Lecture 21: Generalized Eigenvectors

MATH 110-3

Franny Dean

July 27, 2023

Setting

■ $\mathbb{F}=\mathbb{C}$

Setting

■ $\mathbb{F}=\mathbb{C}$
■ V is finite-dimensional and non-zero
■ Regular vector space - no inner products

Setting

■ $\mathbb{F}=\mathbb{C}$
■ V is finite-dimensional and non-zero
■ Regular vector space - no inner products

- (We are in Chapter 8 now!)

Setting

■ $\mathbb{F}=\mathbb{C}$

- V is finite-dimensional and non-zero

■ Regular vector space - no inner products

- (We are in Chapter 8 now!)

■ Recall $T^{k}=T T \cdots T$ (composition of operators k times)

Setting

■ $\mathbb{F}=\mathbb{C}$

- V is finite-dimensional and non-zero

■ Regular vector space - no inner products

- (We are in Chapter 8 now!)

■ Recall $T^{k}=T T \cdots T$ (composition of operators k times)
■ Goal: Decomposing/understanding more general operators

Null Spaces of Powers of an Operator

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Then

$$
\{0\}=\operatorname{null} T^{0} \subseteq \operatorname{null} T^{1} \subseteq \ldots \subseteq \operatorname{null} T^{k} \subseteq \operatorname{null} T^{k+1} \subseteq \ldots
$$

Null Spaces of Powers of an Operator

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Then

$$
\{0\}=\operatorname{null} T^{0} \subseteq \operatorname{null} T^{1} \subseteq \ldots \subseteq \operatorname{null} T^{k} \subseteq \operatorname{null} T^{k+1} \subseteq \ldots
$$

Proof.

Null Spaces of Powers of an Operator

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Then

$$
\{0\}=\operatorname{null} T^{0} \subseteq \operatorname{null} T^{1} \subseteq \ldots \subseteq \operatorname{null} T^{k} \subseteq \operatorname{null} T^{k+1} \subseteq \ldots
$$

Proof. S'pose k is a nonnegative integer and $v \in$ null T^{k}.

Null Spaces of Powers of an Operator

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Then

$$
\{0\}=\operatorname{null} T^{0} \subseteq \operatorname{null} T^{1} \subseteq \ldots \subseteq \operatorname{null} T^{k} \subseteq \operatorname{null} T^{k+1} \subseteq \ldots
$$

Proof. S'pose k is a nonnegative integer and $v \in$ null T^{k}.

$$
T^{k} v=0
$$

Null Spaces of Powers of an Operator

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Then

$$
\{0\}=\operatorname{null} T^{0} \subseteq \operatorname{null} T^{1} \subseteq \ldots \subseteq \operatorname{null} T^{k} \subseteq \operatorname{null} T^{k+1} \subseteq \ldots
$$

Proof. S'pose k is a nonnegative integer and $v \in$ null T^{k}.

$$
\begin{gathered}
T^{k} v=0 \\
T^{k+1} v=T T^{k} v=T 0=0
\end{gathered}
$$

Null Spaces of Powers of an Operator

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Then

$$
\{0\}=\operatorname{null} T^{0} \subseteq \operatorname{null} T^{1} \subseteq \ldots \subseteq \operatorname{null} T^{k} \subseteq \operatorname{null} T^{k+1} \subseteq \ldots
$$

Proof. S'pose k is a nonnegative integer and $v \in$ null T^{k}.

$$
\begin{gathered}
T^{k} v=0 \\
T^{k+1} v=T T^{k} v=T 0=0
\end{gathered}
$$

Thus, $v \in$ null T^{k+1}.

Null Spaces Stop Growing

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then

$$
\operatorname{null} T^{n}=\operatorname{null} T^{n+1}=\operatorname{null} T^{n+2}=\ldots
$$

Null Spaces Stop Growing

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then

$$
\operatorname{null} T^{n}=\operatorname{null} T^{n+1}=\operatorname{null} T^{n+2}=\ldots .
$$

Proof.

Null Spaces Stop Growing

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then

$$
\text { null } T^{n}=\operatorname{null} T^{n+1}=\operatorname{null} T^{n+2}=\ldots
$$

Proof.
Step 1: S'pose null $T^{m}=$ null T^{m+1} for some m,

Null Spaces Stop Growing

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then

$$
\text { null } T^{n}=\operatorname{null} T^{n+1}=\operatorname{null} T^{n+2}=\ldots
$$

Proof.
Step 1: S'pose null $T^{m}=$ null T^{m+1} for some m, we show for any k : null $T^{m+k}=$ null T^{m+k+1}.

Null Spaces Stop Growing

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then

$$
\text { null } T^{n}=\operatorname{null} T^{n+1}=\operatorname{null} T^{n+2}=\ldots
$$

Proof.

Step 1: S'pose null $T^{m}=$ null T^{m+1} for some m, we show for any k : null $T^{m+k}=$ null T^{m+k+1}.

We must show null $T^{m+k} \supseteq$ null T^{m+k+1}.

Null Spaces Stop Growing

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then

$$
\text { null } T^{n}=\operatorname{null} T^{n+1}=\operatorname{null} T^{n+2}=\ldots
$$

Proof.

Step 1: S'pose null $T^{m}=$ null T^{m+1} for some m, we show for any k : null $T^{m+k}=$ null T^{m+k+1}.

We must show null $T^{m+k} \supseteq$ null T^{m+k+1}.
$v \in \operatorname{null} T^{m+k+1}$

Null Spaces Stop Growing

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then

$$
\text { null } T^{n}=\operatorname{null} T^{n+1}=\operatorname{null} T^{n+2}=\ldots
$$

Proof.

Step 1: S'pose null $T^{m}=$ null T^{m+1} for some m, we show for any k : null $T^{m+k}=$ null T^{m+k+1}.

We must show null $T^{m+k} \supseteq$ null T^{m+k+1}.
$v \in \operatorname{null} T^{m+k+1}$

$$
T^{m+1}\left(T^{k} v\right)=T^{m+k+1} v=0
$$

Null Spaces Stop Growing

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then

$$
\text { null } T^{n}=\text { null } T^{n+1}=\text { null } T^{n+2}=\ldots .
$$

Proof.

Step 1: S'pose null $T^{m}=$ null T^{m+1} for some m, we show for any k : null $T^{m+k}=$ null T^{m+k+1}.

We must show null $T^{m+k} \supseteq$ null T^{m+k+1}.
$v \in \operatorname{null} T^{m+k+1}$

$$
T^{m+1}\left(T^{k} v\right)=T^{m+k+1} v=0
$$

$$
T^{k} v \in \operatorname{null} T^{m+1}=\operatorname{null} T^{m} \Longrightarrow v \in \operatorname{null} T^{m+k}
$$

Null Spaces Stop Growing (Cont'd)

Proof (Cont'd):

Null Spaces Stop Growing (Cont'd)

Proof (Cont'd):
Step 2: We show null $T^{n}=\operatorname{null} T^{n+1}$.

Null Spaces Stop Growing (Cont'd)

Proof (Cont'd):
Step 2: We show null $T^{n}=\operatorname{null} T^{n+1}$.
S'pose not.
Then

$$
\{0\} \subsetneq \operatorname{null} T^{1} \subsetneq \operatorname{null} T^{2} \subsetneq \ldots \subsetneq \text { null } T^{n} \subsetneq \operatorname{null} T^{n+1}
$$

Null Spaces Stop Growing (Cont'd)

Proof (Cont'd):
Step 2: We show null $T^{n}=\operatorname{null} T^{n+1}$.
S'pose not.
Then

$$
\{0\} \subsetneq \operatorname{null} T^{1} \subsetneq \operatorname{null} T^{2} \subsetneq \ldots \subsetneq \text { null } T^{n} \subsetneq \operatorname{null} T^{n+1}
$$

But, dimension must grow in this chain, of subsets of V, contradiction.

V is the direct sum of null $T^{\operatorname{dim} V}$ and range $T^{\operatorname{dim} V}$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then $V=$ null $T^{n} \oplus \operatorname{range} T^{n}$.

V is the direct sum of null $T^{\operatorname{dim} V}$ and range $T^{\operatorname{dim} V}$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then $V=\operatorname{null} T^{n} \oplus \operatorname{range} T^{n}$.
Proof.

V is the direct sum of null $T^{\operatorname{dim} V}$ and range $T^{\operatorname{dim} V}$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then $V=$ null $T^{n} \oplus$ range T^{n}.
Proof. Step 1: null $T^{n} \cap$ range $T^{n}=\{0\}$

V is the direct sum of null $T^{\operatorname{dim} V}$ and range $T^{\operatorname{dim} V}$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then $V=$ null $T^{n} \oplus$ range T^{n}.
Proof. Step 1: null $T^{n} \cap$ range $T^{n}=\{0\}$
S'pose $v \in \operatorname{null} T^{n} \cap$ range T^{n}.

V is the direct sum of null $T^{\operatorname{dim} V}$ and range $T^{\operatorname{dim} V}$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then $V=$ null $T^{n} \oplus$ range T^{n}.
Proof. Step 1: null $T^{n} \cap$ range $T^{n}=\{0\}$
S'pose $v \in \operatorname{null} T^{n} \cap \operatorname{range} T^{n}$. Then $T^{n} v=0$

V is the direct sum of null $T^{\operatorname{dim} V}$ and range $T^{\operatorname{dim} V}$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then $V=$ null $T^{n} \oplus$ range T^{n}.
Proof. Step 1: null $T^{n} \cap$ range $T^{n}=\{0\}$
S'pose $v \in$ null $T^{n} \cap$ range T^{n}. Then $T^{n} v=0$ and there exists $u \in V$ such that $v=T^{n} u$.

V is the direct sum of null $T^{\operatorname{dim} V}$ and range $T^{\operatorname{dim} V}$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then $V=$ null $T^{n} \oplus$ range T^{n}.
Proof. Step 1: null $T^{n} \cap$ range $T^{n}=\{0\}$
S'pose $v \in$ null $T^{n} \cap$ range T^{n}. Then $T^{n} v=0$ and there exists $u \in V$ such that $v=T^{n} u$.

$$
T^{n} v=T^{2 n} u=0
$$

V is the direct sum of null $T^{\operatorname{dim} V}$ and range $T^{\operatorname{dim} V}$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then $V=$ null $T^{n} \oplus$ range T^{n}.
Proof. Step 1: null $T^{n} \cap$ range $T^{n}=\{0\}$
S'pose $v \in$ null $T^{n} \cap$ range T^{n}. Then $T^{n} v=0$ and there exists $u \in V$ such that $v=T^{n} u$.

$$
T^{n} v=T^{2 n} u=0
$$

By by the previous result, then $T^{n} u=0$ and $v=0$.

V is the direct sum of null $T^{\operatorname{dim} V}$ and range $T^{\operatorname{dim} V}$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then $V=$ null $T^{n} \oplus$ range T^{n}.
Proof. Step 1: null $T^{n} \cap$ range $T^{n}=\{0\}$
S'pose $v \in$ null $T^{n} \cap$ range T^{n}. Then $T^{n} v=0$ and there exists $u \in V$ such that $v=T^{n} u$.

$$
T^{n} v=T^{2 n} u=0
$$

By by the previous result, then $T^{n} u=0$ and $v=0$.
Step 2:

V is the direct sum of null $T^{\operatorname{dim} V}$ and range $T^{\operatorname{dim} V}$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then $V=$ null $T^{n} \oplus$ range T^{n}.
Proof. Step 1: null $T^{n} \cap$ range $T^{n}=\{0\}$
S'pose $v \in$ null $T^{n} \cap$ range T^{n}. Then $T^{n} v=0$ and there exists $u \in V$ such that $v=T^{n} u$.

$$
T^{n} v=T^{2 n} u=0
$$

By by the previous result, then $T^{n} u=0$ and $v=0$.
Step 2: Then using Fundamental Theorem of Linear Maps:

V is the direct sum of null $T^{\operatorname{dim} V}$ and range $T^{\operatorname{dim} V}$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then $V=$ null $T^{n} \oplus$ range T^{n}.
Proof. Step 1: null $T^{n} \cap$ range $T^{n}=\{0\}$
S'pose $v \in$ null $T^{n} \cap$ range T^{n}. Then $T^{n} v=0$ and there exists $u \in V$ such that $v=T^{n} u$.

$$
T^{n} v=T^{2 n} u=0
$$

By by the previous result, then $T^{n} u=0$ and $v=0$.
Step 2: Then using Fundamental Theorem of Linear Maps: $\operatorname{dim}($ null $T \oplus \operatorname{range} T)=\operatorname{dim}$ null $T^{n}+\operatorname{dim} r a n g e T^{n}=\operatorname{dim} V$

V is the direct sum of null $T^{\operatorname{dim} V}$ and range $T^{\operatorname{dim} V}$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then $V=$ null $T^{n} \oplus$ range T^{n}.
Proof. Step 1: null $T^{n} \cap$ range $T^{n}=\{0\}$
S'pose $v \in$ null $T^{n} \cap$ range T^{n}. Then $T^{n} v=0$ and there exists $u \in V$ such that $v=T^{n} u$.

$$
T^{n} v=T^{2 n} u=0
$$

By by the previous result, then $T^{n} u=0$ and $v=0$.
Step 2: Then using Fundamental Theorem of Linear Maps:
$\operatorname{dim}($ null $T \oplus \operatorname{range} T)=\operatorname{dim}$ null $T^{n}+\operatorname{dim} r a n g e ~ T^{n}=\operatorname{dim} V$
implying null $T+$ range $T=$ null $T \oplus$ range $T \subseteq V$ is all of V.

V is the direct sum of null $T^{\operatorname{dim} V}$ and range $T^{\operatorname{dim} V}$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n=\operatorname{dim} V$. Then $V=$ null $T^{n} \oplus$ range T^{n}.
Proof. Step 1: null $T^{n} \cap$ range $T^{n}=\{0\}$
S'pose $v \in$ null $T^{n} \cap$ range T^{n}. Then $T^{n} v=0$ and there exists $u \in V$ such that $v=T^{n} u$.

$$
T^{n} v=T^{2 n} u=0
$$

By by the previous result, then $T^{n} u=0$ and $v=0$.
Step 2: Then using Fundamental Theorem of Linear Maps:
$\operatorname{dim}($ null $T \oplus \operatorname{range} T)=\operatorname{dim}$ null $T^{n}+\operatorname{dim} r a n g e ~ T^{n}=\operatorname{dim} V$
implying null $T+$ range $T=$ null $T \oplus$ range $T \subseteq V$ is all of V. \square

Example

$T \in \mathcal{L}\left(\mathbb{F}^{3}\right)$ defined $T(x, y, z)=(4 y, 0,5 z)$

Example

$T \in \mathcal{L}\left(\mathbb{F}^{3}\right)$ defined $T(x, y, z)=(4 y, 0,5 z)$
We do not have null $T \oplus$ range $T=V$ since

$$
\begin{aligned}
\text { null } T & =\{(x, 0,0): x \in \mathbb{F}\} \\
\text { range } T & =\{(x, 0, z): x, z \in \mathbb{F}\}
\end{aligned}
$$

Example

$T \in \mathcal{L}\left(\mathbb{F}^{3}\right)$ defined $T(x, y, z)=(4 y, 0,5 z)$
We do not have null $T \oplus$ range $T=V$ since

$$
\begin{aligned}
\text { null } T & =\{(x, 0,0): x \in \mathbb{F}\} \\
\text { range } T & =\{(x, 0, z): x, z \in \mathbb{F}\}
\end{aligned}
$$

But we do have null $T^{3} \oplus$ range $T^{3}=V$ since $T^{3}(x, y, z)=(0,0,125 z)$ and

$$
\begin{aligned}
& \text { null } T^{3}=\{(x, y, 0): x, y \in \mathbb{F}\} \\
& \text { range } T^{3}=\{(0,0, z): z \in \mathbb{F}\}
\end{aligned}
$$

Generalized Eigenvectors

Motivation:

Goal: We want to describe structure of operators.

Generalized Eigenvectors

Motivation:

Goal: We want to describe structure of operators.
Problem: Eigenvalues, upper triangular/diagonal matrices not enough
Solution: Generalized eigenvectors.

Generalized Eigenvectors

Fix $T \in \mathcal{L}(V)$.

Generalized Eigenvectors

Fix $T \in \mathcal{L}(V)$.
We want to describe T by writing $V=U_{1} \oplus \cdots \oplus U_{m}$ where the U_{i} are invariant under T.

Generalized Eigenvectors

Fix $T \in \mathcal{L}(V)$.
We want to describe T by writing $V=U_{1} \oplus \cdots \oplus U_{m}$ where the U_{i} are invariant under T.

We can make the U_{i} one-dimensional invariant subspaces if and only if V has an eigenspace decomposition, i.e.

Generalized Eigenvectors

Fix $T \in \mathcal{L}(V)$.
We want to describe T by writing $V=U_{1} \oplus \cdots \oplus U_{m}$ where the U_{i} are invariant under T.

We can make the U_{i} one-dimensional invariant subspaces if and only if V has an eigenspace decomposition, i.e.

$$
V=E\left(\lambda_{1}, T\right) \oplus \cdots \oplus E\left(\lambda_{m}, T\right)
$$

Generalized Eigenvectors

Fix $T \in \mathcal{L}(V)$.
We want to describe T by writing $V=U_{1} \oplus \cdots \oplus U_{m}$ where the U_{i} are invariant under T.

We can make the U_{i} one-dimensional invariant subspaces if and only if V has an eigenspace decomposition, i.e.

$$
V=E\left(\lambda_{1}, T\right) \oplus \cdots \oplus E\left(\lambda_{m}, T\right)
$$

The Spectral Thm guaranteed this to exist for normal operators if $\mathbb{F}=\mathbb{C}$ and self-adjoint operators if $\mathbb{F}=\mathbb{R}$.

Generalized Eigenvectors

Fix $T \in \mathcal{L}(V)$.
We want to describe T by writing $V=U_{1} \oplus \cdots \oplus U_{m}$ where the U_{i} are invariant under T.

We can make the U_{i} one-dimensional invariant subspaces if and only if V has an eigenspace decomposition, i.e.

$$
V=E\left(\lambda_{1}, T\right) \oplus \cdots \oplus E\left(\lambda_{m}, T\right)
$$

The Spectral Thm guaranteed this to exist for normal operators if $\mathbb{F}=\mathbb{C}$ and self-adjoint operators if $\mathbb{F}=\mathbb{R}$.

In general, we do not have this decomposition.

Generalized Eigenvectors

Def'n:

S'pose $T \in \mathcal{L}(V)$ and λ is an eigenvalue of T. A vector $v \in V$ is a generalized eigenvector of T corresponding to λ if $v \neq 0$ and $(T-\lambda I)^{j} v=0$ for some positive integer j.

Generalized Eigenvectors

Def'n:

S'pose $T \in \mathcal{L}(V)$ and λ is an eigenvalue of T. A vector $v \in V$ is a generalized eigenvector of T corresponding to λ if $v \neq 0$ and $(T-\lambda /)^{j} v=0$ for some positive integer j.

Def'n:

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. The generalized eigenspace of T corresponding to λ denoted $G(\lambda, T)$ is defined to be the set of all generalized eigenvectors of T corresponding to λ, along with 0 .

Generalized Eigenvectors

Def'n:

S'pose $T \in \mathcal{L}(V)$ and λ is an eigenvalue of T. A vector $v \in V$ is a generalized eigenvector of T corresponding to λ if $v \neq 0$ and $(T-\lambda I)^{j} v=0$ for some positive integer j.

Def'n:

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. The generalized eigenspace of T corresponding to λ denoted $G(\lambda, T)$ is defined to be the set of all generalized eigenvectors of T corresponding to λ, along with 0 .

Remark. $E(\lambda, T) \subset G(\lambda, T)$

Description of Generalized Eigenspaces

Prop'n:

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T)=\operatorname{null}(T-\lambda /)^{\operatorname{dim} V}$.

Example

Define $T(x, y, z)=(4 y, 0,5 z)$ to be an operator in $\mathcal{L}\left(\mathbb{C}^{3}\right)$.

Example

Define $T(x, y, z)=(4 y, 0,5 z)$ to be an operator in $\mathcal{L}\left(\mathbb{C}^{3}\right)$.
Let's find the eigenvalues,

Example

Define $T(x, y, z)=(4 y, 0,5 z)$ to be an operator in $\mathcal{L}\left(\mathbb{C}^{3}\right)$.
Let's find the eigenvalues, their eigenspaces,

Example

Define $T(x, y, z)=(4 y, 0,5 z)$ to be an operator in $\mathcal{L}\left(\mathbb{C}^{3}\right)$.
Let's find the eigenvalues, their eigenspaces, and their generalized eigenspaces.

Example

Define $T(x, y, z)=(4 y, 0,5 z)$ to be an operator in $\mathcal{L}\left(\mathbb{C}^{3}\right)$.
Let's find the eigenvalues, their eigenspaces, and their generalized eigenspaces.
$E(0, T)=\{(x, 0,0): x \in \mathbb{C}\}, E(5, T)=\{(0,0, z): z \in \mathbb{C}\}$,

Example

Define $T(x, y, z)=(4 y, 0,5 z)$ to be an operator in $\mathcal{L}\left(\mathbb{C}^{3}\right)$.
Let's find the eigenvalues, their eigenspaces, and their generalized eigenspaces.
$E(0, T)=\{(x, 0,0): x \in \mathbb{C}\}, E(5, T)=\{(0,0, z): z \in \mathbb{C}\}$, which don't $\operatorname{span} \mathbb{C}^{3}$.

Example

Define $T(x, y, z)=(4 y, 0,5 z)$ to be an operator in $\mathcal{L}\left(\mathbb{C}^{3}\right)$.
Let's find the eigenvalues, their eigenspaces, and their generalized eigenspaces.
$E(0, T)=\{(x, 0,0): x \in \mathbb{C}\}, E(5, T)=\{(0,0, z): z \in \mathbb{C}\}$, which don't span \mathbb{C}^{3}.
$(T-0 I)^{3}=T^{3}$ and $T^{3}(x, y, z)=(0,0,125 z)$

Example

Define $T(x, y, z)=(4 y, 0,5 z)$ to be an operator in $\mathcal{L}\left(\mathbb{C}^{3}\right)$.
Let's find the eigenvalues, their eigenspaces, and their generalized eigenspaces.
$E(0, T)=\{(x, 0,0): x \in \mathbb{C}\}, E(5, T)=\{(0,0, z): z \in \mathbb{C}\}$, which don't span \mathbb{C}^{3}.
$(T-0 /)^{3}=T^{3}$ and $T^{3}(x, y, z)=(0,0,125 z) \Longrightarrow$
$G(0, T)=\{(x, y, 0): x, y \in \mathbb{C}\}$.

Example

Define $T(x, y, z)=(4 y, 0,5 z)$ to be an operator in $\mathcal{L}\left(\mathbb{C}^{3}\right)$.
Let's find the eigenvalues, their eigenspaces, and their generalized eigenspaces.
$E(0, T)=\{(x, 0,0): x \in \mathbb{C}\}, E(5, T)=\{(0,0, z): z \in \mathbb{C}\}$, which don't span \mathbb{C}^{3}.
$(T-0 /)^{3}=T^{3}$ and $T^{3}(x, y, z)=(0,0,125 z) \Longrightarrow$
$G(0, T)=\{(x, y, 0): x, y \in \mathbb{C}\}$.
$(T-5 /)^{3}(x, y, z)=(-125 x+300 y,-125 y, 0)$

Example

Define $T(x, y, z)=(4 y, 0,5 z)$ to be an operator in $\mathcal{L}\left(\mathbb{C}^{3}\right)$.
Let's find the eigenvalues, their eigenspaces, and their generalized eigenspaces.
$E(0, T)=\{(x, 0,0): x \in \mathbb{C}\}, E(5, T)=\{(0,0, z): z \in \mathbb{C}\}$, which don't span \mathbb{C}^{3}.
$(T-0 /)^{3}=T^{3}$ and $T^{3}(x, y, z)=(0,0,125 z) \Longrightarrow$
$G(0, T)=\{(x, y, 0): x, y \in \mathbb{C}\}$.
$(T-5 /)^{3}(x, y, z)=(-125 x+300 y,-125 y, 0) \Longrightarrow$
$G(5, T)=\{(0,0, z): z \in \mathbb{C}\}$.

Example

Define $T(x, y, z)=(4 y, 0,5 z)$ to be an operator in $\mathcal{L}\left(\mathbb{C}^{3}\right)$.
Let's find the eigenvalues, their eigenspaces, and their generalized eigenspaces.
$E(0, T)=\{(x, 0,0): x \in \mathbb{C}\}, E(5, T)=\{(0,0, z): z \in \mathbb{C}\}$, which don't span \mathbb{C}^{3}.
$(T-0 /)^{3}=T^{3}$ and $T^{3}(x, y, z)=(0,0,125 z) \Longrightarrow$
$G(0, T)=\{(x, y, 0): x, y \in \mathbb{C}\}$.
$(T-5 /)^{3}(x, y, z)=(-125 x+300 y,-125 y, 0) \Longrightarrow$
$G(5, T)=\{(0,0, z): z \in \mathbb{C}\}$.
Notice $\mathbb{C}^{3}=G(0, T) \oplus G(5, T)$.

Another Example

Define $T(x, y, z)=(6 x+3 y+4 z, 6 y+2 z, 7 z)$ to be an operator in $\mathcal{L}\left(\mathbb{C}^{3}\right)$.

Another Example

Define $T(x, y, z)=(6 x+3 y+4 z, 6 y+2 z, 7 z)$ to be an operator in $\mathcal{L}\left(\mathbb{C}^{3}\right)$.

What are the eigenvalues?

Another Example

Define $T(x, y, z)=(6 x+3 y+4 z, 6 y+2 z, 7 z)$ to be an operator in $\mathcal{L}\left(\mathbb{C}^{3}\right)$.

What are the eigenvalues? 6,7. Why?

Another Example

Define $T(x, y, z)=(6 x+3 y+4 z, 6 y+2 z, 7 z)$ to be an operator in $\mathcal{L}\left(\mathbb{C}^{3}\right)$.

What are the eigenvalues? 6,7. Why?
We calculate the generalized eigenspaces as $G(\lambda, T)=\operatorname{null}(T-\lambda I)^{3}$.
$(T-6 /)^{3}(x, y, z)=(10 z, 2 z, z)$

Another Example

Define $T(x, y, z)=(6 x+3 y+4 z, 6 y+2 z, 7 z)$ to be an operator in $\mathcal{L}\left(\mathbb{C}^{3}\right)$.

What are the eigenvalues? 6,7. Why?
We calculate the generalized eigenspaces as $G(\lambda, T)=\operatorname{null}(T-\lambda I)^{3}$.

$$
(T-6 /)^{3}(x, y, z)=(10 z, 2 z, z) \Longrightarrow \text { null }=\operatorname{span}(1,0,0),(0,1,0)
$$

Another Example

Define $T(x, y, z)=(6 x+3 y+4 z, 6 y+2 z, 7 z)$ to be an operator in $\mathcal{L}\left(\mathbb{C}^{3}\right)$.

What are the eigenvalues? 6,7. Why?
We calculate the generalized eigenspaces as $G(\lambda, T)=\operatorname{null}(T-\lambda I)^{3}$.
$(T-6 /)^{3}(x, y, z)=(10 z, 2 z, z) \Longrightarrow$ null $=\operatorname{span}(1,0,0),(0,1,0)$
$(T-7 l)^{3}(x, y, z)=(-x+9 y-8 z,-y+2 z, 0)$

Another Example

Define $T(x, y, z)=(6 x+3 y+4 z, 6 y+2 z, 7 z)$ to be an operator in $\mathcal{L}\left(\mathbb{C}^{3}\right)$.

What are the eigenvalues? 6,7. Why?
We calculate the generalized eigenspaces as $G(\lambda, T)=\operatorname{null}(T-\lambda I)^{3}$.
$(T-6 /)^{3}(x, y, z)=(10 z, 2 z, z) \Longrightarrow$ null $=\operatorname{span}(1,0,0),(0,1,0)$
$(T-7 l)^{3}(x, y, z)=(-x+9 y-8 z,-y+2 z, 0) \Longrightarrow$
null $=\operatorname{span}(10,2,1)$

Description of Generalized Eigenspaces

Prop'n:

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T)=\operatorname{null}(T-\lambda /)^{\operatorname{dim} V}$.

Description of Generalized Eigenspaces

Prop'n:

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T)=\operatorname{null}(T-\lambda /)^{\operatorname{dim} V}$.
Proof.

Description of Generalized Eigenspaces

Prop'n:

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T)=\operatorname{null}(T-\lambda /)^{\operatorname{dim} V}$.
Proof.
S'pose $v \in \operatorname{null}(T-\lambda /)^{\operatorname{dim} v}$.

Description of Generalized Eigenspaces

Prop'n:

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T)=\operatorname{null}(T-\lambda /)^{\operatorname{dim} V}$.
Proof.
S'pose $v \in \operatorname{null}(T-\lambda /)^{\operatorname{dim} V}$. By definition, $v \in G(\lambda, T)$.

Description of Generalized Eigenspaces

Prop'n:

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T)=\operatorname{null}(T-\lambda /)^{\operatorname{dim} V}$.
Proof.
S'pose $v \in \operatorname{null}(T-\lambda /)^{\operatorname{dim} V}$. By definition, $v \in G(\lambda, T)$.
S'pose $v \in G(\lambda, T)$.

Description of Generalized Eigenspaces

Prop'n:

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T)=\operatorname{null}(T-\lambda /)^{\operatorname{dim} V}$.
Proof.
S'pose $v \in \operatorname{null}(T-\lambda /)^{\operatorname{dim} V}$. By definition, $v \in G(\lambda, T)$.
S'pose $v \in G(\lambda, T)$. Then there is aj such that $v \in \operatorname{null}(T-\lambda /)^{j}$.

Description of Generalized Eigenspaces

Prop'n:

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T)=\operatorname{null}(T-\lambda /)^{\operatorname{dim} V}$.
Proof.
S'pose $v \in \operatorname{null}(T-\lambda /)^{\operatorname{dim} V}$. By definition, $v \in G(\lambda, T)$.
S'pose $v \in G(\lambda, T)$. Then there is aj such that $v \in \operatorname{null}(T-\lambda /)^{j}$. Recall:

Description of Generalized Eigenspaces

Prop'n:

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T)=\operatorname{null}(T-\lambda /)^{\operatorname{dim} V}$.
Proof.
S'pose $v \in \operatorname{null}(T-\lambda /)^{\operatorname{dim} V}$. By definition, $v \in G(\lambda, T)$.
S'pose $v \in G(\lambda, T)$. Then there is a j such that $v \in \operatorname{null}(T-\lambda /)^{j}$. Recall:

$$
\{0\}=\operatorname{null} T^{0} \subseteq \operatorname{null} T^{1} \subseteq \ldots \subseteq \operatorname{null} T^{k} \subseteq \operatorname{null} T^{k+1} \subseteq \ldots
$$

Description of Generalized Eigenspaces

Prop'n:

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T)=\operatorname{null}(T-\lambda /)^{\operatorname{dim} V}$.
Proof.
S'pose $v \in \operatorname{null}(T-\lambda /)^{\operatorname{dim} V}$. By definition, $v \in G(\lambda, T)$.
S'pose $v \in G(\lambda, T)$. Then there is aj such that $v \in \operatorname{null}(T-\lambda /)^{j}$. Recall:

$$
\{0\}=\operatorname{null} T^{0} \subseteq \operatorname{null} T^{1} \subseteq \ldots \subseteq \operatorname{null} T^{k} \subseteq \operatorname{null} T^{k+1} \subseteq \ldots .
$$

and for $n=\operatorname{dim} V$

$$
\operatorname{null} T^{n}=\operatorname{null} T^{n+1}=\operatorname{null} T^{n+2}=\ldots
$$

Description of Generalized Eigenspaces

Prop'n:

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T)=\operatorname{null}(T-\lambda /)^{\operatorname{dim} V}$.
Proof.
S'pose $v \in \operatorname{null}(T-\lambda /)^{\operatorname{dim} V}$. By definition, $v \in G(\lambda, T)$.
S'pose $v \in G(\lambda, T)$. Then there is aj such that $v \in \operatorname{null}(T-\lambda /)^{j}$. Recall:

$$
\{0\}=\operatorname{null} T^{0} \subseteq \operatorname{null} T^{1} \subseteq \ldots \subseteq \operatorname{null} T^{k} \subseteq \operatorname{null} T^{k+1} \subseteq \ldots .
$$

and for $n=\operatorname{dim} V$

$$
\operatorname{null} T^{n}=\operatorname{null} T^{n+1}=\operatorname{null} T^{n+2}=\ldots
$$

Thus, $v \in \operatorname{null}(T-\lambda /)^{\operatorname{dim} v}$.

Linearly Independent Generalized Eigenvectors

Prop'n [Ax[14]:
Let $T \in \mathcal{L}(V)$. Suppose $\lambda_{1}, \ldots, \lambda_{m}$ are distinct eigenvalues of T and v_{1}, \ldots, v_{m} are corresponding generalized eigenvectors. Then v_{1}, \ldots, v_{m} are linearly independent.

Nilpotent Operators

Def'n:

An operator is called nilpotent if some power of it is equal to 0 .

Nilpotent Operators

Def'n:

An operator is called nilpotent if some power of it is equal to 0 .

Examples:

Nilpotent Operators

Def'n:

An operator is called nilpotent if some power of it is equal to 0 .

Examples:

$\square N \in \mathcal{L}\left(\mathbb{F}^{4}\right)$ defined $N\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(z_{3}, z_{4}, 0,0\right)$

Nilpotent Operators

Def'n:

An operator is called nilpotent if some power of it is equal to 0 .

Examples:

■ $N \in \mathcal{L}\left(\mathbb{F}^{4}\right)$ defined $N\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(z_{3}, z_{4}, 0,0\right)$
■ The derivative operator on $\mathcal{P}_{n}(\mathbb{R})$

Characterizations of Nilpotent Operators

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $N^{\operatorname{dim} V}=0$.

Characterizations of Nilpotent Operators

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $N^{\operatorname{dim} V}=0$.
Proof.

Characterizations of Nilpotent Operators

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $N^{\operatorname{dim} V}=0$.
Proof.
By definition, $N^{k} v=0$ for all v and some k.

Characterizations of Nilpotent Operators

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $N^{\operatorname{dim} V}=0$.
Proof.
By definition, $N^{k} v=0$ for all v and some k.
Then $(N-0 /)^{k} v=0$ for all v and some k.

Characterizations of Nilpotent Operators

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $N^{\operatorname{dim} V}=0$.
Proof.
By definition, $N^{k} v=0$ for all v and some k.
Then $(N-0 I)^{k} v=0$ for all v and some k. So $G(0, N)=V$.

Characterizations of Nilpotent Operators

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $N^{\operatorname{dim} V}=0$.
Proof.
By definition, $N^{k} v=0$ for all v and some k.
Then $(N-0 I)^{k} v=0$ for all v and some k. So $G(0, N)=V$.
$V=G(0, N)=\operatorname{null}(N-0 /)^{\operatorname{dim} V}=\operatorname{null} N^{\operatorname{dim} V}$

Characterizations of Nilpotent Operators

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $N^{\operatorname{dim} V}=0$.
Proof.
By definition, $N^{k} v=0$ for all v and some k.
Then $(N-0 /)^{k} v=0$ for all v and some k. So $G(0, N)=V$.
$V=G(0, N)=\operatorname{null}(N-0 /)^{\operatorname{dim} V}=$ null $N^{\operatorname{dim} V} \Longrightarrow N^{\operatorname{dim} V}=0$

Characterizations of Nilpotent Operators

Matrix of nilpotent operator:

S'pose N is a nilpotent operator on V. Then there is a basis of V for which the matrix $\mathcal{M}(N)$ has the form:

$$
\left(\begin{array}{lll}
0 & & * \\
& \ldots & \\
0 & & 0
\end{array}\right)
$$

where entries on and below the diagonal are zero.

Proof of Matrix

Proof.

Proof of Matrix

Proof. Choose a basis of null N.

Proof of Matrix

Proof. Choose a basis of null N. Extend this to a basis of null N^{2}.

Proof of Matrix

Proof. Choose a basis of null N. Extend this to a basis of null N^{2}. Extend to a basis of null N^{3}.

Proof of Matrix

Proof. Choose a basis of null N. Extend this to a basis of null N^{2}. Extend to a basis of null N^{3}. Continue in this fashion arriving at a basis of V since null $N^{\operatorname{dim} V}=V$.

Proof of Matrix

Proof. Choose a basis of null N. Extend this to a basis of null N^{2}. Extend to a basis of null N^{3}. Continue in this fashion arriving at a basis of V since null $N^{\operatorname{dim} V}=V$.

What does the matrix with respect to this basis look like?

Proof of Matrix

Proof. Choose a basis of null N. Extend this to a basis of null N^{2}. Extend to a basis of null N^{3}. Continue in this fashion arriving at a basis of V since null $N^{\operatorname{dim} V}=V$.

What does the matrix with respect to this basis look like?

- Basis vectors of null N give all 0 s.

Proof of Matrix

Proof. Choose a basis of null N. Extend this to a basis of null N^{2}. Extend to a basis of null N^{3}. Continue in this fashion arriving at a basis of V since null $N^{\operatorname{dim} V}=V$.

What does the matrix with respect to this basis look like?
■ Basis vectors of null N give all 0 s.

- Basis vectors of null N^{2} under N are linear combinations of the vectors in null N.

Proof of Matrix

Proof. Choose a basis of null N. Extend this to a basis of null N^{2}. Extend to a basis of null N^{3}. Continue in this fashion arriving at a basis of V since null $N^{\operatorname{dim} V}=V$.

What does the matrix with respect to this basis look like?
■ Basis vectors of null N give all 0 s.

- Basis vectors of null N^{2} under N are linear combinations of the vectors in null N. Non-zero entries are above the diagonal.

Proof of Matrix

Proof. Choose a basis of null N. Extend this to a basis of null N^{2}. Extend to a basis of null N^{3}. Continue in this fashion arriving at a basis of V since null $N^{\operatorname{dim} V}=V$.

What does the matrix with respect to this basis look like?
■ Basis vectors of null N give all 0 s.

- Basis vectors of null N^{2} under N are linear combinations of the vectors in null N. Non-zero entries are above the diagonal.
■ Same with rest of columns.

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

