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Notation

Today V ,W are finite-dimensional C or R-vector spaces.
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Back to Linear Maps and Operators!

Def’n:
S’pose T ∈ L(V ,W). The adjoint of T is the function T∗ : W → V such
that

⟨Tv,w⟩ = ⟨v, T∗w⟩

for every v ∈ V and w ∈ W .

*This is the Hermitian adjoint.

Why/how...?
Fix w ∈ W . Consider the linear functional L(V ,F) that sends v to
⟨Tv,w⟩.
By the Riesz Representation Thm, there is a unique element of V
such that this linear functional is given by ⟨v, that vector ⟩.
T∗w is that vector
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Example

Given T : R3 → R2 defined T(x1, x2, x3) = (x2 + 3x3, 2x1). Find a
formula for T∗.

Start with

⟨(x1, x2, x3), T∗(y1, y2)⟩ = ⟨T(x1, x2, x3), (y1, y2)⟩

Solution: T∗(y1, y2) = (2y2, y1, 3y1).
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Adjoint is a Linear Map

Prop’n:
If T ∈ L(V ,W), then T∗ ∈ L(W , V).

Proof. Additivity:

⟨v, T∗(w1 + w2)⟩ = ⟨Tv,w1 + w2⟩
= ⟨Tv,w1⟩+ ⟨Tv,w2⟩
= ⟨v, T∗w1⟩+ ⟨v, T∗w2⟩
= ⟨v, T∗w1 + T∗w2⟩

Homogeneity also uses the proof technique of flipping T∗ from one
side of the inner product to be T on the other side.
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Adjoint Properties

Prop’n [Axl14]:
1. (S + T)∗ = S∗ + T∗

2. (λT)∗ = λ̄T∗

3. (T∗)∗ = T
4. I∗ = I
5. (ST)∗ = T∗S∗

Let’s prove 1,3.
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Null space and range of T∗

Prop’n [Axl14]:
T ∈ L(V ,W)

1. null T∗ = (range T)⊥

2. range T∗ = (null T)⊥

3. null T = (range T∗)⊥

4. range T = (null T∗)⊥

Proof.

w ∈ null T∗ ⇔ T∗w = 0
⇔ ⟨v, T∗w⟩ = 0 for all v ∈ V
⇔ ⟨Tv,w⟩ = 0 for all v ∈ V
⇔ w ∈ (range T)⊥

How can we conclude the rest of the proof?
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Matrix of T∗

Prop’n:
T ∈ L(V ,W). Orthonormal bases, e1, . . . , en of V and f1, . . . , fm of W .
ThenM(T∗) with respect to these bases is the conjugate transpose
ofM(T) with these bases.

What’s the conjugate transpose?
Transpose
Take the complex conjugate of each entry

Example: The complex conjugate of
(
2 3+ 4i 7− i
3 1 1− 11i

)
is

 2 3
3− 4i 1
7+ i 1+ 11i



FD · MATH 110 · July 24, 2023 8 / 19



Matrix of T∗

Prop’n:
T ∈ L(V ,W). Orthonormal bases, e1, . . . , en of V and f1, . . . , fm of W .
ThenM(T∗) with respect to these bases is the conjugate transpose
ofM(T) with these bases.

What’s the conjugate transpose?

Transpose
Take the complex conjugate of each entry

Example: The complex conjugate of
(
2 3+ 4i 7− i
3 1 1− 11i

)
is

 2 3
3− 4i 1
7+ i 1+ 11i



FD · MATH 110 · July 24, 2023 8 / 19



Matrix of T∗

Prop’n:
T ∈ L(V ,W). Orthonormal bases, e1, . . . , en of V and f1, . . . , fm of W .
ThenM(T∗) with respect to these bases is the conjugate transpose
ofM(T) with these bases.

What’s the conjugate transpose?
Transpose

Take the complex conjugate of each entry

Example: The complex conjugate of
(
2 3+ 4i 7− i
3 1 1− 11i

)
is

 2 3
3− 4i 1
7+ i 1+ 11i



FD · MATH 110 · July 24, 2023 8 / 19



Matrix of T∗

Prop’n:
T ∈ L(V ,W). Orthonormal bases, e1, . . . , en of V and f1, . . . , fm of W .
ThenM(T∗) with respect to these bases is the conjugate transpose
ofM(T) with these bases.

What’s the conjugate transpose?
Transpose
Take the complex conjugate of each entry

Example: The complex conjugate of
(
2 3+ 4i 7− i
3 1 1− 11i

)
is

 2 3
3− 4i 1
7+ i 1+ 11i



FD · MATH 110 · July 24, 2023 8 / 19



Matrix of T∗

Prop’n:
T ∈ L(V ,W). Orthonormal bases, e1, . . . , en of V and f1, . . . , fm of W .
ThenM(T∗) with respect to these bases is the conjugate transpose
ofM(T) with these bases.

What’s the conjugate transpose?
Transpose
Take the complex conjugate of each entry

Example:

The complex conjugate of
(
2 3+ 4i 7− i
3 1 1− 11i

)
is

 2 3
3− 4i 1
7+ i 1+ 11i



FD · MATH 110 · July 24, 2023 8 / 19



Matrix of T∗

Prop’n:
T ∈ L(V ,W). Orthonormal bases, e1, . . . , en of V and f1, . . . , fm of W .
ThenM(T∗) with respect to these bases is the conjugate transpose
ofM(T) with these bases.

What’s the conjugate transpose?
Transpose
Take the complex conjugate of each entry

Example: The complex conjugate of
(
2 3+ 4i 7− i
3 1 1− 11i

)
is

 2 3
3− 4i 1
7+ i 1+ 11i


FD · MATH 110 · July 24, 2023 8 / 19



Proof of Matrix of T∗

Prop’n:
T ∈ L(V ,W). Orthonormal bases, e1, . . . , en of V and f1, . . . , fm of W .
ThenM(T∗) with respect to these bases is the conjugate transpose
ofM(T) with these bases.

Proof.

Because the bases are orthonormal, we can read the entries of the
columns ofM(T) off of

Tek = ⟨Tek, f1⟩f1 + . . . ⟨Tek, fm⟩fm

andM(T)j,k = ⟨Tek, fj⟩. We have that the columns ofM(T∗) come
from

T∗fk = ⟨T∗fk, e1⟩e1 + . . . ⟨T∗fk, en⟩en
andM(T∗)j,k = ⟨T∗fk, ej⟩ = ⟨fk, Tej⟩ = ⟨Tej, fk⟩ = M(T)k,j
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What are the differences between T∗ and T ′?

T∗ : W → V , T ′ : W ′ → V ′

Matrix of T∗ is the conjugate transpose, Matrix of T ′ is the
transpose
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Self-Adjoint

Now consider operators,

Def’n:
An operator T ∈ L(V) is called self-adjoint if T = T∗.
This is definition of Hermitian.
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Why care about Self-Adjoint/Hermitian operators?

Prop’n:
Every eigenvalue of a self-adjoint operator is real.

Proof. S’pose Tv = λv.

λ||v||2 = ⟨λv, v⟩ = ⟨Tv, v⟩ = ⟨v, Tv⟩ = ⟨v, λv⟩ = λ̄||v||2

λ = λ̄
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Other Results

Prop’n [Axl14]:
Over C, ⟨Tv, v⟩ is real for all v if and only if T = T∗.

Prop’n [Axl14]:
Over C, Tv is orthogonal to v for all v if and only if T = 0.

Prop’n [Axl14]:
If T = T∗ and Tv is orthogonal to v for all v, then T = 0.
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Normal Operators

Def’n:
An operator T on an inner product space is called normal if
TT∗ = T∗T .

(
2 −3
3 2

)
is not self-adjoint but is normal.
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Why care about normal operators?

Prop’n 7.20:
An operator T is normal if and only if ||Tv|| = ||T∗v|| for all v.

Prop’n 7.21:
A normal operator T and its adjoint share the same eigenvectors.

Prop’n 7.22:
The eigenvectors of a normal operator of distinct eigenvalues are
orthogonal.
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Proofs

Prop’n 7.20:
An operator T is normal if and only if ||Tv|| = ||T∗v|| for all v.

Proof.

T is normal ⇔ T∗T − TT∗ = 0
⇔ ⟨(T∗T − TT∗)v, v⟩ = 0 for all v ∈ V
⇔ ⟨T∗Tv, v⟩ = ⟨TT∗v, v⟩
⇔ ⟨Tv, Tv⟩ = ⟨T∗v, T∗v⟩
⇔ ||Tv||2 = ||T∗v||2

In the second line, we need that T∗T − TT∗ is self-adjoint.
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Proofs

Prop’n 7.21:
A normal operator T and its adjoint share the same eigenvectors.

Proof.

First, T normal implies T − λI is normal.

Then
0 = ||(T − λI)v|| = ||(T − λI)∗v|| = ||(T∗ − λ̄I)v||.
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Proofs

Prop’n 7.22:
The eigenvectors of a normal operator of distinct eigenvalues are
orthogonal.

Proof.

S’pose α, β are distinct eigenvalues, Tu = αu and Tv = βv.

(α− β)⟨u, v⟩ = ⟨αu, v⟩ − ⟨u, β̄v⟩
= ⟨Tu, v⟩ − ⟨u, T∗v⟩
= 0

So, ⟨u, v⟩ = 0.
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