Lecture 18: Adjoints, Self-Adjoint, Normal

MATH 110-3

Franny Dean

July 24, 2023

Notation

Today V, W are finite-dimensional \mathbb{C} or \mathbb{R}-vector spaces.

Back to Linear Maps and Operators!

Back to Linear Maps and Operators!

Def'n:
S'pose $T \in \mathcal{L}(V, W)$. The adjoint of T is the function $T^{*}: W \rightarrow V$ such that

$$
\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle
$$

for every $v \in V$ and $w \in W$.

Back to Linear Maps and Operators!

Def'n:
S'pose $T \in \mathcal{L}(V, W)$. The adjoint of T is the function $T^{*}: W \rightarrow V$ such that

$$
\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle
$$

for every $v \in V$ and $w \in W$.
*This is the Hermitian adjoint.

Back to Linear Maps and Operators!

Def'n:
S'pose $T \in \mathcal{L}(V, W)$. The adjoint of T is the function $T^{*}: W \rightarrow V$ such that

$$
\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle
$$

for every $v \in V$ and $w \in W$.
*This is the Hermitian adjoint.

Why/how...?

Back to Linear Maps and Operators!

Def'n:

S'pose $T \in \mathcal{L}(V, W)$. The adjoint of T is the function $T^{*}: W \rightarrow V$ such that

$$
\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle
$$

for every $v \in V$ and $w \in W$.
*This is the Hermitian adjoint.

Why/how...?
■ Fix $w \in W$. Consider the linear functional $\mathcal{L}(V, \mathbb{F})$ that sends v to $\langle T v, w\rangle$.

Back to Linear Maps and Operators!

Def'n:

S'pose $T \in \mathcal{L}(V, W)$. The adjoint of T is the function $T^{*}: W \rightarrow V$ such that

$$
\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle
$$

for every $v \in V$ and $w \in W$.
*This is the Hermitian adjoint.

Why/how...?
■ Fix $w \in W$. Consider the linear functional $\mathcal{L}(V, \mathbb{F})$ that sends v to $\langle T v, w\rangle$.
■ By the Riesz Representation Thm, there is a unique element of V such that this linear functional is given by $\langle v$, that vector \rangle.

Back to Linear Maps and Operators!

Def'n:

S'pose $T \in \mathcal{L}(V, W)$. The adjoint of T is the function $T^{*}: W \rightarrow V$ such that

$$
\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle
$$

for every $v \in V$ and $w \in W$.
*This is the Hermitian adjoint.

Why/how...?
■ Fix $w \in W$. Consider the linear functional $\mathcal{L}(V, \mathbb{F})$ that sends v to $\langle T v, w\rangle$.
■ By the Riesz Representation Thm, there is a unique element of V such that this linear functional is given by $\langle v$, that vector \rangle.
■ $T^{*} w$ is that vector

Example

Given $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}+3 x_{3}, 2 x_{1}\right)$. Find a formula for T^{*}.

Example

Given $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}+3 x_{3}, 2 x_{1}\right)$. Find a formula for T^{*}.

Start with

$$
\left\langle\left(x_{1}, x_{2}, x_{3}\right), T^{*}\left(y_{1}, y_{2}\right)\right\rangle=\left\langle T\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}\right)\right\rangle
$$

Example

Given $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}+3 x_{3}, 2 x_{1}\right)$. Find a formula for T^{*}.

Start with

$$
\left\langle\left(x_{1}, x_{2}, x_{3}\right), T^{*}\left(y_{1}, y_{2}\right)\right\rangle=\left\langle T\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}\right)\right\rangle
$$

Solution: $T^{*}\left(y_{1}, y_{2}\right)=\left(2 y_{2}, y_{1}, 3 y_{1}\right)$.

Adjoint is a Linear Map

Prop'n:
 If $T \in \mathcal{L}(V, W)$, then $T^{*} \in \mathcal{L}(W, V)$.

Adjoint is a Linear Map

Prop'n:

If $T \in \mathcal{L}(V, W)$, then $T^{*} \in \mathcal{L}(W, V)$.
Proof.

Adjoint is a Linear Map

Prop'n:

If $T \in \mathcal{L}(V, W)$, then $T^{*} \in \mathcal{L}(W, V)$.
Proof. Additivity:

Adjoint is a Linear Map

Prop'n:

If $T \in \mathcal{L}(V, W)$, then $T^{*} \in \mathcal{L}(W, V)$.
Proof. Additivity:

$$
\begin{aligned}
\left\langle v, T^{*}\left(w_{1}+w_{2}\right)\right\rangle & =\left\langle T v, w_{1}+w 2\right\rangle \\
& =\left\langle T v, w_{1}\right\rangle+\langle T v, w 2\rangle \\
& =\left\langle v, T^{*} w_{1}\right\rangle+\left\langle v, T^{*} w_{2}\right\rangle \\
& =\left\langle v, T^{*} w_{1}+T^{*} w_{2}\right\rangle
\end{aligned}
$$

Adjoint is a Linear Map

Prop'n:

If $T \in \mathcal{L}(V, W)$, then $T^{*} \in \mathcal{L}(W, V)$.
Proof. Additivity:

$$
\begin{aligned}
\left\langle v, T^{*}\left(w_{1}+w_{2}\right)\right\rangle & =\left\langle T v, w_{1}+w 2\right\rangle \\
& =\left\langle T v, w_{1}\right\rangle+\langle T v, w 2\rangle \\
& =\left\langle v, T^{*} w_{1}\right\rangle+\left\langle v, T^{*} w_{2}\right\rangle \\
& =\left\langle v, T^{*} w_{1}+T^{*} w_{2}\right\rangle
\end{aligned}
$$

Homogeneity also uses the proof technique of flipping T^{*} from one side of the inner product to be T on the other side.

Adjoint Properties

Prop'n [Axl14]:
 1. $(S+T)^{*}=S^{*}+T^{*}$

Adjoint Properties

Prop'n [Axl14]:
 1. $(S+T)^{*}=S^{*}+T^{*}$
 2. $(\lambda T)^{*}=\bar{\lambda} T^{*}$

Adjoint Properties

Prop'n [Axl14]:

1. $(S+T)^{*}=S^{*}+T^{*}$
2. $(\lambda T)^{*}=\bar{\lambda} T^{*}$
3. $\left(T^{*}\right)^{*}=T$

Adjoint Properties

Prop'n [Axl14]:

1. $(S+T)^{*}=S^{*}+T^{*}$
2. $(\lambda T)^{*}=\bar{\lambda} T^{*}$
3. $\left(T^{*}\right)^{*}=T$
4. $I^{*}=1$

Adjoint Properties

Prop'n [Axl14]:

1. $(S+T)^{*}=S^{*}+T^{*}$
2. $(\lambda T)^{*}=\bar{\lambda} T^{*}$
3. $\left(T^{*}\right)^{*}=T$
4. $I^{*}=1$
5. $(S T)^{*}=T^{*} S^{*}$

Adjoint Properties

Prop'n [Axl14]:

1. $(S+T)^{*}=S^{*}+T^{*}$
2. $(\lambda T)^{*}=\bar{\lambda} T^{*}$
3. $\left(T^{*}\right)^{*}=T$
4. $/^{*}=1$
5. $(S T)^{*}=T^{*} S^{*}$

Let's prove 1,3.

Null space and range of T^{*}

Prop'n [AxL14]:

$T \in \mathcal{L}(V, W)$

1. null $T^{*}=(\text { range } T)^{\perp}$
2. range $T^{*}=(\text { null } T)^{\perp}$
3. null $T=\left(\text { range } T^{*}\right)^{\perp}$
4. range $T=\left(\text { null } T^{*}\right)^{\perp}$

Null space and range of T^{*}

Prop'n [Axl14]:

$T \in \mathcal{L}(V, W)$

1. null $T^{*}=(\text { range } T)^{\perp}$
2. range $T^{*}=(\text { null } T)^{\perp}$
3. null $T=\left(\text { range } T^{*}\right)^{\perp}$
4. range $T=\left(\text { null } T^{*}\right)^{\perp}$

Proof.

Null space and range of T^{*}

Prop'n [Axl14]:

$T \in \mathcal{L}(V, W)$

1. null $T^{*}=(\text { range } T)^{\perp}$
2. range $T^{*}=(\text { null } T)^{\perp}$
3. null $T=\left(\text { range } T^{*}\right)^{\perp}$
4. range $T=\left(\text { null } T^{*}\right)^{\perp}$

Proof.

$$
\begin{aligned}
w \in \operatorname{null} T^{*} & \Leftrightarrow T^{*} w=0 \\
& \Leftrightarrow\left\langle v, T^{*} w\right\rangle=0 \text { for all } v \in V \\
& \Leftrightarrow\langle T v, w\rangle=0 \text { for all } v \in V \\
& \Leftrightarrow w \in(\text { range } T)^{\perp}
\end{aligned}
$$

Null space and range of T^{*}

Prop'n [Ax[14]:

$T \in \mathcal{L}(V, W)$

1. null $T^{*}=(\text { range } T)^{\perp}$
2. range $T^{*}=(\text { null } T)^{\perp}$
3. null $T=\left(\text { range } T^{*}\right)^{\perp}$
4. range $T=\left(\text { null } T^{*}\right)^{\perp}$

Proof.

$$
\begin{aligned}
w \in \operatorname{null} T^{*} & \Leftrightarrow T^{*} w=0 \\
& \Leftrightarrow\left\langle v, T^{*} w\right\rangle=0 \text { for all } v \in V \\
& \Leftrightarrow\langle T v, w\rangle=0 \text { for all } v \in V \\
& \Leftrightarrow w \in(\text { range } T)^{\perp}
\end{aligned}
$$

How can we conclude the rest of the proof?

Matrix of T^{*}

Prop'n:

$T \in \mathcal{L}(V, W)$. Orthonormal bases, e_{1}, \ldots, e_{n} of V and f_{1}, \ldots, f_{m} of W. Then $\mathcal{M}\left(T^{*}\right)$ with respect to these bases is the conjugate transpose of $\mathcal{M}(T)$ with these bases.

Matrix of T^{*}

Prop'n:
 $T \in \mathcal{L}(V, W)$. Orthonormal bases, e_{1}, \ldots, e_{n} of V and f_{1}, \ldots, f_{m} of W. Then $\mathcal{M}\left(T^{*}\right)$ with respect to these bases is the conjugate transpose of $\mathcal{M}(T)$ with these bases.

What's the conjugate transpose?

Matrix of T^{*}

Prop'n:

$T \in \mathcal{L}(V, W)$. Orthonormal bases, e_{1}, \ldots, e_{n} of V and f_{1}, \ldots, f_{m} of W. Then $\mathcal{M}\left(T^{*}\right)$ with respect to these bases is the conjugate transpose of $\mathcal{M}(T)$ with these bases.

What's the conjugate transpose?
■ Transpose

Matrix of T^{*}

Prop'n:

$T \in \mathcal{L}(V, W)$. Orthonormal bases, e_{1}, \ldots, e_{n} of V and f_{1}, \ldots, f_{m} of W. Then $\mathcal{M}\left(T^{*}\right)$ with respect to these bases is the conjugate transpose of $\mathcal{M}(T)$ with these bases.

What's the conjugate transpose?
■ Transpose
■ Take the complex conjugate of each entry

Matrix of T^{*}

Prop'n:

$T \in \mathcal{L}(V, W)$. Orthonormal bases, e_{1}, \ldots, e_{n} of V and f_{1}, \ldots, f_{m} of W. Then $\mathcal{M}\left(T^{*}\right)$ with respect to these bases is the conjugate transpose of $\mathcal{M}(T)$ with these bases.

What's the conjugate transpose?
■ Transpose
■ Take the complex conjugate of each entry

Example:

Matrix of T^{*}

Prop'n:

$T \in \mathcal{L}(V, W)$. Orthonormal bases, e_{1}, \ldots, e_{n} of V and f_{1}, \ldots, f_{m} of W. Then $\mathcal{M}\left(T^{*}\right)$ with respect to these bases is the conjugate transpose of $\mathcal{M}(T)$ with these bases.

What's the conjugate transpose?
■ Transpose
■ Take the complex conjugate of each entry
Example: The complex conjugate of $\left(\begin{array}{ccc}2 & 3+4 i & 7-i \\ 3 & 1 & 1-11 i\end{array}\right)$ is

$$
\left(\begin{array}{cc}
2 & 3 \\
3-4 i & 1 \\
7+i & 1+11 i
\end{array}\right)
$$

Proof of Matrix of T^{*}

Prop'n:

$T \in \mathcal{L}(V, W)$. Orthonormal bases, e_{1}, \ldots, e_{n} of V and f_{1}, \ldots, f_{m} of W. Then $\mathcal{M}\left(T^{*}\right)$ with respect to these bases is the conjugate transpose of $\mathcal{M}(T)$ with these bases.

Proof of Matrix of T^{*}

Prop'n:

$T \in \mathcal{L}(V, W)$. Orthonormal bases, e_{1}, \ldots, e_{n} of V and f_{1}, \ldots, f_{m} of W. Then $\mathcal{M}\left(T^{*}\right)$ with respect to these bases is the conjugate transpose of $\mathcal{M}(T)$ with these bases.

Proof.

Proof of Matrix of T^{*}

Prop'n:

$T \in \mathcal{L}(V, W)$. Orthonormal bases, e_{1}, \ldots, e_{n} of V and f_{1}, \ldots, f_{m} of W. Then $\mathcal{M}\left(T^{*}\right)$ with respect to these bases is the conjugate transpose of $\mathcal{M}(T)$ with these bases.

Proof.

Because the bases are orthonormal, we can read the entries of the columns of $\mathcal{M}(T)$ off of

$$
T e_{k}=\left\langle T e_{k}, f_{1}\right\rangle f_{1}+\ldots\left\langle T e_{k}, f_{m}\right\rangle f_{m}
$$

and $\mathcal{M}(T)_{j, k}=\left\langle T e_{k}, f_{j}\right\rangle$.

Proof of Matrix of T^{*}

Prop'n:

$T \in \mathcal{L}(V, W)$. Orthonormal bases, e_{1}, \ldots, e_{n} of V and f_{1}, \ldots, f_{m} of W. Then $\mathcal{M}\left(T^{*}\right)$ with respect to these bases is the conjugate transpose of $\mathcal{M}(T)$ with these bases.

Proof.

Because the bases are orthonormal, we can read the entries of the columns of $\mathcal{M}(T)$ off of

$$
T e_{k}=\left\langle T e_{k}, f_{1}\right\rangle f_{1}+\ldots\left\langle T e_{k}, f_{m}\right\rangle f_{m}
$$

and $\mathcal{M}(T)_{j, k}=\left\langle T e_{k}, f_{j}\right\rangle$. We have that the columns of $\mathcal{M}\left(T^{*}\right)$ come from

$$
T^{*} f_{k}=\left\langle T^{*} f_{k}, e_{1}\right\rangle e_{1}+\ldots\left\langle T^{*} f_{k}, e_{n}\right\rangle e_{n}
$$

Proof of Matrix of T^{*}

Prop'n:

$T \in \mathcal{L}(V, W)$. Orthonormal bases, e_{1}, \ldots, e_{n} of V and f_{1}, \ldots, f_{m} of W. Then $\mathcal{M}\left(T^{*}\right)$ with respect to these bases is the conjugate transpose of $\mathcal{M}(T)$ with these bases.

Proof.

Because the bases are orthonormal, we can read the entries of the columns of $\mathcal{M}(T)$ off of

$$
T e_{k}=\left\langle T e_{k}, f_{1}\right\rangle f_{1}+\ldots\left\langle T e_{k}, f_{m}\right\rangle f_{m}
$$

and $\mathcal{M}(T)_{j, k}=\left\langle T e_{k}, f_{j}\right\rangle$. We have that the columns of $\mathcal{M}\left(T^{*}\right)$ come from

$$
T^{*} f_{k}=\left\langle T^{*} f_{k}, e_{1}\right\rangle e_{1}+\ldots\left\langle T^{*} f_{k}, e_{n}\right\rangle e_{n}
$$

and $\mathcal{M}\left(T^{*}\right)_{j, k}=\left\langle T^{*} f_{k}, e_{j}\right\rangle=\left\langle f_{k}, T e_{j}\right\rangle=\overline{\left\langle T e_{j}, f_{k}\right\rangle}=\overline{\mathcal{M}(T)_{k, j}}$

What are the differences between T^{*} and T^{\prime} ?

■ $T^{*}: W \rightarrow V, T^{\prime}: W^{\prime} \rightarrow V^{\prime}$

What are the differences between T^{*} and T^{\prime} ?

■ $T^{*}: W \rightarrow V, T^{\prime}: W^{\prime} \rightarrow V^{\prime}$
■ Matrix of T^{*} is the conjugate transpose, Matrix of T^{\prime} is the transpose

Self-Adjoint

Now consider operators,

Self-Adjoint

Now consider operators,

Def'n:

An operator $T \in \mathcal{L}(V)$ is called self-adjoint if $T=T^{*}$.

Self-Adjoint

Now consider operators,

Def'n:

An operator $T \in \mathcal{L}(V)$ is called self-adjoint if $T=T^{*}$.
This is definition of Hermitian.

Why care about Self-Adjoint/Hermitian operators?

Prop'n:

Every eigenvalue of a self-adjoint operator is real.

Why care about Self-Adjoint/Hermitian operators?

Prop'n:

Every eigenvalue of a self-adjoint operator is real.
Proof.

Why care about Self-Adjoint/Hermitian operators?

Prop'n:

Every eigenvalue of a self-adjoint operator is real.
Proof. S'pose $T v=\lambda v$.

Why care about Self-Adjoint/Hermitian operators?

Prop'n:

Every eigenvalue of a self-adjoint operator is real.
Proof. S'pose $T v=\lambda v$.

$$
\lambda\|v\|^{2}=\langle\lambda v, v\rangle=\langle T v, v\rangle=\langle v, T v\rangle=\langle v, \lambda v\rangle=\bar{\lambda}\|v\|^{2}
$$

Why care about Self-Adjoint/Hermitian operators?

Prop'n:

Every eigenvalue of a self-adjoint operator is real.
Proof. S'pose $T v=\lambda v$.

$$
\begin{gathered}
\lambda\|v\|^{2}=\langle\lambda v, v\rangle=\langle T v, v\rangle=\langle v, T v\rangle=\langle v, \lambda v\rangle=\bar{\lambda}\|v\|^{2} \\
\lambda=\bar{\lambda}
\end{gathered}
$$

Other Results

Prop'n [Axl14]:

Over $\mathbb{C},\langle T v, v\rangle$ is real for all v if and only if $T=T^{*}$.

Other Results

Prop'n [Axl14]:

Over $\mathbb{C},\langle T v, v\rangle$ is real for all v if and only if $T=T^{*}$.

Prop'n [Axl14]:

Over $\mathbb{C}, T v$ is orthogonal to v for all v if and only if $T=0$.

Prop'n [Axl14]:

If $T=T^{*}$ and $T v$ is orthogonal to v for all v, then $T=0$.

Normal Operators

Def'n:

An operator T on an inner product space is called normal if $T T^{*}=T^{*} T$.

Normal Operators

Def'n:

An operator T on an inner product space is called normal if $T T^{*}=T^{*} T$.
$\left(\begin{array}{cc}2 & -3 \\ 3 & 2\end{array}\right)$ is not self-adjoint but is normal.

Why care about normal operators?

Prop'n 7.20:

An operator T is normal if and only if $\|T v\|=\left\|T^{*} v\right\|$ for all v.

Prop'n 7.21:

A normal operator T and its adjoint share the same eigenvectors.

Prop'n 7.22:

The eigenvectors of a normal operator of distinct eigenvalues are orthogonal.

Proofs

Prop'n 7.20:

An operator T is normal if and only if $\|T V\|=\left\|T^{*} v\right\|$ for all v.

Proofs

Prop'n 7.20:

An operator T is normal if and only if $\|T V\|=\left\|T^{*} v\right\|$ for all v.
Proof.

Proofs

Prop'n 7.20:

An operator T is normal if and only if $\|T v\|=\left\|T^{*} v\right\|$ for all v.

Proof.

$$
\begin{aligned}
T \text { is normal } & \Leftrightarrow T^{*} T-T T^{*}=0 \\
& \Leftrightarrow\left\langle\left(T^{*} T-T T^{*}\right) v, v\right\rangle=0 \text { for all } v \in v \\
& \Leftrightarrow\left\langle T^{*} T v, v\right\rangle=\left\langle T T^{*} v, v\right\rangle \\
& \Leftrightarrow\langle T v, T v\rangle=\left\langle T^{*} v, T^{*} v\right\rangle \\
& \Leftrightarrow\|T v\|^{2}=\left\|T^{*} v\right\|^{2}
\end{aligned}
$$

In the second line, we need that $T^{*} T-T T^{*}$ is self-adjoint.

Proofs

Prop’n 7.21:

A normal operator T and its adjoint share the same eigenvectors.

Proofs

Prop'n 7.21:

A normal operator T and its adjoint share the same eigenvectors.

Proof.

Proofs

Prop'n 7.21:

A normal operator T and its adjoint share the same eigenvectors.

Proof.
First, T normal implies $T-\lambda /$ is normal.

Proofs

Prop’n 7.21:

A normal operator T and its adjoint share the same eigenvectors.

Proof.
First, T normal implies $T-\lambda /$ is normal.
Then

$$
0=\|(T-\lambda /) v\|=\left\|(T-\lambda /)^{*} v\right\|=\left\|\left(T^{*}-\bar{\lambda} /\right) v\right\| .
$$

Proofs

Prop'n 7.22:

The eigenvectors of a normal operator of distinct eigenvalues are orthogonal.

Proofs

Prop'n 7.22:

The eigenvectors of a normal operator of distinct eigenvalues are orthogonal.

Proof.

Proofs

Prop'n 7.22:

The eigenvectors of a normal operator of distinct eigenvalues are orthogonal.

Proof.
S'pose α, β are distinct eigenvalues, $T u=\alpha u$ and $T v=\beta v$.

Proofs

Prop'n 7.22:

The eigenvectors of a normal operator of distinct eigenvalues are orthogonal.

Proof.
S'pose α, β are distinct eigenvalues, $T u=\alpha u$ and $T v=\beta v$.

$$
\begin{aligned}
(\alpha-\beta)\langle u, v\rangle & =\langle\alpha u, v\rangle-\langle u, \bar{\beta} v\rangle \\
& =\langle T u, v\rangle-\left\langle u, T^{*} v\right\rangle \\
& =0
\end{aligned}
$$

Proofs

Prop'n 7.22:

The eigenvectors of a normal operator of distinct eigenvalues are orthogonal.

Proof.
S'pose α, β are distinct eigenvalues, $T u=\alpha u$ and $T v=\beta v$.

$$
\begin{aligned}
(\alpha-\beta)\langle u, v\rangle & =\langle\alpha u, v\rangle-\langle u, \bar{\beta} v\rangle \\
& =\langle T u, v\rangle-\left\langle u, T^{*} v\right\rangle \\
& =0
\end{aligned}
$$

So, $\langle u, v\rangle=0$.

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

