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Definition

Def’n:
An operator T ∈ L(V) is called positive if T is self-adjoint and

⟨Tv, v⟩ ≥ 0

for all v ∈ V .

Recall:
Over C, ⟨Tv, v⟩ is real for all v if and only if T = T∗.

Examples:
U ⊆ V , PU is a positive operator
T ∈ L(V) self-adjoint b, c ∈ R such that b2 < 4c, we saw last
lecture that T2 + bT + cI is a positive operator
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How is a positive operator related to a
positive-definite matrix?

Positive operator refers to T ∈ L(V). Positive-definite refers to
M(T).
A positive semi-definite matrix is one such that corresponds to
an operator T such that ⟨Tv, v⟩ ≥ 0.
The usual definition is a matrix such that v∗M(T)v ≥ 0. Why are
these the same?
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Definition

Def’n:
An operator R is called a square root of an operator T if R2 = T .

Example:

T ∈ L(F3) defined T(z1, z2, z3) = (z3, 0, 0)

Then R ∈ L(F3) defined R(z1, z2, z3) = (z2, z3, 0) is a square root of T .
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Characterization of Positive Operators

Prop’n:
For T ∈ L(V). The following are equivalent:
(a) T is positive
(b) T is self-adjoint and all the eigenvalues of T are nonnegative
(c) T has a positive square root
(d) T has a self-adjoint square root
(e) there exists an operator R ∈ L(V) such that R∗R = T
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Proofs
(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ (a)

S’pose (a): T is self-adjoint by definition. If Tv = λv,

0 ≤ ⟨Tv, v⟩ = ⟨λv, v⟩ = λ⟨v, v⟩.
S’pose (b): Spectral Thm gives an orthonormal basis e1, . . . , en of
eigenvectors. Let λi be the nonnegative eigenvalues.

Rej :=
√
λjej.

We have (c) =⇒ (d) by definition.

S’pose (d) : T = R2 for self-adjoint R. Then T = R∗R because R = R∗.

S’pose (e) : Let R ∈ L(V) such that T = R∗R.
Then T∗ = (R∗R)∗ = R∗R = T . So T is self-adjoint.
Also, for every v ∈ V ,

⟨Tv, v⟩ = ⟨R∗Rv, v⟩ = ⟨Rv,Rv⟩ ≥ 0.

FD · MATH 110 · July 26, 2023 6 / 22



Proofs
(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ (a)

S’pose (a): T is self-adjoint by definition. If Tv = λv,

0 ≤ ⟨Tv, v⟩ = ⟨λv, v⟩ = λ⟨v, v⟩.

S’pose (b): Spectral Thm gives an orthonormal basis e1, . . . , en of
eigenvectors. Let λi be the nonnegative eigenvalues.

Rej :=
√
λjej.

We have (c) =⇒ (d) by definition.

S’pose (d) : T = R2 for self-adjoint R. Then T = R∗R because R = R∗.

S’pose (e) : Let R ∈ L(V) such that T = R∗R.
Then T∗ = (R∗R)∗ = R∗R = T . So T is self-adjoint.
Also, for every v ∈ V ,

⟨Tv, v⟩ = ⟨R∗Rv, v⟩ = ⟨Rv,Rv⟩ ≥ 0.

FD · MATH 110 · July 26, 2023 6 / 22



Proofs
(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ (a)

S’pose (a): T is self-adjoint by definition. If Tv = λv,

0 ≤ ⟨Tv, v⟩ = ⟨λv, v⟩ = λ⟨v, v⟩.
S’pose (b):

Spectral Thm gives an orthonormal basis e1, . . . , en of
eigenvectors. Let λi be the nonnegative eigenvalues.

Rej :=
√
λjej.

We have (c) =⇒ (d) by definition.

S’pose (d) : T = R2 for self-adjoint R. Then T = R∗R because R = R∗.

S’pose (e) : Let R ∈ L(V) such that T = R∗R.
Then T∗ = (R∗R)∗ = R∗R = T . So T is self-adjoint.
Also, for every v ∈ V ,

⟨Tv, v⟩ = ⟨R∗Rv, v⟩ = ⟨Rv,Rv⟩ ≥ 0.

FD · MATH 110 · July 26, 2023 6 / 22



Proofs
(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ (a)

S’pose (a): T is self-adjoint by definition. If Tv = λv,

0 ≤ ⟨Tv, v⟩ = ⟨λv, v⟩ = λ⟨v, v⟩.
S’pose (b): Spectral Thm gives an orthonormal basis e1, . . . , en of
eigenvectors.

Let λi be the nonnegative eigenvalues.

Rej :=
√
λjej.

We have (c) =⇒ (d) by definition.

S’pose (d) : T = R2 for self-adjoint R. Then T = R∗R because R = R∗.

S’pose (e) : Let R ∈ L(V) such that T = R∗R.
Then T∗ = (R∗R)∗ = R∗R = T . So T is self-adjoint.
Also, for every v ∈ V ,

⟨Tv, v⟩ = ⟨R∗Rv, v⟩ = ⟨Rv,Rv⟩ ≥ 0.

FD · MATH 110 · July 26, 2023 6 / 22



Proofs
(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ (a)

S’pose (a): T is self-adjoint by definition. If Tv = λv,

0 ≤ ⟨Tv, v⟩ = ⟨λv, v⟩ = λ⟨v, v⟩.
S’pose (b): Spectral Thm gives an orthonormal basis e1, . . . , en of
eigenvectors. Let λi be the nonnegative eigenvalues.

Rej :=
√
λjej.

We have (c) =⇒ (d) by definition.

S’pose (d) : T = R2 for self-adjoint R. Then T = R∗R because R = R∗.

S’pose (e) : Let R ∈ L(V) such that T = R∗R.
Then T∗ = (R∗R)∗ = R∗R = T . So T is self-adjoint.
Also, for every v ∈ V ,

⟨Tv, v⟩ = ⟨R∗Rv, v⟩ = ⟨Rv,Rv⟩ ≥ 0.

FD · MATH 110 · July 26, 2023 6 / 22



Proofs
(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ (a)

S’pose (a): T is self-adjoint by definition. If Tv = λv,

0 ≤ ⟨Tv, v⟩ = ⟨λv, v⟩ = λ⟨v, v⟩.
S’pose (b): Spectral Thm gives an orthonormal basis e1, . . . , en of
eigenvectors. Let λi be the nonnegative eigenvalues.

Rej :=
√

λjej.

We have (c) =⇒ (d) by definition.

S’pose (d) : T = R2 for self-adjoint R. Then T = R∗R because R = R∗.

S’pose (e) : Let R ∈ L(V) such that T = R∗R.
Then T∗ = (R∗R)∗ = R∗R = T . So T is self-adjoint.
Also, for every v ∈ V ,

⟨Tv, v⟩ = ⟨R∗Rv, v⟩ = ⟨Rv,Rv⟩ ≥ 0.

FD · MATH 110 · July 26, 2023 6 / 22



Proofs
(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ (a)

S’pose (a): T is self-adjoint by definition. If Tv = λv,

0 ≤ ⟨Tv, v⟩ = ⟨λv, v⟩ = λ⟨v, v⟩.
S’pose (b): Spectral Thm gives an orthonormal basis e1, . . . , en of
eigenvectors. Let λi be the nonnegative eigenvalues.

Rej :=
√

λjej.

We have (c) =⇒ (d) by definition.

S’pose (d) : T = R2 for self-adjoint R. Then T = R∗R because R = R∗.

S’pose (e) : Let R ∈ L(V) such that T = R∗R.
Then T∗ = (R∗R)∗ = R∗R = T . So T is self-adjoint.
Also, for every v ∈ V ,

⟨Tv, v⟩ = ⟨R∗Rv, v⟩ = ⟨Rv,Rv⟩ ≥ 0.

FD · MATH 110 · July 26, 2023 6 / 22



Proofs
(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ (a)

S’pose (a): T is self-adjoint by definition. If Tv = λv,

0 ≤ ⟨Tv, v⟩ = ⟨λv, v⟩ = λ⟨v, v⟩.
S’pose (b): Spectral Thm gives an orthonormal basis e1, . . . , en of
eigenvectors. Let λi be the nonnegative eigenvalues.

Rej :=
√

λjej.

We have (c) =⇒ (d) by definition.

S’pose (d) : T = R2 for self-adjoint R. Then T = R∗R because R = R∗.

S’pose (e) : Let R ∈ L(V) such that T = R∗R.
Then T∗ = (R∗R)∗ = R∗R = T . So T is self-adjoint.
Also, for every v ∈ V ,

⟨Tv, v⟩ = ⟨R∗Rv, v⟩ = ⟨Rv,Rv⟩ ≥ 0.

FD · MATH 110 · July 26, 2023 6 / 22



Proofs
(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ (a)

S’pose (a): T is self-adjoint by definition. If Tv = λv,

0 ≤ ⟨Tv, v⟩ = ⟨λv, v⟩ = λ⟨v, v⟩.
S’pose (b): Spectral Thm gives an orthonormal basis e1, . . . , en of
eigenvectors. Let λi be the nonnegative eigenvalues.

Rej :=
√

λjej.

We have (c) =⇒ (d) by definition.

S’pose (d) : T = R2 for self-adjoint R. Then T = R∗R because R = R∗.

S’pose (e) : Let R ∈ L(V) such that T = R∗R.

Then T∗ = (R∗R)∗ = R∗R = T . So T is self-adjoint.
Also, for every v ∈ V ,

⟨Tv, v⟩ = ⟨R∗Rv, v⟩ = ⟨Rv,Rv⟩ ≥ 0.

FD · MATH 110 · July 26, 2023 6 / 22



Proofs
(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ (a)

S’pose (a): T is self-adjoint by definition. If Tv = λv,

0 ≤ ⟨Tv, v⟩ = ⟨λv, v⟩ = λ⟨v, v⟩.
S’pose (b): Spectral Thm gives an orthonormal basis e1, . . . , en of
eigenvectors. Let λi be the nonnegative eigenvalues.

Rej :=
√

λjej.

We have (c) =⇒ (d) by definition.

S’pose (d) : T = R2 for self-adjoint R. Then T = R∗R because R = R∗.

S’pose (e) : Let R ∈ L(V) such that T = R∗R.
Then T∗ = (R∗R)∗ = R∗R = T . So T is self-adjoint.

Also, for every v ∈ V ,
⟨Tv, v⟩ = ⟨R∗Rv, v⟩ = ⟨Rv,Rv⟩ ≥ 0.

FD · MATH 110 · July 26, 2023 6 / 22



Proofs
(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ (a)

S’pose (a): T is self-adjoint by definition. If Tv = λv,

0 ≤ ⟨Tv, v⟩ = ⟨λv, v⟩ = λ⟨v, v⟩.
S’pose (b): Spectral Thm gives an orthonormal basis e1, . . . , en of
eigenvectors. Let λi be the nonnegative eigenvalues.

Rej :=
√

λjej.

We have (c) =⇒ (d) by definition.

S’pose (d) : T = R2 for self-adjoint R. Then T = R∗R because R = R∗.

S’pose (e) : Let R ∈ L(V) such that T = R∗R.
Then T∗ = (R∗R)∗ = R∗R = T . So T is self-adjoint.
Also, for every v ∈ V ,

⟨Tv, v⟩ = ⟨R∗Rv, v⟩ = ⟨Rv,Rv⟩ ≥ 0.

FD · MATH 110 · July 26, 2023 6 / 22



Uniquness of Square Root

Prop’n:
Every positive operator on V has a unique positive square root.

Proof. S’pose T ∈ L(V) positive. S’pose v is an eigenvector. Then
λ ≥ 0 and Tv = λv.

Let R be a positive square root.

We will prove Rv =
√
λv.

This determines R because we can pick a basis of eigenvectors by the
Spectral Thm.
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Uniquness of Square Root (Cont’d)
Proof (Cont’d). We want to show Rv =

√
λv.

By the Spectral Thm, we have an orthonormal basis of eigenvectors:
e1, . . . , en.

Because R is positive, its eigenvalues are nonnegative and we can
write them as

√
λi for some λi .

Rv = R(a1e1 + . . .+ anen) = a1
√
λ1e1 + . . .+ an

√
λnen

implying
R2v = a1λ1e1 + . . .+ anλnen.

But R2v = Tv = λv.

a1λe1 + . . .+ anλen = a1λ1e1 + . . .+ anλnen

and aj(λ− λj) = 0 for j = 1, . . . , n. Hence,

v =
∑
λj=λ

ajej Rv =
∑
λj=λ

aj
√
λej =

√
λv
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λv.
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Isometries
Def’n:
An operator S ∈ L(V) is called an isometry if ||Sv|| = ||v|| for all
v ∈ V , i.e. the operator preserves norms.

Examples:
λI is an isometry if |λ| = 1
Let λ1, . . . , λn be a collection of scalars with abs value 1.
Choose Sej = λjej for orthonormal basis e1, . . . , en. Then S is an
isometry.

v = ⟨v, e1⟩e1 + . . .+ ⟨v, en⟩en

||v||2 = |⟨v, e1⟩|2 + . . .+ |⟨v, en⟩|2

Sv = ⟨v, e1⟩Se1 + . . .+ ⟨v, en⟩Sen
. . .
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Other Words for Isometry

On a real inner product space, isometry = orthogonal operator.
On a complex inner product space, isometry = unitary operator.
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Characterization of Isometries

Prop’n:
TFAE for operator S ∈ L(V):
(a) S is an isometry
(b) ⟨Su, Sv⟩ = ⟨u, v⟩ for all u, v ∈ V
(c) Se1, . . . , Sen is orthonormal for every orthonormal list e1, . . . , en
(d) there exists an orthonormal basis e1, . . . , en of V such that

Se1, . . . , Sen is orthonormal
(e) S∗S = I
(f) SS∗ = I
(g) S∗ is an isometry
(h) S is invertible and S−1 = S∗
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Characterization of Isometries

Prop’n:
TFAE for operator S ∈ L(V):
(a) S is an isometry
(b) ⟨Su, Sv⟩ = ⟨u, v⟩ for all u, v ∈ V

Proof isometry is equivalent to preserving inner products:

Recall from discussion:

⟨u, v⟩ = ||u+ v||2 − ||u− v||2

4

for a real inner product space.
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Proof of Claim.

||u+ v||2 = ⟨u+ v, u+ v⟩

= ||u||2 + ⟨u, v⟩+ ⟨v, u⟩+ ||v||2

−||u− v||2 = −⟨u− v, u− v⟩

= −||u||2 + ⟨u, v⟩+ ⟨v, u⟩ − ||v||2

||u+ iv||2i = ⟨u+ iv, u+ iv⟩i

= ||u||2i + ⟨u, v⟩ − ⟨v, u⟩+ ||v||2i

−||u− iv||2i = −⟨u− iv, u− iv⟩i

= ||u||2i + ⟨u, v⟩ − ⟨v, u⟩ − ||v||2i
which together gives

||u+ v||2 − ||u− v||2 + ||u+ iv||2i − ||u− iv||2i = 4⟨u, v⟩
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Characterization of Isometries

Prop’n:
TFAE for operator S ∈ L(V):
(a) S is an isometry
(b) ⟨Su, Sv⟩ = ⟨u, v⟩ for all u, v ∈ V

Proof isometry is equivalent to preserving inner products:

Now that we can write inner products in terms of norms, we have the
equivalence of (a) and (b). □
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Isometries when F = C

Prop’n:
Suppose V is a complex vector space and S ∈ L(V). Then the
following are equivalent:

S is an isometry
There is an orthonormal basis consisting of eigenvectors of S
whose corresponding eigenvalues have absolute value 1.

Proof. We showed the second implies first in an example.

S’pose S is an isometry, Complex Spectral Thm gives us a basis of
eigenvectors of S. What is the norm of each eigenvalue?

|λj| = |λj|||ej|| = ||λjej|| = ||Sej|| = ||ej|| = 1
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Break
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Discussion Questions
1. S’pose n is a positive integer. Define T ∈ L(Fn) by
T(z1, . . . , zn) = (0, z1, . . . , zn−1). Find a formula for
T∗(z1, . . . , zn).

2. Let V be a C-vector space and T ∈ L(V) be normal such that
T9 = T8. Prove that the only possible eigenvalues of T are 0 and
1 and that T2 = T .

3. Give an example of an operator T ∈ L(C4) that is normal but not
self-adjoint.

4. Find the covered up entry.
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Discussion Questions

5. Give a counter example to the following: If T ∈ L(V) is
self-adjoint and there exists and orthonormal basis e1, . . . , en of
V such that ⟨Tej, ej⟩ ≥ 0 for each j, then T is a positive operator.

6. Prove that the sum of two positive operators on V is positive.
7. Suppose T ∈ L(V) is positve. Prove that Tk is positive for every
positive integer k.

8. Give a counterexample: if S ∈ L(V) and there exists an
orthonormal basis e1, . . . , en of V such that ||Sej|| = 1 for each ej,
then S is an isometry.

FD · MATH 110 · July 26, 2023 19 / 22



Discussion Question Hints/Solutions

1. T∗(z1, . . . , zn) = (z2, . . . , zn, 0)
2. For the first part, use the Complex Spectral Thm to get a basis of
orthonormal eigenvectors. Tej = λjej. Applying T repeatedly we
have λ9j = λ8j . So λj = 0 or 1. Then applying T twice we see
T2ej = λ2j ej = λjej = Tej.

3. T = iI and T∗ = −iI works.
4. Its 1.
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Discussion Question Hints/Solutions

5. One example: V = F2 with standard inner product.
T(x, y) = (y, x). ⟨Tej, ej⟩ = 0 for each of the standard basis
vectors but ⟨T(1,−1), (1,−1)⟩ = −2.

6. Sum of two self-adjoint operators is self-adjoint. Also,
⟨(S + T)v, v⟩ = ⟨Sv, v⟩+ ⟨Tv, v⟩ ≥ 0.

7. Even case: Tkv, v⟩ = ⟨T2mv, v⟩ = ⟨Tmv, Tmv⟩ ≥ 0
Odd case: Tkv, v⟩ = ⟨T2m+1v, v⟩ = ⟨T(Tmv), Tmv⟩ ≥ 0

8. One example: Define S ∈ L(F2) by S(w, z) = (w + z, 0) with
usual inner product. The standard basis is orthonromal and
satisfies the condition. But ||S(1,−1)|| = 0.
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