

Lecture 20: Positive Operators and Isometries

MATH 110-3

Franny Dean

July 26, 2023

Def'n:

An operator $T \in \mathcal{L}(V)$ is called **positive** if T is self-adjoint and

 $\langle T v, v \rangle \geq 0$

for all $v \in V$.

Def'n:

An operator $T \in \mathcal{L}(V)$ is called **positive** if T is self-adjoint and

 $\langle Tv, v \rangle \geq 0$

for all $v \in V$.

Recall:

Over \mathbb{C} , $\langle Tv, v \rangle$ is real for all v if and only if $T = T^*$.

Def'n:

An operator $T \in \mathcal{L}(V)$ is called **positive** if T is self-adjoint and

 $\langle Tv, v \rangle \geq 0$

for all $v \in V$.

Recall:

Over \mathbb{C} , $\langle Tv, v \rangle$ is real for all v if and only if $T = T^*$.

Examples:

Def'n:

An operator $T \in \mathcal{L}(V)$ is called **positive** if T is self-adjoint and

 $\langle Tv, v \rangle \geq 0$

for all $v \in V$.

Recall:

Over \mathbb{C} , $\langle Tv, v \rangle$ is real for all v if and only if $T = T^*$.

Examples:

- $U \subseteq V, P_U$ is a positive operator
- $T \in \mathcal{L}(V)$ self-adjoint $b, c \in \mathbb{R}$ such that $b^2 < 4c$, we saw last lecture that $T^2 + bT + cI$ is a positive operator

Positive operator refers to $T \in \mathcal{L}(V)$. Positive-definite refers to $\mathcal{M}(T)$.

- Positive operator refers to $T \in \mathcal{L}(V)$. Positive-definite refers to $\mathcal{M}(T)$.
- A **positive semi-definite** matrix is one such that corresponds to an operator *T* such that $\langle Tv, v \rangle \ge 0$.

- Positive operator refers to $T \in \mathcal{L}(V)$. Positive-definite refers to $\mathcal{M}(T)$.
- A **positive semi-definite** matrix is one such that corresponds to an operator *T* such that $\langle Tv, v \rangle \ge 0$.
- The usual definition is a matrix such that v* M(T)v ≥ 0. Why are these the same?

Def'n:

An operator *R* is called a **square root** of an operator *T* if $R^2 = T$.

Def'n:

An operator *R* is called a **square root** of an operator *T* if $R^2 = T$.

Example:

Def'n:

An operator *R* is called a **square root** of an operator *T* if $R^2 = T$.

Example:

$$T \in \mathcal{L}(\mathbb{F}^3)$$
 defined $T(z_1, z_2, z_3) = (z_3, 0, 0)$

Then $R \in \mathcal{L}(\mathbb{F}^3)$ defined $R(z_1, z_2, z_3) = (z_2, z_3, 0)$ is a square root of T.

Characterization of Positive Operators

Prop'n:

For $T \in \mathcal{L}(V)$. The following are equivalent:

- (a) T is positive
- (b) T is self-adjoint and all the eigenvalues of T are nonnegative
- (c) T has a positive square root
- (d) T has a self-adjoint square root
- (e) there exists an operator $R \in \mathcal{L}(V)$ such that $R^*R = T$

 $(a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (d) \Longrightarrow (e) \Longrightarrow (a)$

$$(a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (d) \Longrightarrow (e) \Longrightarrow (a)$$

S'pose (*a*): *T* is self-adjoint by definition. If $Tv = \lambda v$,

$$\mathbf{0} \leq \langle \mathbf{T} \mathbf{v}, \mathbf{v} \rangle = \langle \lambda \mathbf{v}, \mathbf{v} \rangle = \lambda \langle \mathbf{v}, \mathbf{v} \rangle.$$

 $(a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (d) \Longrightarrow (e) \Longrightarrow (a)$

S'pose (*a*): *T* is self-adjoint by definition. If $Tv = \lambda v$,

$$0 \leq \langle \mathit{T} \mathit{v}, \mathit{v} \rangle = \langle \lambda \mathit{v}, \mathit{v} \rangle = \lambda \langle \mathit{v}, \mathit{v} \rangle.$$

S'pose (b):

$$(a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (d) \Longrightarrow (e) \Longrightarrow (a)$$

S'pose (*a*): *T* is self-adjoint by definition. If $Tv = \lambda v$,

$$0 \leq \langle T v, v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle.$$

S'pose (b): Spectral Thm gives an orthonormal basis e_1, \ldots, e_n of eigenvectors.

$$(a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (d) \Longrightarrow (e) \Longrightarrow (a)$$

S'pose (*a*): *T* is self-adjoint by definition. If $Tv = \lambda v$,

$$0 \leq \langle T v, v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle.$$

S'pose (b): Spectral Thm gives an orthonormal basis e_1, \ldots, e_n of eigenvectors. Let λ_i be the nonnegative eigenvalues.

$$(a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (d) \Longrightarrow (e) \Longrightarrow (a)$$

S'pose (*a*): *T* is self-adjoint by definition. If $Tv = \lambda v$,

$$0 \leq \langle T \mathbf{v}, \mathbf{v} \rangle = \langle \lambda \mathbf{v}, \mathbf{v} \rangle = \lambda \langle \mathbf{v}, \mathbf{v} \rangle.$$

S'pose (b): Spectral Thm gives an orthonormal basis e_1, \ldots, e_n of eigenvectors. Let λ_i be the nonnegative eigenvalues.

$${\it Re}_j:=\sqrt{\lambda_j}e_j.$$

$$(a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (d) \Longrightarrow (e) \Longrightarrow (a)$$

S'pose (*a*): *T* is self-adjoint by definition. If $Tv = \lambda v$,

$$0 \leq \langle T \mathbf{v}, \mathbf{v} \rangle = \langle \lambda \mathbf{v}, \mathbf{v} \rangle = \lambda \langle \mathbf{v}, \mathbf{v} \rangle.$$

S'pose (b): Spectral Thm gives an orthonormal basis e_1, \ldots, e_n of eigenvectors. Let λ_i be the nonnegative eigenvalues.

$$Re_j := \sqrt{\lambda_j}e_j.$$

We have $(c) \implies (d)$ by definition.

 $(a) \implies (b) \implies (c) \implies (d) \implies (e) \implies (a)$

S'pose (*a*): *T* is self-adjoint by definition. If $Tv = \lambda v$,

$$0 \leq \langle T \mathbf{v}, \mathbf{v} \rangle = \langle \lambda \mathbf{v}, \mathbf{v} \rangle = \lambda \langle \mathbf{v}, \mathbf{v} \rangle.$$

S'pose (*b*): Spectral Thm gives an orthonormal basis e_1, \ldots, e_n of eigenvectors. Let λ_i be the nonnegative eigenvalues.

$$Re_j := \sqrt{\lambda_j} e_j.$$

We have $(c) \implies (d)$ by definition.

S'pose (d) : $T = R^2$ for self-adjoint R. Then $T = R^*R$ because $R = R^*$.

 $(a) \implies (b) \implies (c) \implies (d) \implies (e) \implies (a)$

S'pose (*a*): *T* is self-adjoint by definition. If $Tv = \lambda v$,

$$0 \leq \langle T v, v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle.$$

S'pose (*b*): Spectral Thm gives an orthonormal basis e_1, \ldots, e_n of eigenvectors. Let λ_i be the nonnegative eigenvalues.

$$Re_j := \sqrt{\lambda_j} e_j.$$

We have $(c) \implies (d)$ by definition.

S'pose (d) : $T = R^2$ for self-adjoint R. Then $T = R^*R$ because $R = R^*$.

S'pose (e) : Let $R \in \mathcal{L}(V)$ such that $T = R^*R$.

 $(a) \implies (b) \implies (c) \implies (d) \implies (e) \implies (a)$

S'pose (*a*): *T* is self-adjoint by definition. If $Tv = \lambda v$,

$$0 \leq \langle T v, v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle.$$

S'pose (*b*): Spectral Thm gives an orthonormal basis e_1, \ldots, e_n of eigenvectors. Let λ_i be the nonnegative eigenvalues.

$$Re_j := \sqrt{\lambda_j} e_j.$$

We have $(c) \implies (d)$ by definition.

S'pose (d) : $T = R^2$ for self-adjoint R. Then $T = R^*R$ because $R = R^*$.

S'pose (e) : Let $R \in \mathcal{L}(V)$ such that $T = R^*R$. Then $T^* = (R^*R)^* = R^*R = T$. So T is self-adjoint.

 $(a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (d) \Longrightarrow (e) \Longrightarrow (a)$

S'pose (*a*): *T* is self-adjoint by definition. If $Tv = \lambda v$,

$$0 \leq \langle T v, v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle.$$

S'pose (*b*): Spectral Thm gives an orthonormal basis e_1, \ldots, e_n of eigenvectors. Let λ_i be the nonnegative eigenvalues.

$$Re_j := \sqrt{\lambda_j} e_j.$$

We have $(c) \implies (d)$ by definition.

S'pose (d) : $T = R^2$ for self-adjoint R. Then $T = R^*R$ because $R = R^*$.

S'pose (e) : Let $R \in \mathcal{L}(V)$ such that $T = R^*R$. Then $T^* = (R^*R)^* = R^*R = T$. So T is self-adjoint. Also, for every $v \in V$,

$$\langle Tv, v \rangle = \langle R^* Rv, v \rangle = \langle Rv, Rv \rangle \ge 0.$$

Prop'n:

Every positive operator on V has a unique positive square root.

Prop'n:

Every positive operator on V has a unique positive square root.

Proof. S'pose $T \in \mathcal{L}(V)$ positive.

Prop'n:

Every positive operator on V has a unique positive square root.

Proof. S'pose $T \in \mathcal{L}(V)$ positive. S'pose v is an eigenvector.

Prop'n:

Every positive operator on V has a unique positive square root.

Proof. S'pose $T \in \mathcal{L}(V)$ positive. S'pose v is an eigenvector. Then $\lambda \ge 0$ and $Tv = \lambda v$.

Prop'n:

Every positive operator on V has a unique positive square root.

Proof. S'pose $T \in \mathcal{L}(V)$ positive. S'pose v is an eigenvector. Then $\lambda \ge 0$ and $Tv = \lambda v$.

Let *R* be a positive square root.

Prop'n:

Every positive operator on V has a unique positive square root.

Proof. S'pose $T \in \mathcal{L}(V)$ positive. S'pose v is an eigenvector. Then $\lambda \ge 0$ and $Tv = \lambda v$.

Let *R* be a positive square root.

We will prove $Rv = \sqrt{\lambda}v$.

Prop'n:

Every positive operator on V has a unique positive square root.

Proof. S'pose $T \in \mathcal{L}(V)$ positive. S'pose v is an eigenvector. Then $\lambda \ge 0$ and $Tv = \lambda v$.

Let *R* be a positive square root.

We will prove $Rv = \sqrt{\lambda}v$.

This determines *R* because we can pick a basis of eigenvectors by the Spectral Thm.

Proof (Cont'd). We want to show $Rv = \sqrt{\lambda}v$.

Proof (Cont'd). We want to show $Rv = \sqrt{\lambda}v$.

By the Spectral Thm, we have an orthonormal basis of eigenvectors: e_1, \ldots, e_n .

Proof (Cont'd). We want to show $Rv = \sqrt{\lambda}v$.

By the Spectral Thm, we have an orthonormal basis of eigenvectors: e_1, \ldots, e_n .

Because *R* is positive, its eigenvalues are nonnegative and we can write them as $\sqrt{\lambda_i}$ for some λ_i .

Proof (Cont'd). We want to show $Rv = \sqrt{\lambda}v$.

By the Spectral Thm, we have an orthonormal basis of eigenvectors: e_1, \ldots, e_n .

Because *R* is positive, its eigenvalues are nonnegative and we can write them as $\sqrt{\lambda_i}$ for some λ_i .

$$Rv = R(a_1e_1 + \ldots + a_ne_n) = a_1\sqrt{\lambda_1}e_1 + \ldots + a_n\sqrt{\lambda_n}e_n$$

Proof (Cont'd). We want to show $Rv = \sqrt{\lambda}v$.

By the Spectral Thm, we have an orthonormal basis of eigenvectors: e_1, \ldots, e_n .

Because *R* is positive, its eigenvalues are nonnegative and we can write them as $\sqrt{\lambda_i}$ for some λ_i .

$$Rv = R(a_1e_1 + \ldots + a_ne_n) = a_1\sqrt{\lambda_1}e_1 + \ldots + a_n\sqrt{\lambda_n}e_n$$

implying

$$R^2 v = a_1 \lambda_1 e_1 + \ldots + a_n \lambda_n e_n.$$
Proof (Cont'd). We want to show $Rv = \sqrt{\lambda}v$.

By the Spectral Thm, we have an orthonormal basis of eigenvectors: e_1, \ldots, e_n .

Because *R* is positive, its eigenvalues are nonnegative and we can write them as $\sqrt{\lambda_i}$ for some λ_i .

$$Rv = R(a_1e_1 + \ldots + a_ne_n) = a_1\sqrt{\lambda_1}e_1 + \ldots + a_n\sqrt{\lambda_n}e_n$$

implying

$$R^2 v = a_1 \lambda_1 e_1 + \ldots + a_n \lambda_n e_n.$$

But $R^2 v = T v = \lambda v$.

Proof (Cont'd). We want to show $Rv = \sqrt{\lambda}v$.

By the Spectral Thm, we have an orthonormal basis of eigenvectors: e_1, \ldots, e_n .

Because *R* is positive, its eigenvalues are nonnegative and we can write them as $\sqrt{\lambda_i}$ for some λ_i .

$$Rv = R(a_1e_1 + \ldots + a_ne_n) = a_1\sqrt{\lambda_1}e_1 + \ldots + a_n\sqrt{\lambda_n}e_n$$

implying

$$R^2 v = a_1 \lambda_1 e_1 + \ldots + a_n \lambda_n e_n.$$

But $R^2 v = T v = \lambda v$.

$$a_1\lambda e_1 + \ldots + a_n\lambda e_n = a_1\lambda_1 e_1 + \ldots + a_n\lambda_n e_n$$

Proof (Cont'd). We want to show $Rv = \sqrt{\lambda}v$.

By the Spectral Thm, we have an orthonormal basis of eigenvectors: e_1, \ldots, e_n .

Because *R* is positive, its eigenvalues are nonnegative and we can write them as $\sqrt{\lambda_i}$ for some λ_i .

$$Rv = R(a_1e_1 + \ldots + a_ne_n) = a_1\sqrt{\lambda_1}e_1 + \ldots + a_n\sqrt{\lambda_n}e_n$$

implying

$$R^2 v = a_1 \lambda_1 e_1 + \ldots + a_n \lambda_n e_n.$$

But $R^2 v = T v = \lambda v$.

$$a_1\lambda e_1 + \ldots + a_n\lambda e_n = a_1\lambda_1 e_1 + \ldots + a_n\lambda_n e_n$$

and $a_j(\lambda - \lambda_j) = 0$ for $j = 1, \ldots, n$.

Proof (Cont'd). We want to show $Rv = \sqrt{\lambda}v$.

By the Spectral Thm, we have an orthonormal basis of eigenvectors: e_1, \ldots, e_n .

Because *R* is positive, its eigenvalues are nonnegative and we can write them as $\sqrt{\lambda_i}$ for some λ_i .

$$Rv = R(a_1e_1 + \ldots + a_ne_n) = a_1\sqrt{\lambda_1}e_1 + \ldots + a_n\sqrt{\lambda_n}e_n$$

implying

$$R^2 v = a_1 \lambda_1 e_1 + \ldots + a_n \lambda_n e_n.$$

But $R^2 v = Tv = \lambda v$. $a_1 \lambda e_1 + \ldots + a_n \lambda e_n = a_1 \lambda_1 e_1 + \ldots + a_n \lambda_n e_n$ and $a_j (\lambda - \lambda_j) = 0$ for $j = 1, \ldots, n$. Hence, $v = \sum a_i e_i$ $Rv = \sum a_i \sqrt{\lambda} e_i = \sqrt{\lambda}$

$$=\sum_{\lambda_j=\lambda}a_je_j \qquad \qquad \mathsf{R}\mathsf{v}=\sum_{\lambda_j=\lambda}a_j\sqrt{\lambda}e_j=\sqrt{\lambda}\mathsf{v}$$

FD • MATH 110 • July 26, 2023

Def'n:

An operator $S \in \mathcal{L}(V)$ is called an **isometry** if ||Sv|| = ||v|| for all $v \in V$, i.e. the operator preserves norms.

Def'n:

An operator $S \in \mathcal{L}(V)$ is called an **isometry** if ||Sv|| = ||v|| for all $v \in V$, i.e. the operator preserves norms.

Def'n:

An operator $S \in \mathcal{L}(V)$ is called an **isometry** if ||Sv|| = ||v|| for all $v \in V$, i.e. the operator preserves norms.

Examples:

• λI is an isometry if $|\lambda| = 1$

Def'n:

An operator $S \in \mathcal{L}(V)$ is called an **isometry** if ||Sv|| = ||v|| for all $v \in V$, i.e. the operator preserves norms.

- λI is an isometry if $|\lambda| = 1$
- Let $\lambda_1, \ldots, \lambda_n$ be a collection of scalars with abs value 1. Choose $Se_j = \lambda_j e_j$ for orthonormal basis e_1, \ldots, e_n . Then S is an isometry.

Def'n:

An operator $S \in \mathcal{L}(V)$ is called an **isometry** if ||Sv|| = ||v|| for all $v \in V$, i.e. the operator preserves norms.

- λI is an isometry if $|\lambda| = 1$
- Let $\lambda_1, \ldots, \lambda_n$ be a collection of scalars with abs value 1. Choose $Se_j = \lambda_j e_j$ for orthonormal basis e_1, \ldots, e_n . Then S is an isometry.

$$v = \langle v, e_1 \rangle e_1 + \ldots + \langle v, e_n \rangle e_n$$

Def'n:

An operator $S \in \mathcal{L}(V)$ is called an **isometry** if ||Sv|| = ||v|| for all $v \in V$, i.e. the operator preserves norms.

- λI is an isometry if $|\lambda| = 1$
- Let $\lambda_1, \ldots, \lambda_n$ be a collection of scalars with abs value 1. Choose $Se_j = \lambda_j e_j$ for orthonormal basis e_1, \ldots, e_n . Then S is an isometry.

$$v = \langle v, e_1 \rangle e_1 + \ldots + \langle v, e_n \rangle e_n$$

$$||\mathbf{v}||^2 = |\langle \mathbf{v}, \mathbf{e}_1 \rangle|^2 + \ldots + |\langle \mathbf{v}, \mathbf{e}_n \rangle|^2$$

Def'n:

An operator $S \in \mathcal{L}(V)$ is called an **isometry** if ||Sv|| = ||v|| for all $v \in V$, i.e. the operator preserves norms.

- λI is an isometry if $|\lambda| = 1$
- Let $\lambda_1, \ldots, \lambda_n$ be a collection of scalars with abs value 1. Choose $Se_j = \lambda_j e_j$ for orthonormal basis e_1, \ldots, e_n . Then S is an isometry.

$$v = \langle v, e_1 \rangle e_1 + \ldots + \langle v, e_n \rangle e_n$$

$$||\mathbf{v}||^2 = |\langle \mathbf{v}, \mathbf{e}_1 \rangle|^2 + \ldots + |\langle \mathbf{v}, \mathbf{e}_n \rangle|^2$$

$$Sv = \langle v, e_1 \rangle Se_1 + \ldots + \langle v, e_n \rangle Se_n$$

Other Words for Isometry

- On a real inner product space, isometry = orthogonal operator.
- On a complex inner product space, isometry = **unitary operator**.

Prop'n:

TFAE for operator $S \in \mathcal{L}(V)$:

(a) S is an isometry

(b)
$$\langle Su, Sv \rangle = \langle u, v \rangle$$
 for all $u, v \in V$

(c) Se_1, \ldots, Se_n is orthonormal for every orthonormal list e_1, \ldots, e_n

- (d) there exists an orthonormal basis e_1, \ldots, e_n of V such that Se_1, \ldots, Se_n is orthonormal
- (e) *S***S* = *I*

(f)
$$SS^* = I$$

- (g) S* is an isometry
- (h) S is invertible and $S^{-1} = S^*$

Prop'n:

TFAE for operator $S \in \mathcal{L}(V)$:

- (a) S is an isometry
- (b) $\langle Su, Sv \rangle = \langle u, v \rangle$ for all $u, v \in V$

Prop'n:

TFAE for operator $S \in \mathcal{L}(V)$:

(a) S is an isometry

(b) $\langle Su, Sv \rangle = \langle u, v \rangle$ for all $u, v \in V$

Proof isometry is equivalent to preserving inner products:

Prop'n:

TFAE for operator $S \in \mathcal{L}(V)$:

(a) *S* is an isometry

(b) $\langle Su, Sv \rangle = \langle u, v \rangle$ for all $u, v \in V$

Proof isometry is equivalent to preserving inner products:

Recall from discussion:

$$\langle u, v \rangle = \frac{||u+v||^2 - ||u-v||^2}{4}$$

for a real inner product space.

Prop'n:

TFAE for operator $S \in \mathcal{L}(V)$:

(a) S is an isometry

(b) $\langle Su, Sv \rangle = \langle u, v \rangle$ for all $u, v \in V$

Proof isometry is equivalent to preserving inner products:

Prop'n:

TFAE for operator $S \in \mathcal{L}(V)$:

(a) *S* is an isometry

(b) $\langle Su, Sv \rangle = \langle u, v \rangle$ for all $u, v \in V$

Proof isometry is equivalent to preserving inner products:

We also have

$$\langle u, v \rangle = \frac{||u+v||^2 - ||u-v||^2 + ||u+iv||^2 i - ||u-iv||^2 i}{4}$$

for a complex inner product space.

$$||u + v||^{2} = \langle u + v, u + v \rangle$$
$$= ||u||^{2} + \langle u, v \rangle + \langle v, u \rangle + ||v||^{2}$$

$$||u + v||^{2} = \langle u + v, u + v \rangle$$
$$= ||u||^{2} + \langle u, v \rangle + \langle v, u \rangle + ||v||^{2}$$

$$-||u - v||^{2} = -\langle u - v, u - v \rangle$$
$$= -||u||^{2} + \langle u, v \rangle + \langle v, u \rangle - ||v||^{2}$$

$$||u + v||^{2} = \langle u + v, u + v \rangle$$
$$= ||u||^{2} + \langle u, v \rangle + \langle v, u \rangle + ||v||^{2}$$

$$-||u - v||^{2} = -\langle u - v, u - v \rangle$$
$$= -||u||^{2} + \langle u, v \rangle + \langle v, u \rangle - ||v||^{2}$$

$$||u + iv||^{2}i = \langle u + iv, u + iv \rangle i$$

= $||u||^{2}i + \langle u, v \rangle - \langle v, u \rangle + ||v||^{2}i$

$$||u + v||^{2} = \langle u + v, u + v \rangle$$
$$= ||u||^{2} + \langle u, v \rangle + \langle v, u \rangle + ||v||^{2}$$

$$-||u - v||^{2} = -\langle u - v, u - v \rangle$$
$$= -||u||^{2} + \langle u, v \rangle + \langle v, u \rangle - ||v||^{2}$$

$$||u + iv||^{2}i = \langle u + iv, u + iv \rangle i$$
$$= ||u||^{2}i + \langle u, v \rangle - \langle v, u \rangle + ||v||^{2}i$$

$$-||u - iv||^{2}i = -\langle u - iv, u - iv\rangle i$$
$$= ||u||^{2}i + \langle u, v\rangle - \langle v, u\rangle - ||v||^{2}i$$

FD • MATH 110 • July 26, 2023

$$||u + v||^{2} = \langle u + v, u + v \rangle$$
$$= ||u||^{2} + \langle u, v \rangle + \langle v, u \rangle + ||v||^{2}$$

$$-||u - v||^{2} = -\langle u - v, u - v \rangle$$
$$= -||u||^{2} + \langle u, v \rangle + \langle v, u \rangle - ||v||^{2}$$

$$||u + iv||^{2}i = \langle u + iv, u + iv \rangle i$$

= $||u||^{2}i + \langle u, v \rangle - \langle v, u \rangle + ||v||^{2}i$

$$-||u - iv||^{2}i = -\langle u - iv, u - iv \rangle i$$
$$= ||u||^{2}i + \langle u, v \rangle - \langle v, u \rangle - ||v||^{2}i$$

which together gives

$$||u + v||^{2} - ||u - v||^{2} + ||u + iv||^{2}i - ||u - iv||^{2}i = 4\langle u, v \rangle$$

FD • MATH 110 • July 26, 2023

Prop'n:

TFAE for operator $S \in \mathcal{L}(V)$:

(a) S is an isometry

(b)
$$\langle Su, Sv \rangle = \langle u, v \rangle$$
 for all $u, v \in V$

Proof isometry is equivalent to preserving inner products:

Prop'n:

- TFAE for operator $S \in \mathcal{L}(V)$:
 - (a) S is an isometry
 - (b) $\langle Su, Sv \rangle = \langle u, v \rangle$ for all $u, v \in V$

Proof isometry is equivalent to preserving inner products:

Now that we can write inner products in terms of norms, we have the equivalence of (a) and (b).

Prop'n:

- TFAE for operator $S \in \mathcal{L}(V)$:
 - (a) S is an isometry
 - (b) $\langle Su, Sv \rangle = \langle u, v \rangle$ for all $u, v \in V$

Proof isometry is equivalent to preserving inner products:

Now that we can write inner products in terms of norms, we have the equivalence of (a) and (b). \Box

Prop'n:

Suppose *V* is a complex vector space and $S \in \mathcal{L}(V)$. Then the following are equivalent:

- S is an isometry
- There is an orthonormal basis consisting of eigenvectors of S whose corresponding eigenvalues have absolute value 1.

Prop'n:

Suppose *V* is a complex vector space and $S \in \mathcal{L}(V)$. Then the following are equivalent:

- S is an isometry
- There is an orthonormal basis consisting of eigenvectors of S whose corresponding eigenvalues have absolute value 1.

Proof. We showed the second implies first in an example.

Prop'n:

Suppose *V* is a complex vector space and $S \in \mathcal{L}(V)$. Then the following are equivalent:

- S is an isometry
- There is an orthonormal basis consisting of eigenvectors of S whose corresponding eigenvalues have absolute value 1.

Proof. We showed the second implies first in an example.

S'pose *S* is an isometry, Complex Spectral Thm gives us a basis of eigenvectors of *S*.

Prop'n:

Suppose *V* is a complex vector space and $S \in \mathcal{L}(V)$. Then the following are equivalent:

- S is an isometry
- There is an orthonormal basis consisting of eigenvectors of S whose corresponding eigenvalues have absolute value 1.

Proof. We showed the second implies first in an example.

S'pose *S* is an isometry, Complex Spectral Thm gives us a basis of eigenvectors of *S*. What is the norm of each eigenvalue?

Prop'n:

Suppose *V* is a complex vector space and $S \in \mathcal{L}(V)$. Then the following are equivalent:

- S is an isometry
- There is an orthonormal basis consisting of eigenvectors of S whose corresponding eigenvalues have absolute value 1.

Proof. We showed the second implies first in an example.

S'pose *S* is an isometry, Complex Spectral Thm gives us a basis of eigenvectors of *S*. **What is the norm of each eigenvalue?**

$$|\lambda_j| = |\lambda_j|||e_j|| = ||\lambda_j e_j|| = ||Se_j|| = ||e_j|| = 1$$

Discussion Questions

- 1. S'pose *n* is a positive integer. Define $T \in \mathcal{L}(\mathbb{F}^n)$ by $T(z_1, \ldots, z_n) = (0, z_1, \ldots, z_{n-1})$. Find a formula for $T^*(z_1, \ldots, z_n)$.
- 2. Let *V* be a \mathbb{C} -vector space and $T \in \mathcal{L}(V)$ be normal such that $T^9 = T^8$. Prove that the only possible eigenvalues of *T* are 0 and 1 and that $T^2 = T$.
- 3. Give an example of an operator $T \in \mathcal{L}(\mathbb{C}^4)$ that is normal but not self-adjoint.
- 4. Find the covered up entry.

Discussion Questions

- 5. Give a counter example to the following: If $T \in \mathcal{L}(V)$ is self-adjoint and there exists and orthonormal basis e_1, \ldots, e_n of V such that $\langle Te_i, e_i \rangle \ge 0$ for each j, then T is a positive operator.
- 6. Prove that the sum of two positive operators on V is positive.
- 7. Suppose $T \in \mathcal{L}(V)$ is positive. Prove that T^k is positive for every positive integer *k*.
- 8. Give a counterexample: if $S \in \mathcal{L}(V)$ and there exists an orthonormal basis e_1, \ldots, e_n of V such that $||Se_j|| = 1$ for each e_j , then S is an isometry.

Discussion Question Hints/Solutions

1.
$$T^*(z_1,...,z_n) = (z_2,...,z_n,0)$$

For the first part, use the Complex Spectral Thm to get a basis of orthonormal eigenvectors. *Te_j* = λ_je_j. Applying *T* repeatedly we have λ_j⁹ = λ_j⁸. So λ_j = 0 or 1. Then applying *T* twice we see *T*²e_j = λ_j²e_j = λ_je_j = Te_j.
T = *il* and *T** = -*il* works.

4. Its 1.

Discussion Question Hints/Solutions

- 5. One example: $V = \mathbb{F}^2$ with standard inner product. T(x, y) = (y, x). $\langle Te_j, e_j \rangle = 0$ for each of the standard basis vectors but $\langle T(1, -1), (1, -1) \rangle = -2$.
- 6. Sum of two self-adjoint operators is self-adjoint. Also, $\langle (S + T)v, v \rangle = \langle Sv, v \rangle + \langle Tv, v \rangle \ge 0.$
- 7. Even case: $T^k v, v \rangle = \langle T^{2m} v, v \rangle = \langle T^m v, T^m v \rangle \ge 0$ Odd case: $T^k v, v \rangle = \langle T^{2m+1} v, v \rangle = \langle T(T^m v), T^m v \rangle \ge 0$
- 8. One example: Define $S \in \mathcal{L}(\mathbb{F}^2)$ by S(w, z) = (w + z, 0) with usual inner product. The standard basis is orthonromal and satisfies the condition. But ||S(1, -1)|| = 0.

[Ax114] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.