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Recall: Definitions

Def’n:
S’pose T ∈ L(V ,W). The adjoint of T is the function T∗ : W → V such
that

⟨Tv,w⟩ = ⟨v, T∗w⟩

for every v ∈ V and w ∈ W .

Def’n:
An operator T ∈ L(V) is called self-adjoint if T = T∗.

Def’n:
An operator T on an inner product space is called normal if
TT∗ = T∗T .
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Recall: Results
Condition for normality:
An operator T is normal if and only if ||Tv|| = ||T∗v|| for all v.

Norm of an orthonormal linear combo:
If e1, . . . , em is an orthonormal list of vectors in V , then
||a1e1 + . . .+ amem||2 = |a1|2 + . . .+ |am|2 for any ai ∈ F.

Schur’s Theorem:
S’pose V is a finite dimensional C-vector space. Then T ∈ L(V) has
an upper triangular matrix with respect to some orthonormal basis.

Cauchy-Schwarz:
Suppose u, v ∈ V . Then |⟨u, v⟩| ≤ ||u||||v||. Equality is reached if and
only if one of u or v is a scalar multiple of the other.
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Today

Goal: Characterize when an operator has a diagonal matrix with
respect to an orthonormal basis.

Case 1: F = C
Case 2: F = R
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The Complex Spectral Theorem

Theorem:
Suppose F = C and T = L(V). The following are equivalent:
1. T is normal
2. V has an orthonormal basis consisting of eigenvectors of T
3. T has a diagonal matrix with respect to some orthonormal basis
of V

Proof.

We already know (2) ⇔ (3) by conditions for diagonalizability. We
show (1) ⇔ (3).
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The Complex Spectral Theorem

Proof.

Suppose T has a diagonal matrix with respect to some orthogonal
basis.

Then T∗ is the conjugate transpose and also diagonal.

Diagonal matrices commute. Thus, T is normal.

FD · MATH 110 · July 25, 2023 6 / 20



The Complex Spectral Theorem

Proof.

Suppose T has a diagonal matrix with respect to some orthogonal
basis.

Then T∗ is the conjugate transpose and also diagonal.

Diagonal matrices commute. Thus, T is normal.

FD · MATH 110 · July 25, 2023 6 / 20



The Complex Spectral Theorem

Proof.

Suppose T has a diagonal matrix with respect to some orthogonal
basis.

Then T∗ is the conjugate transpose

and also diagonal.

Diagonal matrices commute. Thus, T is normal.

FD · MATH 110 · July 25, 2023 6 / 20



The Complex Spectral Theorem

Proof.

Suppose T has a diagonal matrix with respect to some orthogonal
basis.

Then T∗ is the conjugate transpose and also diagonal.

Diagonal matrices commute. Thus, T is normal.

FD · MATH 110 · July 25, 2023 6 / 20



The Complex Spectral Theorem

Proof.

Suppose T has a diagonal matrix with respect to some orthogonal
basis.

Then T∗ is the conjugate transpose and also diagonal.

Diagonal matrices commute. Thus, T is normal.

FD · MATH 110 · July 25, 2023 6 / 20



The Complex Spectral Theorem

Proof (cont’d).

On the other hand, suppose T is normal.

Schur’s Theorem, tells us there is an orthonormal basis e1, . . . , en of V
where T has an upper triangular matrix:

M(T , e1, . . . , en) =

 a1,1 . . . a1,n

· · ·
...

0 an,n


We will show this is actually diagonal.
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The Complex Spectral Theorem

Proof (cont’d).

M(T , e1, . . . , en) =

 a1,1 . . . a1,n

· · ·
...

0 an,n



We have
||Te1||2 = |a1,1|2

and
||T∗e1||2 = |a1,1|2 + |a1,2|2 + . . .+ |a1,n|2

since T is normal, these are equal.

Thus, all the entries a1,k are zero except possibly a1,1.
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The Complex Spectral Theorem
Proof (cont’d).

M(T , e1, . . . , en) =

 a1,1 . . . a1,n

· · ·
...

0 an,n



Then for the next column:

||Te2||2 = |a2,2|2

and
||T∗e2||2 = |a2,2|2 + |a2,3|2 + . . .+ |a2,n|2

since T is normal, these are equal.

Thus, all the entries a2,k are zero except possibly a2,2.
Repeating, we see thatM(T) is diagonal!
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The Real Spectral Theorem

Theorem:
Suppose F = R and T ∈ L(V). Then the following are equivalent:
1. T is self-adjoint
2. V has an orthonormal basis consiting of eigenvectors of T
3. T has a diagonal matrix with respect to some orthonormal basis
of V
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Lemma’s
Prop’n:
S’pose T ∈ L(V) is self-adjoint and b, c ∈ R such that b2 < 4c. Then
T2 + bT + cI is invertible.

Proof.

⟨(T2 + bT + cI)v, v⟩ = ⟨T2v, v⟩+ b⟨Tv, v⟩+ c⟨v, v⟩
= ⟨Tv, Tv⟩+ b⟨Tv, v⟩+ c||v||2

≥ ||Tv||2 − |b|||Tv||||v||+ c||v||2

=

(
||Tv|| − |b|||v||2

2

)2
+

(
c − b2

4

)
||v||2

> 0

Implies (T2 + bT + cI)v ̸= 0 (bc self-adjoint) and (T2 + bT + cI) is
injective.
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Reminder

Notice that we used, from last lecture:

Prop’n [Axl14]:
For T a self-adjoint operator on V a C or R-vector space, such that
⟨Tv, v⟩ = 0 for all v ∈ V . Then T = 0.

In general, if V is a R-vector space if T is not self-adjoint ⟨Tv, v⟩ = 0
for all v ∈ V does not imply T = 0.
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Lemma’s
Prop’n:
S’pose V ̸= {0} and T ∈ L(V) is self-adjoint. Then T has an
eigenvalue.

Proof.
v, Tv, T2v, . . . , Tnv are linearly dependent
Write as polynomial:

0 = a0v + a1Tv + . . .+ anTnv

Can factorize as:

c(T2 + b1T + c1I) · · · (T2 + bMT + cMI)(T − λ1I) · · · (T − λmI) = 0

But the quadratic terms are invertible, so for some λj, T − λjI is
not injective and T has an eigenvalue.
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Lemma’s

Prop’n:
S’pose T ∈ L(V) is self-adjoint and U is a subspace of V that is
invariant under T . Then
1. U⊥ is invariant under T
2. T |U ∈ L(U) is self-adjoint
3. T |U⊥ ∈ L(U⊥) is self-adjoint

Proof. For (1), suppose v ∈ U⊥, then for any u ∈ U:

⟨Tv, u⟩ = ⟨v, Tu⟩ = 0.

Implies Tv ∈ U⊥.
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The Real Spectral Theorem

Theorem:
Suppose F = R and T ∈ L(V). Then the following are equivalent:
1. T is self-adjoint
2. V has an orthonormal basis consiting of eigenvectors of T
3. T has a diagonal matrix with respect to some orthonormal basis
of V

Proof.

We show (3) =⇒ (1),i.e. desired diagonal matrix implies
self-adjoint.

A diagonal matrix is equal to its transpose and the complex
conjugate of any real number is itself, T = T∗.
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The Real Spectral Theorem

Proof (cont’d).

We (1) ⇔ (2): self-adjoint gives basis of orthonormal eigenvectors,
using induction on dimension.

Base case: dim V = 1. Pick the basis to be {1}

Induction: Assume T ∈ L(V) self-adjoint and all vector spaces of
smaller dimension have orthonormal eigenbases.
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The Real Spectral Theorem

Proof (cont’d).

Induction: Assume T ∈ L(V) self-adjoint and all vector spaces of
smaller dimension have orthonormal eigenbases.

We know T has an eigenvalue λ.
Choose u such that Tu = λu and ||u|| = 1.

Let U = span(u). U is a 1-dimensional invariant subspace
T |U⊥ ∈ L(U⊥) is self-adjoint.

By hypothesis, T |U⊥ has an orthonormal basis of eigenvectors.

Adjoin this basis to u, found a basis of orthonormal eigenvectors of V .
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The Real Spectral Theorem

Proof (cont’d).

So we’ve show (3) =⇒ (1) =⇒ (2).

And we already know,
(2) =⇒ (3). So, we’re done! □.
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