Lecture 1: Introduction and Vector Spaces

 MATH 110-3Franny Dean

June 20, 2023

Introductions

Franny Dean, she/her
frances_dean@berkeley.edu

You:

- Name

■ Year at Berkeley or elsewhere
■ A hobby

Logistics

■ Syllabus
■ Textbook

- Assignments and Exams

■ LaTeX
■ Gradescope
■ Website
■ *First Homework

Vector Spaces

Vector Spaces

Loosely, we care about

Objects:

vector \in Vector Spaces

scalars \in Fields

Fields

Def'n:

A field is a collection of objects with two binary operations (adding and multiplying), special elements, 0 and $1,0 \neq 1$ satisfying nice properties:

Fields

Def'n:

A field is a collection of objects with two binary operations (adding and multiplying), special elements, 0 and $1,0 \neq 1$ satisfying nice properties:

- commutativity

■ associativity

- identities
- additive inverses
- multiplicative inverse

■ distributive property
(Axler 1.3)

Lecture 1

Field Examples

1.3 Properties of complex arithmetic
$\square \mathbb{R}$

commutativity

$\alpha+\beta=\beta+\alpha$ and $\alpha \beta=\beta \alpha$ for all $\alpha, \beta \in \mathbf{C} ;$
associativity
$(\alpha+\beta)+\lambda=\alpha+(\beta+\lambda)$ and $(\alpha \beta) \lambda=\alpha(\beta \lambda)$ for all $\alpha, \beta, \lambda \in \mathbf{C} ;$

identities

$\lambda+0=\lambda$ and $\lambda 1=\lambda$ for all $\lambda \in \mathbf{C} ;$
additive inverse
for every $\alpha \in \mathbf{C}$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha+\beta=0$; multiplicative inverse
for every $\alpha \in \mathbf{C}$ with $\alpha \neq 0$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha \beta=1$;
distributive property
$\lambda(\alpha+\beta)=\lambda \alpha+\lambda \beta$ for all $\lambda, \alpha, \beta \in \mathbf{C}$.

Lecture 1

Field Examples

1.3 Properties of complex arithmetic

commutativity
$\alpha+\beta=\beta+\alpha$ and $\alpha \beta=\beta \alpha$ for all $\alpha, \beta \in \mathbf{C} ;$
associativity
$(\alpha+\beta)+\lambda=\alpha+(\beta+\lambda)$ and $(\alpha \beta) \lambda=\alpha(\beta \lambda)$ for all $\alpha, \beta, \lambda \in \mathbf{C} ;$

identities

$\lambda+0=\lambda$ and $\lambda 1=\lambda$ for all $\lambda \in \mathbf{C} ;$
additive inverse
for every $\alpha \in \mathbf{C}$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha+\beta=0$;

multiplicative inverse

for every $\alpha \in \mathbf{C}$ with $\alpha \neq 0$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha \beta=1$;
distributive property
$\lambda(\alpha+\beta)=\lambda \alpha+\lambda \beta$ for all $\lambda, \alpha, \beta \in \mathbf{C}$.

Lecture 1

Field Examples

1.3 Properties of complex arithmetic

commutativity
$\alpha+\beta=\beta+\alpha$ and $\alpha \beta=\beta \alpha$ for all $\alpha, \beta \in \mathbf{C} ;$
associativity
$(\alpha+\beta)+\lambda=\alpha+(\beta+\lambda)$ and $(\alpha \beta) \lambda=\alpha(\beta \lambda)$ for all $\alpha, \beta, \lambda \in \mathbf{C} ;$
dentities
$\lambda+0=\lambda$ and $\lambda 1=\lambda$ for all $\lambda \in \mathbf{C} ;$ additive inverse
for every $\alpha \in \mathbf{C}$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha+\beta=0$; multiplicative inverse
for every $\alpha \in \mathbf{C}$ with $\alpha \neq 0$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha \beta=1$;
distributive property
$\lambda(\alpha+\beta)=\lambda \alpha+\lambda \beta$ for all $\lambda, \alpha, \beta \in \mathbf{C}$.

Lecture 1

Field Examples

1.3 Properties of complex arithmetic

commutativity
$\alpha+\beta=\beta+\alpha$ and $\alpha \beta=\beta \alpha$ for all $\alpha, \beta \in \mathbf{C} ;$
associativity
$(\alpha+\beta)+\lambda=\alpha+(\beta+\lambda)$ and $(\alpha \beta) \lambda=\alpha(\beta \lambda)$ for all $\alpha, \beta, \lambda \in \mathbf{C} ;$
identities
$\lambda+0=\lambda$ and $\lambda 1=\lambda$ for all $\lambda \in \mathbf{C} ;$
additive inverse
for every $\alpha \in \mathbf{C}$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha+\beta=0$; multiplicative inverse
for every $\alpha \in \mathbf{C}$ with $\alpha \neq 0$, there exists a unique $\beta \in \mathbf{C}$ such that ?
$\alpha \beta=1 ;$
distributive property
$\lambda(\alpha+\beta)=\lambda \alpha+\lambda \beta$ for all $\lambda, \alpha, \beta \in \mathbf{C}$.

Lecture 1

Field Examples

1.3 Properties of complex arithmetic

commutativity

$\alpha+\beta=\beta+\alpha$ and $\alpha \beta=\beta \alpha$ for all $\alpha, \beta \in \mathbf{C} ;$
associativity
$(\alpha+\beta)+\lambda=\alpha+(\beta+\lambda)$ and $(\alpha \beta) \lambda=\alpha(\beta \lambda)$ for all $\alpha, \beta, \lambda \in \mathbf{C} ;$
identities
$\lambda+0=\lambda$ and $\lambda 1=\lambda$ for all $\lambda \in \mathbf{C} ;$
additive inverse
for every $\alpha \in \mathbf{C}$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha+\beta=0$; multiplicative inverse
for every $\alpha \in \mathbf{C}$ with $\alpha \neq 0$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha \beta=1$;
distributive property
$\lambda(\alpha+\beta)=\lambda \alpha+\lambda \beta$ for all $\lambda, \alpha, \beta \in \mathbf{C}$.
$\square \mathbb{R}$
$\square<$
$\square 0$

■ Z ? Non-example

Lecture 1

Field Examples

1.3 Properties of complex arithmetic
commutativity
$\alpha+\beta=\beta+\alpha$ and $\alpha \beta=\beta \alpha$ for all $\alpha, \beta \in \mathbf{C} ;$
associativity
$(\alpha+\beta)+\lambda=\alpha+(\beta+\lambda)$ and $(\alpha \beta) \lambda=\alpha(\beta \lambda)$ for all $\alpha, \beta, \lambda \in \mathbf{C} ;$
identities
$\lambda+0=\lambda$ and $\lambda 1=\lambda$ for all $\lambda \in \mathbf{C} ;$
additive inverse
for every $\alpha \in \mathbf{C}$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha+\beta=0$;
multiplicative inverse
for every $\alpha \in \mathbf{C}$ with $\alpha \neq 0$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha \beta=1$;
distributive property
$\lambda(\alpha+\beta)=\lambda \alpha+\lambda \beta$ for all $\lambda, \alpha, \beta \in \mathbf{C}$.
$\square \mathbb{R}$
$\square<$
$\square 0$

■ \mathbb{Z} ? Non-example

- $\{0,1\}$?

Lecture 1

Field Examples

1.3 Properties of complex arithmetic
commutativity
$\alpha+\beta=\beta+\alpha$ and $\alpha \beta=\beta \alpha$ for all $\alpha, \beta \in \mathbf{C} ;$
associativity
$(\alpha+\beta)+\lambda=\alpha+(\beta+\lambda)$ and $(\alpha \beta) \lambda=\alpha(\beta \lambda)$ for all $\alpha, \beta, \lambda \in \mathbf{C} ;$
identities
$\lambda+0=\lambda$ and $\lambda 1=\lambda$ for all $\lambda \in \mathbf{C} ;$
additive inverse
for every $\alpha \in \mathbf{C}$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha+\beta=0$;
multiplicative inverse
for every $\alpha \in \mathbf{C}$ with $\alpha \neq 0$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha \beta=1$;
distributive property
$\lambda(\alpha+\beta)=\lambda \alpha+\lambda \beta$ for all $\lambda, \alpha, \beta \in \mathbf{C}$.
$\square \mathbb{R}$
$\square<$
$\square 0$

■ Z ? Non-example
$\square\{0,1\} ?$ Yes, \mathbb{H}_{2}

Vector Spaces

Def'n:

An \mathbb{F}-Vector Space, V, is a collection of objects called vectors with two operations:

■ addition:

$$
\begin{gathered}
\vec{u}, \vec{v} \in V \\
\vec{u}+\vec{v} \in V
\end{gathered}
$$

Vector Spaces

Def'n:

An \mathbb{F}-Vector Space, V, is a collection of objects called vectors with two operations:

■ addition:

$$
\begin{gathered}
\vec{u}, \vec{v} \in V \\
\vec{u}+\vec{v} \in V
\end{gathered}
$$

■ scalar multiplication:

$$
\begin{gathered}
\lambda \in \mathbb{F}, \vec{v} \in V \\
\lambda \vec{V} \in V
\end{gathered}
$$

... satisfying properties in Axler 1.9.

Vector Spaces

Def'n:

An \mathbb{F}-Vector Space, V, is a collection of objects called vectors with two operations:

■ addition:

$$
\begin{gathered}
\vec{u}, \vec{v} \in V \\
\vec{u}+\vec{v} \in V
\end{gathered}
$$

- scalar multiplication:

$$
\begin{gathered}
\lambda \in \mathbb{F}, \vec{v} \in V \\
\lambda \vec{V} \in V
\end{gathered}
$$

... satisfying properties in Axler 1.9.

We cannot multiply \vec{u} and \vec{v}.

Vector Space Examples

1.19 Definition vector space

$■ \mathbb{R}$
A vector space is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold:
commutativity
$u+v=v+u$ for all $u, v \in V ;$
associativity
$(u+v)+w=u+(v+w)$ and $(a b) v=a(b v)$ for all $u, v, w \in V$ and all $a, b \in \mathbf{F}$;
additive identity
there exists an element $0 \in V$ such that $v+0=v$ for all $v \in V$;
additive inverse
for every $v \in V$, there exists $w \in V$ such that $v+w=0$;
multiplicative identity
$l v=v$ for all $v \in V ;$
distributive properties
$a(u+v)=a u+a v$ and $(a+b) v=a v+b v$ for all $a, b \in \mathbf{F}$ and all $u, v \in V$.

Vector Space Examples

1.19 Definition vector space

$\square \mathbb{R}$
A vector space is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold:
commutativity
$u+v=v+u$ for all $u, v \in V ;$
associativity
$(u+v)+w=u+(v+w)$ and $(a b) v=a(b v)$ for all $u, v, w \in V$ and all $a, b \in \mathbf{F}$;
additive identity
there exists an element $0 \in V$ such that $v+0=v$ for all $v \in V$;
additive inverse
for every $v \in V$, there exists $w \in V$ such that $v+w=0$;
multiplicative identity
$l v=v$ for all $v \in V ;$
distributive properties
$a(u+v)=a u+a v$ and $(a+b) v=a v+b v$ for all $a, b \in \mathbf{F}$ and all $u, v \in V$.

Vector Space Examples

1.19 Definition vector space

$\square \mathbb{R}$
A vector space is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold:
commutativity
$u+v=v+u$ for all $u, v \in V ;$
$\square \mathbb{R}^{n}$
associativity
$(u+v)+w=u+(v+w)$ and $(a b) v=a(b v)$ for all $u, v, w \in V$ and all $a, b \in \mathbf{F}$;
additive identity
there exists an element $0 \in V$ such that $v+0=v$ for all $v \in V$;
additive inverse
for every $v \in V$, there exists $w \in V$ such that $v+w=0$;
multiplicative identity
$l v=v$ for all $v \in V ;$
distributive properties
$a(u+v)=a u+a v$ and $(a+b) v=a v+b v$ for all $a, b \in \mathbf{F}$ and all $u, v \in V$.

Vector Space Examples

1.19 Definition vector space

A vector space is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold:

commutativity

$u+v=v+u$ for all $u, v \in V ;$
associativity
$(u+v)+w=u+(v+w)$ and $(a b) v=a(b v)$ for all $u, v, w \in V$ and all $a, b \in \mathbf{F}$;
additive identity
there exists an element $0 \in V$ such that $v+0=v$ for all $v \in V$;
additive inverse
for every $v \in V$, there exists $w \in V$ such that $v+w=0$;
multiplicative identity
$l v=v$ for all $v \in V ;$
distributive properties
$a(u+v)=a u+a v$ and $(a+b) v=a v+b v$ for all $a, b \in \mathbf{F}$ and all $u, v \in V$.

■ \mathbb{R}
$\square \mathbb{R}^{n}$
$\square \mathbb{H} n$
$\square \mathbb{H} \infty ?$

Vector Space Examples

1.19 Definition vector space

A vector space is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold:

commutativity

$u+v=v+u$ for all $u, v \in V ;$
associativity
$(u+v)+w=u+(v+w)$ and $(a b) v=a(b v)$ for all $u, v, w \in V$ and all $a, b \in \mathbf{F}$;
additive identity
there exists an element $0 \in V$ such that $v+0=v$ for all $v \in V$;
additive inverse
for every $v \in V$, there exists $w \in V$ such that $v+w=0$;
multiplicative identity
$l v=v$ for all $v \in V ;$
distributive properties
$a(u+v)=a u+a v$ and $(a+b) v=a v+b v$ for all $a, b \in \mathbf{F}$ and all $u, v \in V$.

■ \mathbb{R}

- \mathbb{R}^{n}
- \mathbb{F}^{n}
$\square \mathbb{F}^{\infty}$?
$\square \mathbb{F}^{S}$ i.e. $\mathbb{R}^{[0,1]}$? (set of functions $S \rightarrow \mathbb{F}$)

Propositions

Prop'n 1:

A vector space has a unique additive identity.

Prop'n 2:

Each element (vector) in a vector space has a unique additive inverse.

Propositions

Proof of Prop'n 1:

Propositions

Proof of Prop'n 1:

Let V be a vector space.

Propositions

Proof of Prop'n 1:

Let V be a vector space.
Let $\overrightarrow{0}, \overrightarrow{0}^{*}$ both be additive identities.

Propositions

Proof of Prop'n 1:

Let V be a vector space.
Let $\overrightarrow{0}, \overrightarrow{0}^{*}$ both be additive identities.
Then $\overrightarrow{0}=\overrightarrow{0}+\overrightarrow{0}^{*}$ because $\overrightarrow{0}^{*}$ is an additive identity (Def'n).

Propositions

Proof of Prop'n 1:

Let V be a vector space.
Let $\overrightarrow{0}, \overrightarrow{0}^{*}$ both be additive identities.
Then $\overrightarrow{0}=\overrightarrow{0}+\overrightarrow{0}^{*}$ because $\overrightarrow{0}^{*}$ is an additive identity (Def'n).
And $\overrightarrow{0}+\overrightarrow{0}^{*}=\overrightarrow{0}^{*}$ because $\overrightarrow{0}$ is an additive identity (Def'n).

Propositions

Proof of Prop'n 1:

Let V be a vector space.
Let $\overrightarrow{0}, \overrightarrow{0}^{*}$ both be additive identities.
Then $\overrightarrow{0}=\overrightarrow{0}+\overrightarrow{0}^{*}$ because $\overrightarrow{0}^{*}$ is an additive identity (Def'n).
And $\overrightarrow{0}+\overrightarrow{0}^{*}=\overrightarrow{0}^{*}$ because $\overrightarrow{0}$ is an additive identity (Def'n).
Thus, $\overrightarrow{0}=\overrightarrow{0}+\overrightarrow{0}^{*}=\overrightarrow{0}^{*}$.

Propositions

Proof of Prop'n 1:

Let V be a vector space.
Let $\overrightarrow{0}, \overrightarrow{0}^{*}$ both be additive identities.
Then $\overrightarrow{0}=\overrightarrow{0}+\overrightarrow{0}^{*}$ because $\overrightarrow{0}^{*}$ is an additive identity (Def'n).
And $\overrightarrow{0}+\overrightarrow{0}^{*}=\overrightarrow{0}^{*}$ because $\overrightarrow{0}$ is an additive identity (Def'n).
Thus, $\overrightarrow{0}=\overrightarrow{0}+\overrightarrow{0}^{*}=\overrightarrow{0}^{*}$.
Q.E.D.

Propositions

Can you do 2?

Prop'n 2:

Each element (vector) in a vector space has a unique additive inverse.

Solution: Axler 1.26

Lecture 1

References

[Axl14] Sheldon Axter.
Linear Algebra Done Right.
Undergraduate Texts in Mathematics. Springer Cham, 2014.

