

Lecture 19: The Spectral Theorem(s)

MATH 110-3

Franny Dean

July 25, 2023

Def'n:

S'pose $T \in \mathcal{L}(V, W)$. The **adjoint** of T is the function $T^* : W \to V$ such that

$$\langle Tv, w \rangle = \langle v, T^*w \rangle$$

for every $v \in V$ and $w \in W$.

Def'n:

S'pose $T \in \mathcal{L}(V, W)$. The **adjoint** of T is the function $T^* : W \to V$ such that

$$\langle Tv, w \rangle = \langle v, T^*w \rangle$$

for every $v \in V$ and $w \in W$.

Def'n:

An operator $T \in \mathcal{L}(V)$ is called **self-adjoint** if $T = T^*$.

Def'n:

S'pose $T \in \mathcal{L}(V, W)$. The **adjoint** of T is the function $T^* : W \to V$ such that

$$\langle Tv, w \rangle = \langle v, T^*w \rangle$$

for every $v \in V$ and $w \in W$.

Def'n:

An operator $T \in \mathcal{L}(V)$ is called **self-adjoint** if $T = T^*$.

Def'n:

An operator T on an inner product space is called **normal** if $TT^* = T^*T$.

Condition for normality:

An operator *T* is normal if and only if $||Tv|| = ||T^*v||$ for all *v*.

Condition for normality:

An operator *T* is normal if and only if $||Tv|| = ||T^*v||$ for all *v*.

Norm of an orthonormal linear combo:

If e_1, \ldots, e_m is an orthonormal list of vectors in V, then $||a_1e_1 + \ldots + a_me_m||^2 = |a_1|^2 + \ldots + |a_m|^2$ for any $a_i \in \mathbb{F}$.

Condition for normality:

An operator *T* is normal if and only if $||Tv|| = ||T^*v||$ for all *v*.

Norm of an orthonormal linear combo:

If e_1, \ldots, e_m is an orthonormal list of vectors in V, then $||a_1e_1 + \ldots + a_me_m||^2 = |a_1|^2 + \ldots + |a_m|^2$ for any $a_i \in \mathbb{F}$.

Schur's Theorem:

S'pose V is a finite dimensional \mathbb{C} -vector space. Then $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some orthonormal basis.

Condition for normality:

An operator *T* is normal if and only if $||Tv|| = ||T^*v||$ for all *v*.

Norm of an orthonormal linear combo:

If e_1, \ldots, e_m is an orthonormal list of vectors in V, then $||a_1e_1 + \ldots + a_me_m||^2 = |a_1|^2 + \ldots + |a_m|^2$ for any $a_i \in \mathbb{F}$.

Schur's Theorem:

S'pose V is a finite dimensional \mathbb{C} -vector space. Then $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some orthonormal basis.

Cauchy-Schwarz:

Suppose $u, v \in V$. Then $|\langle u, v \rangle| \le ||u|| ||v||$. Equality is reached if and only if one of u or v is a scalar multiple of the other.

Goal: Characterize when an operator has a diagonal matrix with respect to an orthonormal basis.

Goal: Characterize when an operator has a diagonal matrix with respect to an orthonormal basis.

• Case 1: $\mathbb{F} = \mathbb{C}$

Goal: Characterize when an operator has a diagonal matrix with respect to an orthonormal basis.

Case 1: F = C
Case 2: F = R

Theorem:

Suppose $\mathbb{F} = \mathbb{C}$ and $T = \mathcal{L}(V)$. The following are equivalent:

- 1. T is normal
- 2. V has an orthonormal basis consisting of eigenvectors of T
- 3. *T* has a diagonal matrix with respect to some orthonormal basis of *V*

Theorem:

Suppose $\mathbb{F} = \mathbb{C}$ and $T = \mathcal{L}(V)$. The following are equivalent:

- 1. T is normal
- 2. V has an orthonormal basis consisting of eigenvectors of T
- 3. *T* has a diagonal matrix with respect to some orthonormal basis of *V*

Proof.

Theorem:

Suppose $\mathbb{F} = \mathbb{C}$ and $T = \mathcal{L}(V)$. The following are equivalent:

- 1. T is normal
- 2. V has an orthonormal basis consisting of eigenvectors of T
- 3. *T* has a diagonal matrix with respect to some orthonormal basis of *V*

Proof.

We already know (2) \Leftrightarrow (3) by conditions for diagonalizability. We show (1) \Leftrightarrow (3).

Proof.

Proof.

Suppose *T* has a diagonal matrix with respect to some orthogonal basis.

Proof.

Suppose *T* has a diagonal matrix with respect to some orthogonal basis.

Then T^* is the conjugate transpose

Proof.

Suppose T has a diagonal matrix with respect to some orthogonal basis.

Then T^* is the conjugate transpose and also diagonal.

Proof.

Suppose T has a diagonal matrix with respect to some orthogonal basis.

Then T^* is the conjugate transpose and also diagonal.

Diagonal matrices commute. Thus, *T* is normal.

Proof (cont'd).

Proof (cont'd).

On the other hand, suppose T is normal.

Proof (cont'd).

On the other hand, suppose T is normal.

Schur's Theorem, tells us there is an orthonormal basis e_1, \ldots, e_n of V where T has an upper triangular matrix:

Proof (cont'd).

On the other hand, suppose T is normal.

Schur's Theorem, tells us there is an orthonormal basis e_1, \ldots, e_n of V where T has an upper triangular matrix:

$$\mathcal{M}(T,e_1,\ldots,e_n)=\left(egin{array}{ccc}a_{1,1}&\ldots&a_{1,n}\\&\ldots&\vdots\\0&&a_{n,n}\end{array}
ight)$$

Proof (cont'd).

On the other hand, suppose T is normal.

Schur's Theorem, tells us there is an orthonormal basis e_1, \ldots, e_n of V where T has an upper triangular matrix:

$$\mathcal{M}(T, e_1, \ldots, e_n) = \begin{pmatrix} a_{1,1} & \ldots & a_{1,n} \\ & \ddots & \vdots \\ 0 & & a_{n,n} \end{pmatrix}$$

We will show this is actually diagonal.

Proof (cont'd).

$$\mathcal{M}(T, e_1, \ldots, e_n) = \begin{pmatrix} a_{1,1} & \ldots & a_{1,n} \\ & \ddots & \vdots \\ 0 & & a_{n,n} \end{pmatrix}$$

Proof (cont'd).

$$\mathcal{M}(T, e_1, \ldots, e_n) = \left(egin{array}{ccc} a_{1,1} & \ldots & a_{1,n} \\ & \ddots & \vdots \\ 0 & & a_{n,n} \end{array}
ight)$$

We have

$$||Te_1||^2 = |a_{1,1}|^2$$

Proof (cont'd).

$$\mathcal{M}(T, e_1, \ldots, e_n) = \left(egin{array}{ccc} a_{1,1} & \ldots & a_{1,n} \\ & \ddots & \vdots \\ 0 & & a_{n,n} \end{array}
ight)$$

We have

$$||Te_1||^2 = |a_{1,1}|^2$$

and

$$||T^*e_1||^2 = |a_{1,1}|^2 + |a_{1,2}|^2 + \ldots + |a_{1,n}|^2$$

Proof (cont'd).

$$\mathcal{M}(T, e_1, \ldots, e_n) = \left(egin{array}{ccc} a_{1,1} & \ldots & a_{1,n} \\ & \ddots & \vdots \\ 0 & & a_{n,n} \end{array}
ight)$$

We have

$$||Te_1||^2 = |a_{1,1}|^2$$

and

$$||T^*e_1||^2 = |a_{1,1}|^2 + |a_{1,2}|^2 + \ldots + |a_{1,n}|^2$$

since *T* is normal, these are equal.

Proof (cont'd).

$$\mathcal{M}(T, e_1, \ldots, e_n) = \left(egin{array}{ccc} a_{1,1} & \ldots & a_{1,n} \\ & \ddots & \vdots \\ 0 & & a_{n,n} \end{array}
ight)$$

We have

$$||Te_1||^2 = |a_{1,1}|^2$$

and

$$||T^*e_1||^2 = |a_{1,1}|^2 + |a_{1,2}|^2 + \ldots + |a_{1,n}|^2$$

since *T* is normal, these are equal.

Thus, all the entries $a_{1,k}$ are zero except possibly $a_{1,1}$.

Proof (cont'd).

$$\mathcal{M}(T, e_1, \ldots, e_n) = \begin{pmatrix} a_{1,1} & \ldots & a_{1,n} \\ & \ddots & \vdots \\ 0 & & a_{n,n} \end{pmatrix}$$

Proof (cont'd).

$$\mathcal{M}(T, e_1, \ldots, e_n) = \begin{pmatrix} a_{1,1} & \ldots & a_{1,n} \\ & \ddots & \vdots \\ 0 & & a_{n,n} \end{pmatrix}$$

Then for the next column:

Proof (cont'd).

$$\mathcal{M}(T, e_1, \ldots, e_n) = \begin{pmatrix} a_{1,1} & \ldots & a_{1,n} \\ & \ldots & \vdots \\ 0 & & a_{n,n} \end{pmatrix}$$

Then for the next column:

$$||Te_2||^2 = |a_{2,2}|^2$$

and

$$||T^*e_2||^2 = |a_{2,2}|^2 + |a_{2,3}|^2 + \ldots + |a_{2,n}|^2$$

Proof (cont'd).

$$\mathcal{M}(T, e_1, \ldots, e_n) = \begin{pmatrix} a_{1,1} & \ldots & a_{1,n} \\ & \ldots & \vdots \\ 0 & & a_{n,n} \end{pmatrix}$$

Then for the next column:

$$||Te_2||^2 = |a_{2,2}|^2$$

and

$$||T^*e_2||^2 = |a_{2,2}|^2 + |a_{2,3}|^2 + \ldots + |a_{2,n}|^2$$

since T is normal, these are equal.

Proof (cont'd).

$$\mathcal{M}(T, e_1, \ldots, e_n) = \begin{pmatrix} a_{1,1} & \ldots & a_{1,n} \\ & \ldots & \vdots \\ 0 & & a_{n,n} \end{pmatrix}$$

Then for the next column:

$$||Te_2||^2 = |a_{2,2}|^2$$

and

$$||T^*e_2||^2 = |a_{2,2}|^2 + |a_{2,3}|^2 + \ldots + |a_{2,n}|^2$$

since T is normal, these are equal.

Thus, all the entries $a_{2,k}$ are zero except possibly $a_{2,2}$.

FD • MATH 110 • July 25, 2023

Proof (cont'd).

$$\mathcal{M}(T, e_1, \ldots, e_n) = \begin{pmatrix} a_{1,1} & \ldots & a_{1,n} \\ & \ldots & \vdots \\ 0 & & a_{n,n} \end{pmatrix}$$

Then for the next column:

$$||Te_2||^2 = |a_{2,2}|^2$$

and

$$||T^*e_2||^2 = |a_{2,2}|^2 + |a_{2,3}|^2 + \ldots + |a_{2,n}|^2$$

since T is normal, these are equal.

Thus, all the entries $a_{2,k}$ are zero except possibly $a_{2,2}$. Repeating, we see that $\mathcal{M}(T)$ is **diagonal**!

Theorem:

Suppose $\mathbb{F} = \mathbb{R}$ and $T \in \mathcal{L}(V)$. Then the following are equivalent:

- 1. T is self-adjoint
- 2. V has an orthonormal basis consiting of eigenvectors of T
- 3. *T* has a diagonal matrix with respect to some orthonormal basis of *V*

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and $b, c \in \mathbb{R}$ such that $b^2 < 4c$. Then $T^2 + bT + cI$ is invertible.

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and $b, c \in \mathbb{R}$ such that $b^2 < 4c$. Then $T^2 + bT + cI$ is invertible.

Proof.

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and $b, c \in \mathbb{R}$ such that $b^2 < 4c$. Then $T^2 + bT + cI$ is invertible.

Proof.

$$\langle (T^2 + bT + cI)v, v \rangle = \langle T^2v, v \rangle + b\langle Tv, v \rangle + c\langle v, v \rangle$$

$$= \langle Tv, Tv \rangle + b\langle Tv, v \rangle + c||v||^2$$

$$\ge ||Tv||^2 - |b|||Tv|||v|| + c||v||^2$$

$$= \left(||Tv|| - \frac{|b|||v||^2}{2} \right)^2 + \left(c - \frac{b^2}{4}\right) ||v||^2$$

$$> 0$$

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and $b, c \in \mathbb{R}$ such that $b^2 < 4c$. Then $T^2 + bT + cI$ is invertible.

Proof.

$$\langle (T^2 + bT + cI)v, v \rangle = \langle T^2v, v \rangle + b \langle Tv, v \rangle + c \langle v, v \rangle$$

$$= \langle Tv, Tv \rangle + b \langle Tv, v \rangle + c ||v||^2$$

$$\ge ||Tv||^2 - |b|||Tv|||v|| + c ||v||^2$$

$$= \left(||Tv|| - \frac{|b|||v||^2}{2} \right)^2 + \left(c - \frac{b^2}{4}\right) ||v||^2$$

$$> 0$$

Implies $(T^2 + bT + cI)v \neq 0$ (bc self-adjoint) and $(T^2 + bT + cI)$ is injective.

Notice that we used, from last lecture:

Prop'n [Axl14]:

For *T* a self-adjoint operator on *V* a \mathbb{C} or \mathbb{R} -vector space, such that $\langle Tv, v \rangle = 0$ for all $v \in V$. Then T = 0.

In general, if V is a \mathbb{R} -vector space if T is not self-adjoint $\langle Tv, v \rangle = 0$ for all $v \in V$ does not imply T = 0.

Prop'n:

S'pose $V \neq \{0\}$ and $T \in \mathcal{L}(V)$ is self-adjoint. Then T has an eigenvalue.

Prop'n:

S'pose $V \neq \{0\}$ and $T \in \mathcal{L}(V)$ is self-adjoint. Then T has an eigenvalue.

Proof.

Prop'n:

S'pose $V \neq \{0\}$ and $T \in \mathcal{L}(V)$ is self-adjoint. Then T has an eigenvalue.

Proof.

• $v, Tv, T^2v, \ldots, T^nv$ are linearly dependent

Prop'n:

S'pose $V \neq \{0\}$ and $T \in \mathcal{L}(V)$ is self-adjoint. Then T has an eigenvalue.

Proof.

- $v, Tv, T^2v, \ldots, T^nv$ are linearly dependent
- Write as polynomial:

$$0 = a_0 v + a_1 T v + \ldots + a_n T^n v$$

Prop'n:

S'pose $V \neq \{0\}$ and $T \in \mathcal{L}(V)$ is self-adjoint. Then T has an eigenvalue.

Proof.

- $v, Tv, T^2v, \ldots, T^nv$ are linearly dependent
- Write as polynomial:

$$0 = a_0 v + a_1 T v + \ldots + a_n T^n v$$

Can factorize as:

$$c(T^2+b_1T+c_1I)\cdots(T^2+b_MT+c_MI)(T-\lambda_1I)\cdots(T-\lambda_mI)=0$$

Prop'n:

S'pose $V \neq \{0\}$ and $T \in \mathcal{L}(V)$ is self-adjoint. Then T has an eigenvalue.

Proof.

- $v, Tv, T^2v, \ldots, T^nv$ are linearly dependent
- Write as polynomial:

$$0 = a_0 v + a_1 T v + \ldots + a_n T^n v$$

Can factorize as:

 $c(T^2 + b_1T + c_1I) \cdots (T^2 + b_MT + c_MI)(T - \lambda_1I) \cdots (T - \lambda_mI) = 0$

But the quadratic terms are invertible, so for some λ_j , $T - \lambda_j I$ is not injective and T has an eigenvalue.

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

- **1**. U^{\perp} is invariant under *T*
- 2. $T|_U \in \mathcal{L}(U)$ is self-adjoint
- 3. $T|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ is self-adjoint

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

- **1**. U^{\perp} is invariant under *T*
- 2. $T|_U \in \mathcal{L}(U)$ is self-adjoint
- 3. $T|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ is self-adjoint

Proof.

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

- 1. U^{\perp} is invariant under T
- 2. $T|_U \in \mathcal{L}(U)$ is self-adjoint
- 3. $T|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ is self-adjoint

Proof. For (1), suppose $v \in U^{\perp}$, then for any $u \in U$:

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

- 1. U^{\perp} is invariant under T
- 2. $T|_U \in \mathcal{L}(U)$ is self-adjoint
- 3. $T|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ is self-adjoint

Proof. For (1), suppose $v \in U^{\perp}$, then for any $u \in U$:

$$\langle Tv, u \rangle = \langle v, Tu \rangle = 0.$$

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

- 1. U^{\perp} is invariant under T
- 2. $T|_U \in \mathcal{L}(U)$ is self-adjoint
- 3. $T|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ is self-adjoint

Proof. For (1), suppose $v \in U^{\perp}$, then for any $u \in U$:

$$\langle Tv, u \rangle = \langle v, Tu \rangle = 0.$$

Implies $Tv \in U^{\perp}$.

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

- 1. U^{\perp} is invariant under T
- 2. $T|_U \in \mathcal{L}(U)$ is self-adjoint
- 3. $T|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ is self-adjoint

Proof (cont'd).

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

- 1. U^{\perp} is invariant under T
- 2. $T|_U \in \mathcal{L}(U)$ is self-adjoint
- 3. $T|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ is self-adjoint

Proof (cont'd). For (2), suppose $u, v \in U$, then:

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

- 1. U^{\perp} is invariant under T
- 2. $T|_U \in \mathcal{L}(U)$ is self-adjoint
- 3. $T|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ is self-adjoint

Proof (cont'd). For (2), suppose $u, v \in U$, then:

$$\langle T|_U(u), v \rangle = \langle Tu, v \rangle = \langle u, Tv \rangle = \langle u, T|_Uv \rangle.$$

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

- 1. U^{\perp} is invariant under T
- 2. $T|_U \in \mathcal{L}(U)$ is self-adjoint
- 3. $T|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ is self-adjoint

Proof (cont'd). For (2), suppose $u, v \in U$, then:

$$\langle T|_U(u), v \rangle = \langle Tu, v \rangle = \langle u, Tv \rangle = \langle u, T|_Uv \rangle.$$

Implies $T|_U$ is self-adjoint.

Prop'n:

S'pose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then

- 1. U^{\perp} is invariant under T
- 2. $T|_U \in \mathcal{L}(U)$ is self-adjoint
- 3. $T|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ is self-adjoint

Proof (cont'd). For (2), suppose $u, v \in U$, then:

$$\langle T|_U(u), v \rangle = \langle Tu, v \rangle = \langle u, Tv \rangle = \langle u, T|_Uv \rangle.$$

Implies $T|_U$ is self-adjoint.

For (3), replace U with U^{\perp} in (2). \Box .

Theorem:

Suppose $\mathbb{F} = \mathbb{R}$ and $T \in \mathcal{L}(V)$. Then the following are equivalent:

- 1. T is self-adjoint
- 2. V has an orthonormal basis consiting of eigenvectors of T
- 3. *T* has a diagonal matrix with respect to some orthonormal basis of *V*

Proof.

Theorem:

Suppose $\mathbb{F} = \mathbb{R}$ and $T \in \mathcal{L}(V)$. Then the following are equivalent:

- 1. T is self-adjoint
- 2. V has an orthonormal basis consiting of eigenvectors of T
- 3. *T* has a diagonal matrix with respect to some orthonormal basis of *V*

Proof. We show (3) \implies (1),

Theorem:

Suppose $\mathbb{F} = \mathbb{R}$ and $T \in \mathcal{L}(V)$. Then the following are equivalent:

- 1. T is self-adjoint
- 2. V has an orthonormal basis consiting of eigenvectors of T
- 3. *T* has a diagonal matrix with respect to some orthonormal basis of *V*

Proof. We show (3) \implies (1),i.e. desired diagonal matrix implies self-adjoint.

Theorem:

Suppose $\mathbb{F} = \mathbb{R}$ and $T \in \mathcal{L}(V)$. Then the following are equivalent:

- 1. T is self-adjoint
- 2. V has an orthonormal basis consiting of eigenvectors of T
- 3. *T* has a diagonal matrix with respect to some orthonormal basis of *V*

Proof. We show (3) \implies (1),i.e. desired diagonal matrix implies self-adjoint.

A diagonal matrix is equal to its transpose and the complex conjugate of any real number is itself, $T = T^*$.

Proof (cont'd).

We (1) \Leftrightarrow (2): self-adjoint gives basis of orthonormal eigenvectors, using induction on dimension.

Proof (cont'd).

We (1) \Leftrightarrow (2): self-adjoint gives basis of orthonormal eigenvectors, using induction on dimension.

Base case:

Proof (cont'd).

We (1) \Leftrightarrow (2): self-adjoint gives basis of orthonormal eigenvectors, using induction on dimension.

Base case: dim V = 1. Pick the basis to be $\{1\}$

Proof (cont'd).

We (1) \Leftrightarrow (2): self-adjoint gives basis of orthonormal eigenvectors, using induction on dimension.

Base case: dim V = 1. Pick the basis to be $\{1\}$

Induction: Assume $T \in \mathcal{L}(V)$ self-adjoint and all vector spaces of smaller dimension have orthonormal eigenbases.

Proof (cont'd).

Induction: Assume $T \in \mathcal{L}(V)$ self-adjoint and all vector spaces of smaller dimension have orthonormal eigenbases.

Proof (cont'd).

Induction: Assume $T \in \mathcal{L}(V)$ self-adjoint and all vector spaces of smaller dimension have orthonormal eigenbases.

We know T has an eigenvalue λ .

Proof (cont'd).

Induction: Assume $T \in \mathcal{L}(V)$ self-adjoint and all vector spaces of smaller dimension have orthonormal eigenbases.

We know *T* has an eigenvalue λ . Choose *u* such that $Tu = \lambda u$ and ||u|| = 1.

Proof (cont'd).

Induction: Assume $T \in \mathcal{L}(V)$ self-adjoint and all vector spaces of smaller dimension have orthonormal eigenbases.

We know *T* has an eigenvalue λ . Choose *u* such that $Tu = \lambda u$ and ||u|| = 1.

Let U = span(u). U is a 1-dimensional invariant subspace $T|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ is self-adjoint.

Proof (cont'd).

Induction: Assume $T \in \mathcal{L}(V)$ self-adjoint and all vector spaces of smaller dimension have orthonormal eigenbases.

We know *T* has an eigenvalue λ . Choose *u* such that $Tu = \lambda u$ and ||u|| = 1.

Let U = span(u). U is a 1-dimensional invariant subspace $T|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ is self-adjoint.

By hypothesis, $T|_{U^{\perp}}$ has an orthonormal basis of eigenvectors.

Proof (cont'd).

Induction: Assume $T \in \mathcal{L}(V)$ self-adjoint and all vector spaces of smaller dimension have orthonormal eigenbases.

We know *T* has an eigenvalue λ . Choose *u* such that $Tu = \lambda u$ and ||u|| = 1.

Let U = span(u). U is a 1-dimensional invariant subspace $T|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ is self-adjoint.

By hypothesis, $T|_{U^{\perp}}$ has an orthonormal basis of eigenvectors.

Adjoin this basis to u, found a basis of orthonormal eigenvectors of V.

Proof (cont'd).

So we've show (3) \implies (1) \implies (2).

Proof (cont'd).

So we've show (3) \implies (1) \implies (2). And we already know, (2) \implies (3).

Proof (cont'd).

So we've show (3) \implies (1) \implies (2). And we already know, (2) \implies (3). So, we're done! \Box .

[Ax114] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.