcal{L}(V)$ is called **self-adjoint** if $T = T^*$. This is definition of *Hermitian*.

Prop'n:

Every eigenvalue of a self-adjoint operator is real.

Prop'n:

Every eigenvalue of a self-adjoint operator is real.

Proof.

Prop'n:

Every eigenvalue of a self-adjoint operator is real.

Proof. S'pose $Tv = \lambda v$.

Prop'n:

Every eigenvalue of a self-adjoint operator is real.

Proof. S'pose $Tv = \lambda v$.

$$\lambda ||\mathbf{v}||^2 = \langle \lambda \mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{T} \mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{T} \mathbf{v} \rangle = \langle \mathbf{v}, \lambda \mathbf{v} \rangle = \overline{\lambda} ||\mathbf{v}||^2$$

Prop'n:

Every eigenvalue of a self-adjoint operator is real.

Proof. S'pose $Tv = \lambda v$.

$$\lambda ||\mathbf{v}||^2 = \langle \lambda \mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{T} \mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{T} \mathbf{v} \rangle = \langle \mathbf{v}, \lambda \mathbf{v} \rangle = \overline{\lambda} ||\mathbf{v}||^2$$

$$\lambda = \bar{\lambda}$$

Prop'n [Axl14]:

Over \mathbb{C} , $\langle Tv, v \rangle$ is real for all v if and only if $T = T^*$.

Prop'n [Axl14]:

Over \mathbb{C} , $\langle Tv, v \rangle$ is real for all v if and only if $T = T^*$.

Prop'n [Axl14]:

Over \mathbb{C} , Tv is orthogonal to v for all v if and only if T = 0.

Prop'n [Axl14]:

If $T = T^*$ and Tv is orthogonal to v for all v, then T = 0.

Normal Operators

Def'n:

An operator T on an inner product space is called **normal** if $TT^* = T^*T$.

Normal Operators

Def'n:

An operator T on an inner product space is called **normal** if $TT^* = T^*T$.

$$\begin{pmatrix} 2 & -3 \\ 3 & 2 \end{pmatrix}$$
 is not self-adjoint but is normal.

Why care about normal operators?

Prop'n 7.20:

An operator *T* is normal if and only if $||Tv|| = ||T^*v||$ for all *v*.

Prop'n 7.21:

A normal operator T and its adjoint share the same eigenvectors.

Prop'n 7.22:

The eigenvectors of a normal operator of distinct eigenvalues are orthogonal.

Prop'n 7.20:

An operator *T* is normal if and only if $||Tv|| = ||T^*v||$ for all *v*.

Prop'n 7.20:

An operator *T* is normal if and only if $||Tv|| = ||T^*v||$ for all *v*.

Proof.

Prop'n 7.20:

An operator *T* is normal if and only if $||Tv|| = ||T^*v||$ for all *v*.

Proof.

$$T \text{ is normal } \Leftrightarrow T^*T - TT^* = 0$$

$$\Leftrightarrow \langle (T^*T - TT^*)v, v \rangle = 0 \text{ for all } v \in V$$

$$\Leftrightarrow \langle T^*Tv, v \rangle = \langle TT^*v, v \rangle$$

$$\Leftrightarrow \langle Tv, Tv \rangle = \langle T^*v, T^*v \rangle$$

$$\Leftrightarrow ||Tv||^2 = ||T^*v||^2$$

In the second line, we need that $T^*T - TT^*$ is self-adjoint.

Prop'n 7.21:

A normal operator T and its adjoint share the same eigenvectors.

Prop'n 7.21:

A normal operator T and its adjoint share the same eigenvectors.

Proof.

Prop'n 7.21:

A normal operator T and its adjoint share the same eigenvectors.

Proof.

First, *T* normal implies $T - \lambda I$ is normal.

Prop'n 7.21:

A normal operator T and its adjoint share the same eigenvectors.

Proof.

First, *T* normal implies $T - \lambda I$ is normal.

Then

$$0 = ||(T - \lambda I)v|| = ||(T - \lambda I)^*v|| = ||(T^* - \bar{\lambda}I)v||.$$

Prop'n 7.22:

The eigenvectors of a normal operator of distinct eigenvalues are orthogonal.

Prop'n 7.22:

The eigenvectors of a normal operator of distinct eigenvalues are orthogonal.

Proof.

Prop'n 7.22:

The eigenvectors of a normal operator of distinct eigenvalues are orthogonal.

Proof.

S'pose α, β are distinct eigenvalues, $Tu = \alpha u$ and $Tv = \beta v$.

Prop'n 7.22:

The eigenvectors of a normal operator of distinct eigenvalues are orthogonal.

Proof.

S'pose α, β are distinct eigenvalues, $Tu = \alpha u$ and $Tv = \beta v$.

$$(lpha - eta)\langle u, v
angle = \langle lpha u, v
angle - \langle u, \overline{eta} v
angle$$

= $\langle Tu, v
angle - \langle u, T^*v
angle$
= 0

Prop'n 7.22:

The eigenvectors of a normal operator of distinct eigenvalues are orthogonal.

Proof.

S'pose α, β are distinct eigenvalues, $Tu = \alpha u$ and $Tv = \beta v$.

$$(lpha - eta)\langle u, v
angle = \langle lpha u, v
angle - \langle u, \overline{eta} v
angle$$

= $\langle Tu, v
angle - \langle u, T^*v
angle$
= 0

So, $\langle u, v \rangle = 0$.

[Ax114] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.