Lecture 19: The Spectral Theorem(s)

MATH 110-3

Franny Dean

July 25, 2023

Recall: Definitions

Recall: Definitions

Def'n:

S'pose $T \in \mathcal{L}(V, W)$. The adjoint of T is the function $T^{*}: W \rightarrow V$ such that

$$
\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle
$$

for every $v \in V$ and $w \in W$.

Recall: Definitions

Def'n:

S'pose $T \in \mathcal{L}(V, W)$. The adjoint of T is the function $T^{*}: W \rightarrow V$ such that

$$
\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle
$$

for every $v \in V$ and $w \in W$.

Def'n:

An operator $T \in \mathcal{L}(V)$ is called self-adjoint if $T=T^{*}$.

Recall: Definitions

Def'n:

S'pose $T \in \mathcal{L}(V, W)$. The adjoint of T is the function $T^{*}: W \rightarrow V$ such that

$$
\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle
$$

for every $v \in V$ and $w \in W$.

Def'n:
An operator $T \in \mathcal{L}(V)$ is called self-adjoint if $T=T^{*}$.

Def'n:
An operator T on an inner product space is called normal if $T T^{*}=T^{*} T$.

Recall: Results

Condition for normality:

An operator T is normal if and only if $\|T v\|=\left\|T^{*} v\right\|$ for all v.

Recall: Results

Condition for normality:

An operator T is normal if and only if $\|T v\|=\left\|T^{*} v\right\|$ for all v.

Norm of an orthonormal linear combo:

If e_{1}, \ldots, e_{m} is an orthonormal list of vectors in V, then $\left\|a_{1} e_{1}+\ldots+a_{m} e_{m}\right\|^{2}=\left|a_{1}\right|^{2}+\ldots+\left|a_{m}\right|^{2}$ for any $a_{i} \in \mathbb{F}$.

Recall: Results

Condition for normality:

An operator T is normal if and only if $\|T v\|=\left\|T^{*} v\right\|$ for all v.

Norm of an orthonormal linear combo:

If e_{1}, \ldots, e_{m} is an orthonormal list of vectors in V, then
$\left\|a_{1} e_{1}+\ldots+a_{m} e_{m}\right\|^{2}=\left|a_{1}\right|^{2}+\ldots+\left|a_{m}\right|^{2}$ for any $a_{i} \in \mathbb{F}$.

Schur's Theorem:

S'pose V is a finite dimensional \mathbb{C}-vector space. Then $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some orthonormal basis.

Recall: Results

Condition for normality:

An operator T is normal if and only if $\|T v\|=\left\|T^{*} v\right\|$ for all v.

Norm of an orthonormal linear combo:

If e_{1}, \ldots, e_{m} is an orthonormal list of vectors in V, then $\left\|a_{1} e_{1}+\ldots+a_{m} e_{m}\right\|^{2}=\left|a_{1}\right|^{2}+\ldots+\left|a_{m}\right|^{2}$ for any $a_{i} \in \mathbb{F}$.

Schur's Theorem:

S'pose V is a finite dimensional \mathbb{C}-vector space. Then $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some orthonormal basis.

Cauchy-Schwarz:

Suppose $u, v \in V$. Then $|\langle u, v\rangle| \leq\|u\|\|\mid v\|$. Equality is reached if and only if one of u or v is a scalar multiple of the other.

Today

Goal: Characterize when an operator has a diagonal matrix with respect to an orthonormal basis.

Today

Goal: Characterize when an operator has a diagonal matrix with respect to an orthonormal basis.

■ Case 1: $\mathbb{F}=\mathbb{C}$

Today

Goal: Characterize when an operator has a diagonal matrix with respect to an orthonormal basis.

■ Case $1: \mathbb{F}=\mathbb{C}$
■ Case $2: \mathbb{F}=\mathbb{R}$

The Complex Spectral Theorem

Theorem:

Suppose $\mathbb{F}=\mathbb{C}$ and $T=\mathcal{L}(V)$. The following are equivalent:

1. T is normal
2. V has an orthonormal basis consisting of eigenvectors of T
3. T has a diagonal matrix with respect to some orthonormal basis of V

The Complex Spectral Theorem

Theorem:

Suppose $\mathbb{F}=\mathbb{C}$ and $T=\mathcal{L}(V)$. The following are equivalent:

1. T is normal
2. V has an orthonormal basis consisting of eigenvectors of T
3. T has a diagonal matrix with respect to some orthonormal basis of V

Proof.

The Complex Spectral Theorem

Theorem:

Suppose $\mathbb{F}=\mathbb{C}$ and $T=\mathcal{L}(V)$. The following are equivalent:

1. T is normal
2. V has an orthonormal basis consisting of eigenvectors of T
3. T has a diagonal matrix with respect to some orthonormal basis of V

Proof.
We already know (2) \Leftrightarrow (3) by conditions for diagonalizability. We show (1) \Leftrightarrow (3).

The Complex Spectral Theorem

Proof.

The Complex Spectral Theorem

Proof.

Suppose T has a diagonal matrix with respect to some orthogonal basis.

The Complex Spectral Theorem

Proof.

Suppose T has a diagonal matrix with respect to some orthogonal basis.

Then T^{*} is the conjugate transpose

The Complex Spectral Theorem

Proof.

Suppose T has a diagonal matrix with respect to some orthogonal basis.

Then T^{*} is the conjugate transpose and also diagonal.

The Complex Spectral Theorem

Proof.

Suppose T has a diagonal matrix with respect to some orthogonal basis.

Then T^{*} is the conjugate transpose and also diagonal.
Diagonal matrices commute. Thus, T is normal.

The Complex Spectral Theorem

Proof (cont'd).

The Complex Spectral Theorem

Proof (cont'd).
On the other hand, suppose T is normal.

The Complex Spectral Theorem

Proof (cont'd).
On the other hand, suppose T is normal.
Schur's Theorem, tells us there is an orthonormal basis e_{1}, \ldots, e_{n} of V where T has an upper triangular matrix:

The Complex Spectral Theorem

Proof (cont'd).
On the other hand, suppose T is normal.
Schur's Theorem, tells us there is an orthonormal basis e_{1}, \ldots, e_{n} of V where T has an upper triangular matrix:

$$
\mathcal{M}\left(T, e_{1}, \ldots, e_{n}\right)=\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
& \ldots & \vdots \\
0 & & a_{n, n}
\end{array}\right)
$$

The Complex Spectral Theorem

Proof (cont'd).
On the other hand, suppose T is normal.
Schur's Theorem, tells us there is an orthonormal basis e_{1}, \ldots, e_{n} of V where T has an upper triangular matrix:

$$
\mathcal{M}\left(T, e_{1}, \ldots, e_{n}\right)=\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
& \ldots & \vdots \\
0 & & a_{n, n}
\end{array}\right)
$$

We will show this is actually diagonal.

The Complex Spectral Theorem

Proof (cont'd).

$$
\mathcal{M}\left(T, e_{1}, \ldots, e_{n}\right)=\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
& \ldots & \vdots \\
0 & & a_{n, n}
\end{array}\right)
$$

The Complex Spectral Theorem

Proof (cont'd).

$$
\mathcal{M}\left(T, e_{1}, \ldots, e_{n}\right)=\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
& \ldots & \vdots \\
0 & & a_{n, n}
\end{array}\right)
$$

We have

$$
\left\|T e_{1}\right\|^{2}=\left|a_{1,1}\right|^{2}
$$

The Complex Spectral Theorem

Proof (cont'd).

$$
\mathcal{M}\left(T, e_{1}, \ldots, e_{n}\right)=\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
& \ldots & \vdots \\
0 & & a_{n, n}
\end{array}\right)
$$

We have

$$
\left\|T e_{1}\right\|^{2}=\left|a_{1,1}\right|^{2}
$$

and

$$
\left\|T^{*} e_{1}\right\|^{2}=\left|a_{1,1}\right|^{2}+\left|a_{1,2}\right|^{2}+\ldots+\left|a_{1, n}\right|^{2}
$$

The Complex Spectral Theorem

Proof (cont'd).

$$
\mathcal{M}\left(T, e_{1}, \ldots, e_{n}\right)=\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
& \ldots & \vdots \\
0 & & a_{n, n}
\end{array}\right)
$$

We have

$$
\left\|T e_{1}\right\|^{2}=\left|a_{1,1}\right|^{2}
$$

and

$$
\left\|T^{*} e_{1}\right\|^{2}=\left|a_{1,1}\right|^{2}+\left|a_{1,2}\right|^{2}+\ldots+\left|a_{1, n}\right|^{2}
$$

since T is normal, these are equal.

The Complex Spectral Theorem

Proof (cont'd).

$$
\mathcal{M}\left(T, e_{1}, \ldots, e_{n}\right)=\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
& \ldots & \vdots \\
0 & & a_{n, n}
\end{array}\right)
$$

We have

$$
\left\|T e_{1}\right\|^{2}=\left|a_{1,1}\right|^{2}
$$

and

$$
\left\|T^{*} e_{1}\right\|^{2}=\left|a_{1,1}\right|^{2}+\left|a_{1,2}\right|^{2}+\ldots+\left|a_{1, n}\right|^{2}
$$

since T is normal, these are equal.
Thus, all the entries $a_{1, k}$ are zero except possibly $a_{1,1}$.

The Complex Spectral Theorem

Proof (cont'd).

$$
\mathcal{M}\left(T, e_{1}, \ldots, e_{n}\right)=\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
& \ldots & \vdots \\
0 & & a_{n, n}
\end{array}\right)
$$

The Complex Spectral Theorem

Proof (cont'd).

$$
\mathcal{M}\left(T, e_{1}, \ldots, e_{n}\right)=\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
& \ldots & \vdots \\
0 & & a_{n, n}
\end{array}\right)
$$

Then for the next column:

The Complex Spectral Theorem

Proof (cont'd).

$$
\mathcal{M}\left(T, e_{1}, \ldots, e_{n}\right)=\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
& \ldots & \vdots \\
0 & & a_{n, n}
\end{array}\right)
$$

Then for the next column:

$$
\left\|T e_{2}\right\|^{2}=\left|a_{2,2}\right|^{2}
$$

and

$$
\|\left. T^{*} e_{2}\right|^{2}=\left|a_{2,2}\right|^{2}+\left|a_{2,3}\right|^{2}+\ldots+\left|a_{2, n}\right|^{2}
$$

The Complex Spectral Theorem

Proof (cont'd).

$$
\mathcal{M}\left(T, e_{1}, \ldots, e_{n}\right)=\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
& \ldots & \vdots \\
0 & & a_{n, n}
\end{array}\right)
$$

Then for the next column:

$$
\left\|T e_{2}\right\|^{2}=\left|a_{2,2}\right|^{2}
$$

and

$$
\left\|T^{*} e_{2}\right\|^{2}=\left|a_{2,2}\right|^{2}+\left|a_{2,3}\right|^{2}+\ldots+\left|a_{2, n}\right|^{2}
$$

since T is normal, these are equal.

The Complex Spectral Theorem

Proof (cont'd).

$$
\mathcal{M}\left(T, e_{1}, \ldots, e_{n}\right)=\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
& \ldots & \vdots \\
0 & & a_{n, n}
\end{array}\right)
$$

Then for the next column:

$$
\left\|T e_{2}\right\|^{2}=\left|a_{2,2}\right|^{2}
$$

and

$$
\left\|T^{*} e_{2}\right\|^{2}=\left|a_{2,2}\right|^{2}+\left|a_{2,3}\right|^{2}+\ldots+\left|a_{2, n}\right|^{2}
$$

since T is normal, these are equal.
Thus, all the entries $a_{2, k}$ are zero except possibly $a_{2,2}$.

The Complex Spectral Theorem

Proof (cont'd).

$$
\mathcal{M}\left(T, e_{1}, \ldots, e_{n}\right)=\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
& \ldots & \vdots \\
0 & & a_{n, n}
\end{array}\right)
$$

Then for the next column:

$$
\left\|T e_{2}\right\|^{2}=\left|a_{2,2}\right|^{2}
$$

and

$$
\left\|T^{*} e_{2}\right\|^{2}=\left|a_{2,2}\right|^{2}+\left|a_{2,3}\right|^{2}+\ldots+\left|a_{2, n}\right|^{2}
$$

since T is normal, these are equal.
Thus, all the entries $a_{2, k}$ are zero except possibly $a_{2,2}$. Repeating, we see that $\mathcal{M}(T)$ is diagonal!

The Real Spectral Theorem

Theorem:
Suppose $\mathbb{F}=\mathbb{R}$ and $T \in \mathcal{L}(V)$. Then the following are equivalent:

1. T is self-adjoint
2. V has an orthonormal basis consiting of eigenvectors of T
3. T has a diagonal matrix with respect to some orthonormal basis of V

Lemma's

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and $b, c \in \mathbb{R}$ such that $b^{2}<4 c$. Then $T^{2}+b T+c l$ is invertible.

Lemma's

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and $b, c \in \mathbb{R}$ such that $b^{2}<4 c$. Then $T^{2}+b T+c l$ is invertible.

Proof.

Lemma's

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and $b, c \in \mathbb{R}$ such that $b^{2}<4 c$. Then $T^{2}+b T+c l$ is invertible.

Proof.

$$
\begin{aligned}
\left\langle\left(T^{2}+b T+c l\right) v, v\right\rangle & =\left\langle T^{2} v, v\right\rangle+b\langle T v, v\rangle+c\langle v, v\rangle \\
& =\langle T v, T v\rangle+b\langle T v, v\rangle+c\|v\|^{2} \\
& \geq\|T v\|^{2}-|b|\|T v\|\|v\|+c\|v\|^{2} \\
& =\left(\|T v\|-\frac{|b|\|v\|^{2}}{2}\right)^{2}+\left(c-\frac{b^{2}}{4}\right)\|v\|^{2} \\
& >0
\end{aligned}
$$

Lemma's

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and $b, c \in \mathbb{R}$ such that $b^{2}<4 c$. Then $T^{2}+b T+c l$ is invertible.

Proof.

$$
\begin{aligned}
\left\langle\left(T^{2}+b T+c l\right) v, v\right\rangle & =\left\langle T^{2} v, v\right\rangle+b\langle T v, v\rangle+c\langle v, v\rangle \\
& =\langle T v, T v\rangle+b\langle T v, v\rangle+c\|v\|^{2} \\
& \geq\|T v\|^{2}-\left|b\|\mid I v\|\|v\|+c\|v\|^{2}\right. \\
& =\left(\|T v\|-\frac{\mid b\|v\|^{2}}{2}\right)^{2}+\left(c-\frac{b^{2}}{4}\right)\|v\|^{2} \\
& >0
\end{aligned}
$$

Implies $\left(T^{2}+b T+c l\right) v \neq 0\left(b c\right.$ self-adjoint) and $\left(T^{2}+b T+c l\right)$ is injective.

Reminder

Notice that we used, from last lecture:

Prop'n [Axl14]:

For T a self-adjoint operator on V a \mathbb{C} or \mathbb{R}-vector space, such that $\langle T v, v\rangle=0$ for all $v \in V$. Then $T=0$.

In general, if V is a \mathbb{R}-vector space if T is not self-adjoint $\langle T v, v\rangle=0$ for all $v \in V$ does not imply $T=0$.

Lemma's

Prop'n:

S'pose $V \neq\{0\}$ and $T \in \mathcal{L}(V)$ is self-adjoint. Then T has an eigenvalue.

Lemma's

Prop'n:

S'pose $V \neq\{0\}$ and $T \in \mathcal{L}(V)$ is self-adjoint. Then T has an eigenvalue.

Proof.

Lemma's

Prop'n:

S'pose $V \neq\{0\}$ and $T \in \mathcal{L}(V)$ is self-adjoint. Then T has an eigenvalue.

Proof.

■ $v, T v, T^{2} v, \ldots, T^{n} v$ are linearly dependent

Lemma's

Prop'n:

S'pose $V \neq\{0\}$ and $T \in \mathcal{L}(V)$ is self-adjoint. Then T has an eigenvalue.

Proof.

- $v, T v, T^{2} v, \ldots, T^{n} v$ are linearly dependent
- Write as polynomial:

$$
0=a_{0} v+a_{1} T v+\ldots+a_{n} T^{n} v
$$

Lemma's

Prop'n:

S'pose $V \neq\{0\}$ and $T \in \mathcal{L}(V)$ is self-adjoint. Then T has an eigenvalue.

Proof.

- $v, T v, T^{2} v, \ldots, T^{n} v$ are linearly dependent
- Write as polynomial:

$$
0=a_{0} v+a_{1} T v+\ldots+a_{n} T^{n} v
$$

- Can factorize as:

$$
c\left(T^{2}+b_{1} T+c_{1} I\right) \cdots\left(T^{2}+b_{M} T+c_{M} I\right)\left(T-\lambda_{1} I\right) \cdots\left(T-\lambda_{m} I\right)=0
$$

Lemma's

Prop'n:

S'pose $V \neq\{0\}$ and $T \in \mathcal{L}(V)$ is self-adjoint. Then T has an eigenvalue.

Proof.

- $v, T v, T^{2} v, \ldots, T^{n} v$ are linearly dependent
- Write as polynomial:

$$
0=a_{0} v+a_{1} T v+\ldots+a_{n} T^{n} v
$$

■ Can factorize as:

$$
c\left(T^{2}+b_{1} T+c_{1} I\right) \cdots\left(T^{2}+b_{M} T+c_{M} I\right)\left(T-\lambda_{1} I\right) \cdots\left(T-\lambda_{m} I\right)=0
$$

■ But the quadratic terms are invertible, so for some $\lambda_{j}, T-\lambda_{j} /$ is not injective and T has an eigenvalue.

Lemma's

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

1. U^{\perp} is invariant under T
2. $\left.T\right|_{U} \in \mathcal{L}(U)$ is self-adjoint
3. $\left.T\right|_{U \perp} \in \mathcal{L}\left(U^{\perp}\right)$ is self-adjoint

Lemma's

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

1. U^{\perp} is invariant under T
2. $\left.T\right|_{U} \in \mathcal{L}(U)$ is self-adjoint
3. $\left.T\right|_{U \perp} \in \mathcal{L}\left(U^{\perp}\right)$ is self-adjoint

Proof.

Lemma's

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

1. U^{\perp} is invariant under T
2. $\left.T\right|_{U} \in \mathcal{L}(U)$ is self-adjoint
3. $\left.T\right|_{U \perp} \in \mathcal{L}\left(U^{\perp}\right)$ is self-adjoint

Proof. For (1), suppose $v \in U^{\perp}$, then for any $u \in U$:

Lemma's

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

1. U^{\perp} is invariant under T
2. $\left.T\right|_{U} \in \mathcal{L}(U)$ is self-adjoint
3. $\left.T\right|_{U \perp} \in \mathcal{L}\left(U^{\perp}\right)$ is self-adjoint

Proof. For (1), suppose $v \in U^{\perp}$, then for any $u \in U$:

$$
\langle T v, u\rangle=\langle v, T u\rangle=0 .
$$

Lemma's

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

1. U^{\perp} is invariant under T
2. $\left.T\right|_{U} \in \mathcal{L}(U)$ is self-adjoint
3. $\left.T\right|_{U \perp} \in \mathcal{L}\left(U^{\perp}\right)$ is self-adjoint

Proof. For (1), suppose $v \in U^{\perp}$, then for any $u \in U$:

$$
\langle T v, u\rangle=\langle v, T u\rangle=0 .
$$

Implies $T_{V} \in U^{\perp}$.

Lemma's

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

1. U^{\perp} is invariant under T
2. $\left.T\right|_{U} \in \mathcal{L}(U)$ is self-adjoint
3. $\left.T\right|_{U \perp} \in \mathcal{L}\left(U^{\perp}\right)$ is self-adjoint

Proof (cont'd).

Lemma's

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

1. U^{\perp} is invariant under T
2. $\left.T\right|_{U} \in \mathcal{L}(U)$ is self-adjoint
3. $\left.T\right|_{U \perp} \in \mathcal{L}\left(U^{\perp}\right)$ is self-adjoint

Proof (cont'd). For (2), suppose $u, v \in U$, then:

Lemma's

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

1. U^{\perp} is invariant under T
2. $\left.T\right|_{U} \in \mathcal{L}(U)$ is self-adjoint
3. $\left.T\right|_{U \perp} \in \mathcal{L}\left(U^{\perp}\right)$ is self-adjoint

Proof (cont'd). For (2), suppose $u, v \in U$, then:

$$
\left\langle\left. T\right|_{u}(u), v\right\rangle=\langle T u, v\rangle=\langle u, T v\rangle=\langle u, T \mid u v\rangle .
$$

Lemma's

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

1. U^{\perp} is invariant under T
2. $\left.T\right|_{U} \in \mathcal{L}(U)$ is self-adjoint
3. $\left.T\right|_{U \perp} \in \mathcal{L}\left(U^{\perp}\right)$ is self-adjoint

Proof (cont'd). For (2), suppose $u, v \in U$, then:

$$
\left\langle\left. T\right|_{u}(u), v\right\rangle=\langle T u, v\rangle=\langle u, T v\rangle=\left\langle u,\left.T\right|_{u v\rangle} .\right.
$$

Implies $\left.T\right|_{U}$ is self-adjoint.

Lemma's

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

1. U^{\perp} is invariant under T
2. $\left.T\right|_{U} \in \mathcal{L}(U)$ is self-adjoint
3. $\left.T\right|_{U \perp} \in \mathcal{L}\left(U^{\perp}\right)$ is self-adjoint

Proof (cont'd). For (2), suppose $u, v \in U$, then:

$$
\left\langle\left. T\right|_{u}(u), v\right\rangle=\langle T u, v\rangle=\langle u, T v\rangle=\left\langle u,\left.T\right|_{u v}\right\rangle .
$$

Implies $\left.T\right|_{U}$ is self-adjoint.
For (3), replace U with U^{\perp} in (2). \square.

The Real Spectral Theorem

Theorem:
Suppose $\mathbb{F}=\mathbb{R}$ and $T \in \mathcal{L}(V)$. Then the following are equivalent:

1. T is self-adjoint
2. V has an orthonormal basis consiting of eigenvectors of T
3. T has a diagonal matrix with respect to some orthonormal basis of V

Proof.

The Real Spectral Theorem

Theorem:
Suppose $\mathbb{F}=\mathbb{R}$ and $T \in \mathcal{L}(V)$. Then the following are equivalent:

1. T is self-adjoint
2. V has an orthonormal basis consiting of eigenvectors of T
3. T has a diagonal matrix with respect to some orthonormal basis of V

Proof. We show $(3) \Longrightarrow$ (1),

The Real Spectral Theorem

Theorem:
Suppose $\mathbb{F}=\mathbb{R}$ and $T \in \mathcal{L}(V)$. Then the following are equivalent:

1. T is self-adjoint
2. V has an orthonormal basis consiting of eigenvectors of T
3. T has a diagonal matrix with respect to some orthonormal basis of V

Proof. We show $(3) \Longrightarrow$ (1),i.e. desired diagonal matrix implies self-adjoint.

The Real Spectral Theorem

Theorem:
Suppose $\mathbb{F}=\mathbb{R}$ and $T \in \mathcal{L}(V)$. Then the following are equivalent:

1. T is self-adjoint
2. V has an orthonormal basis consiting of eigenvectors of T
3. T has a diagonal matrix with respect to some orthonormal basis of V

Proof. We show $(3) \Longrightarrow$ (1),i.e. desired diagonal matrix implies self-adjoint.

A diagonal matrix is equal to its transpose and the complex conjugate of any real number is itself, $T=T^{*}$.

The Real Spectral Theorem

Proof (cont'd).

We (1) $\Leftrightarrow(2)$: self-adjoint gives basis of orthonormal eigenvectors, using induction on dimension.

The Real Spectral Theorem

Proof (cont'd).

We (1) $\Leftrightarrow(2)$: self-adjoint gives basis of orthonormal eigenvectors, using induction on dimension.

Base case:

The Real Spectral Theorem

Proof (cont'd).
We (1) $\Leftrightarrow(2)$: self-adjoint gives basis of orthonormal eigenvectors, using induction on dimension.

Base case: $\operatorname{dim} V=1$. Pick the basis to be $\{1\}$

The Real Spectral Theorem

Proof (cont'd).
We (1) $\Leftrightarrow(2)$: self-adjoint gives basis of orthonormal eigenvectors, using induction on dimension.

Base case: $\operatorname{dim} V=1$. Pick the basis to be $\{1\}$
Induction: Assume $T \in \mathcal{L}(V)$ self-adjoint and all vector spaces of smaller dimension have orthonormal eigenbases.

The Real Spectral Theorem

Proof (cont'd).
Induction: Assume $T \in \mathcal{L}(V)$ self-adjoint and all vector spaces of smaller dimension have orthonormal eigenbases.

The Real Spectral Theorem

Proof (cont'd).
Induction: Assume $T \in \mathcal{L}(V)$ self-adjoint and all vector spaces of smaller dimension have orthonormal eigenbases.

We know T has an eigenvalue λ.

The Real Spectral Theorem

Proof (cont'd).
Induction: Assume $T \in \mathcal{L}(V)$ self-adjoint and all vector spaces of smaller dimension have orthonormal eigenbases.

We know T has an eigenvalue λ.
Choose u such that $T u=\lambda u$ and $\|u\|=1$.

The Real Spectral Theorem

Proof (cont'd).
Induction: Assume $T \in \mathcal{L}(V)$ self-adjoint and all vector spaces of smaller dimension have orthonormal eigenbases.

We know T has an eigenvalue λ.
Choose u such that $T u=\lambda u$ and $\|u\|=1$.
Let $U=\operatorname{span}(u)$. U is a 1 -dimensional invariant subspace $\left.T\right|_{U \perp} \in \mathcal{L}\left(U^{\perp}\right)$ is self-adjoint.

The Real Spectral Theorem

Proof (cont'd).
Induction: Assume $T \in \mathcal{L}(V)$ self-adjoint and all vector spaces of smaller dimension have orthonormal eigenbases.

We know T has an eigenvalue λ.
Choose u such that $T u=\lambda u$ and $\|u\|=1$.
Let $U=\operatorname{span}(u) . U$ is a 1 -dimensional invariant subspace
$\left.T\right|_{U \perp} \in \mathcal{L}\left(U^{\perp}\right)$ is self-adjoint.
By hypothesis, $\left.T\right|_{\cup \perp}$ has an orthonormal basis of eigenvectors.

The Real Spectral Theorem

Proof (cont'd).
Induction: Assume $T \in \mathcal{L}(V)$ self-adjoint and all vector spaces of smaller dimension have orthonormal eigenbases.

We know T has an eigenvalue λ.
Choose u such that $T u=\lambda u$ and $\|u\|=1$.
Let $U=\operatorname{span}(u) . U$ is a 1 -dimensional invariant subspace
$\left.T\right|_{U \perp} \in \mathcal{L}\left(U^{\perp}\right)$ is self-adjoint.
By hypothesis, $\left.T\right|_{\cup \perp}$ has an orthonormal basis of eigenvectors.
Adjoin this basis to u, found a basis of orthonormal eigenvectors of V.

The Real Spectral Theorem

Proof (cont'd).

So we've show $(3) \Longrightarrow(1) \Longrightarrow(2)$.

The Real Spectral Theorem

Proof (cont'd).
So we've show $(3) \Longrightarrow(1) \Longrightarrow(2)$. And we already know, (2) \Longrightarrow (3).

The Real Spectral Theorem

Proof (cont'd).
So we've show $(3) \Longrightarrow(1) \Longrightarrow(2)$. And we already know, $(2) \Longrightarrow$ (3). So, we're done! \square.

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

