

Lecture 21: Generalized Eigenvectors

MATH 110-3

Franny Dean

July 27, 2023

- $\blacksquare \mathbb{F} = \mathbb{C}$
- V is finite-dimensional and non-zero
- Regular vector space no inner products

- $\blacksquare \mathbb{F} = \mathbb{C}$
- V is finite-dimensional and non-zero
- Regular vector space no inner products
- (We are in Chapter 8 now!)

- $\blacksquare \mathbb{F} = \mathbb{C}$
- V is finite-dimensional and non-zero
- Regular vector space no inner products
- (We are in Chapter 8 now!)
- Recall $T^k = TT \cdots T$ (composition of operators k times)

- $\blacksquare \mathbb{F} = \mathbb{C}$
- V is finite-dimensional and non-zero
- Regular vector space no inner products
- (We are in Chapter 8 now!)
- Recall $T^k = TT \cdots T$ (composition of operators k times)
- **Goal:** Decomposing/understanding more general operators

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Then

$$\{0\} = \mathsf{null} \ T^0 \subseteq \mathsf{null} \ T^1 \subseteq \ldots \subseteq \mathsf{null} \ T^k \subseteq \mathsf{null} \ T^{k+1} \subseteq \ldots$$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Then

$$\{0\} =$$
null $T^0 \subseteq$ null $T^1 \subseteq \ldots \subseteq$ null $T^k \subseteq$ null $T^{k+1} \subseteq \ldots$

Proof.

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Then

$$\{0\} = \text{null } T^0 \subseteq \text{null } T^1 \subseteq \ldots \subseteq \text{null } T^k \subseteq \text{null } T^{k+1} \subseteq \ldots$$

Proof. S'pose k is a nonnegative integer and $v \in \text{null } T^k$.

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Then

$$\{0\} = \text{null } T^0 \subseteq \text{null } T^1 \subseteq \ldots \subseteq \text{null } T^k \subseteq \text{null } T^{k+1} \subseteq \ldots$$

Proof. S'pose k is a nonnegative integer and $v \in \text{null } T^k$.

$$T^k v = 0$$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Then

$$\{0\} = \text{null } T^0 \subseteq \text{null } T^1 \subseteq \ldots \subseteq \text{null } T^k \subseteq \text{null } T^{k+1} \subseteq \ldots$$

Proof. S'pose k is a nonnegative integer and $v \in \text{null } T^k$.

$$T^k v = 0$$

$$T^{k+1}v = TT^kv = T0 = 0$$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Then

$$\{0\} = \text{null } T^0 \subseteq \text{null } T^1 \subseteq \ldots \subseteq \text{null } T^k \subseteq \text{null } T^{k+1} \subseteq \ldots$$

Proof. S'pose k is a nonnegative integer and $v \in \text{null } T^k$.

 $T^k v = 0$

$$T^{k+1}v = TT^kv = T0 = 0$$

Thus, $v \in \text{null } T^{k+1}$.

FD • MATH 110 • July 27, 2023

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then

null
$$T^n$$
 = null T^{n+1} = null T^{n+2} =

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then

null
$$T^n$$
 = null T^{n+1} = null T^{n+2} =

Proof.

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then

null
$$T^n$$
 = null T^{n+1} = null T^{n+2} =

Proof.

Step 1: S'pose null T^m = null T^{m+1} for some m,

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then

null
$$T^n$$
 = null T^{n+1} = null T^{n+2} =

Proof.

Step 1: S'pose null T^m = null T^{m+1} for some *m*, we show for any *k*: null T^{m+k} = null T^{m+k+1} .

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then

null
$$T^n$$
 = null T^{n+1} = null T^{n+2} =

Proof.

Step 1: S'pose null T^m = null T^{m+1} for some m, we show for any k: null T^{m+k} = null T^{m+k+1} .

We must show null $T^{m+k} \supseteq$ null T^{m+k+1} .

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then

null
$$T^n$$
 = null T^{n+1} = null T^{n+2} =

Proof.

Step 1: S'pose null T^m = null T^{m+1} for some m, we show for any k: null T^{m+k} = null T^{m+k+1} .

We must show null $T^{m+k} \supseteq$ null T^{m+k+1} .

 $v \in \text{null } T^{m+k+1}$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then

null
$$T^n$$
 = null T^{n+1} = null T^{n+2} =

Proof.

Step 1: S'pose null T^m = null T^{m+1} for some m, we show for any k: null T^{m+k} = null T^{m+k+1} .

We must show null $T^{m+k} \supseteq$ null T^{m+k+1} .

 $v \in \operatorname{null} T^{m+k+1}$ $T^{m+1}(T^k v) = T^{m+k+1}v = 0$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then

null
$$T^n$$
 = null T^{n+1} = null T^{n+2} =

Proof.

Step 1: S'pose null T^m = null T^{m+1} for some m, we show for any k: null T^{m+k} = null T^{m+k+1} .

We must show null $T^{m+k} \supseteq$ null T^{m+k+1} .

 $v \in \operatorname{null} T^{m+k+1}$ $T^{m+1}(T^k v) = T^{m+k+1}v = 0$

$$T^k v \in \operatorname{null} T^{m+1} = \operatorname{null} T^m \implies v \in \operatorname{null} T^{m+k}$$

Proof (Cont'd):

Proof (Cont'd):

Step 2: We show null T^n = null T^{n+1} .

Proof (Cont'd):

Step 2: We show null T^n = null T^{n+1} .

S'pose not.

Then

$$\{0\} \subsetneq$$
 null $T^1 \subsetneq$ null $T^2 \subsetneq \ldots \subsetneq$ null $T^n \subsetneq$ null T^{n+1}

Proof (Cont'd):

Step 2: We show null T^n = null T^{n+1} .

S'pose not.

Then

$$\{0\} \subsetneq$$
 null $T^1 \subsetneq$ null $T^2 \subsetneq \ldots \subsetneq$ null $T^n \subsetneq$ null T^{n+1}

But, dimension must grow in this chain, of subsets of V, contradiction.

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then $V = \operatorname{null} T^n \oplus \operatorname{range} T^n$.

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then $V = \operatorname{null} T^n \oplus \operatorname{range} T^n$.

Proof.

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then $V = \operatorname{null} T^n \oplus \operatorname{range} T^n$.

Proof. **Step 1:** null $T^n \cap$ range $T^n = \{0\}$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then $V = \operatorname{null} T^n \oplus \operatorname{range} T^n$.

Proof. **Step 1:** null $T^n \cap$ range $T^n = \{0\}$

S'pose $v \in \text{null } T^n \cap \text{range } T^n$.

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then $V = \operatorname{null} T^n \oplus \operatorname{range} T^n$.

Proof. **Step 1:** null $T^n \cap$ range $T^n = \{0\}$

S'pose $v \in \text{null } T^n \cap \text{range } T^n$. Then $T^n v = 0$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then $V = \operatorname{null} T^n \oplus \operatorname{range} T^n$.

Proof. **Step 1:** null $T^n \cap$ range $T^n = \{0\}$

S'pose $v \in \text{null } T^n \cap \text{range } T^n$. Then $T^n v = 0$ and there exists $u \in V$ such that $v = T^n u$.

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then $V = \operatorname{null} T^n \oplus \operatorname{range} T^n$.

Proof. **Step 1:** null $T^n \cap$ range $T^n = \{0\}$

S'pose $v \in \text{null } T^n \cap \text{range } T^n$. Then $T^n v = 0$ and there exists $u \in V$ such that $v = T^n u$.

$$T^n v = T^{2n} u = 0$$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then $V = \operatorname{null} T^n \oplus \operatorname{range} T^n$.

Proof. **Step 1:** null $T^n \cap$ range $T^n = \{0\}$

S'pose $v \in \text{null } T^n \cap \text{range } T^n$. Then $T^n v = 0$ and there exists $u \in V$ such that $v = T^n u$.

$$T^n v = T^{2n} u = 0$$

By by the previous result, then $T^n u = 0$ and v = 0.

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then $V = \operatorname{null} T^n \oplus \operatorname{range} T^n$.

Proof. **Step 1:** null $T^n \cap$ range $T^n = \{0\}$

S'pose $v \in \text{null } T^n \cap \text{range } T^n$. Then $T^n v = 0$ and there exists $u \in V$ such that $v = T^n u$.

$$T^n v = T^{2n} u = 0$$

By by the previous result, then $T^n u = 0$ and v = 0.

Step 2:

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then $V = \operatorname{null} T^n \oplus \operatorname{range} T^n$.

Proof. **Step 1:** null $T^n \cap$ range $T^n = \{0\}$

S'pose $v \in \text{null } T^n \cap \text{range } T^n$. Then $T^n v = 0$ and there exists $u \in V$ such that $v = T^n u$.

$$T^n v = T^{2n} u = 0$$

By by the previous result, then $T^n u = 0$ and v = 0.

Step 2: Then using Fundamental Theorem of Linear Maps:

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then $V = \operatorname{null} T^n \oplus \operatorname{range} T^n$.

Proof. **Step 1:** null $T^n \cap$ range $T^n = \{0\}$

S'pose $v \in \text{null } T^n \cap \text{range } T^n$. Then $T^n v = 0$ and there exists $u \in V$ such that $v = T^n u$.

$$T^n v = T^{2n} u = 0$$

By by the previous result, then $T^n u = 0$ and v = 0.

Step 2: Then using Fundamental Theorem of Linear Maps:

dim(null $T \oplus$ range T) = dim null T^n + dim range T^n = dim V

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then $V = \operatorname{null} T^n \oplus \operatorname{range} T^n$.

Proof. **Step 1:** null $T^n \cap$ range $T^n = \{0\}$

S'pose $v \in \text{null } T^n \cap \text{range } T^n$. Then $T^n v = 0$ and there exists $u \in V$ such that $v = T^n u$.

$$T^n v = T^{2n} u = 0$$

By by the previous result, then $T^n u = 0$ and v = 0.

Step 2: Then using Fundamental Theorem of Linear Maps:

dim(null $T \oplus$ range T) = dim null T^n + dim range T^n = dim V

implying null T + range T = null T \oplus range $T \subseteq V$ is all of V.
V is the direct sum of null $T^{\dim V}$ and range $T^{\dim V}$

Prop'n:

S'pose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then $V = \operatorname{null} T^n \oplus \operatorname{range} T^n$.

Proof. **Step 1:** null $T^n \cap$ range $T^n = \{0\}$

S'pose $v \in \text{null } T^n \cap \text{range } T^n$. Then $T^n v = 0$ and there exists $u \in V$ such that $v = T^n u$.

$$T^n v = T^{2n} u = 0$$

By by the previous result, then $T^n u = 0$ and v = 0.

Step 2: Then using Fundamental Theorem of Linear Maps:

dim(null $T \oplus$ range T) = dim null T^n + dim range T^n = dim V

implying null T + range T = null T \oplus range $T \subseteq V$ is all of V. \Box

 $T \in \mathcal{L}(\mathbb{F}^3)$ defined T(x, y, z) = (4y, 0, 5z)

 $T \in \mathcal{L}(\mathbb{F}^3)$ defined T(x, y, z) = (4y, 0, 5z)

We do not have null $T \oplus$ range T = V since

null
$$T = \{(x, 0, 0) : x \in \mathbb{F}\}$$

range
$$T = \{(x, 0, z) : x, z \in \mathbb{F}\}$$

 $T \in \mathcal{L}(\mathbb{F}^3)$ defined T(x, y, z) = (4y, 0, 5z)

We do not have null $T \oplus$ range T = V since

null $T = \{(x, 0, 0) : x \in \mathbb{F}\}$

range $T = \{(x, 0, z) : x, z \in \mathbb{F}\}$

But we do have null $T^3 \oplus$ range $T^3 = V$ since $T^3(x, y, z) = (0, 0, 125z)$ and

null
$$T^3 = \{(x, y, 0) : x, y \in \mathbb{F}\}$$

range $T^3 = \{(0, 0, z) : z \in \mathbb{F}\}$

Motivation:

Goal: We want to describe structure of operators.

Motivation:

Goal: We want to describe structure of operators.

Problem: Eigenvalues, upper triangular/diagonal matrices not enough

Solution: Generalized eigenvectors.

Fix $T \in \mathcal{L}(V)$.

Fix $T \in \mathcal{L}(V)$.

We want to describe *T* by writing $V = U_1 \oplus \cdots \oplus U_m$ where the U_i are invariant under *T*.

Fix $T \in \mathcal{L}(V)$.

We want to describe *T* by writing $V = U_1 \oplus \cdots \oplus U_m$ where the U_i are invariant under *T*.

We can make the U_i one-dimensional invariant subspaces if and only if V has an eigenspace decomposition, i.e.

Fix $T \in \mathcal{L}(V)$.

We want to describe *T* by writing $V = U_1 \oplus \cdots \oplus U_m$ where the U_i are invariant under *T*.

We can make the U_i one-dimensional invariant subspaces if and only if V has an eigenspace decomposition, i.e.

$$V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$$

Fix $T \in \mathcal{L}(V)$.

We want to describe *T* by writing $V = U_1 \oplus \cdots \oplus U_m$ where the U_i are invariant under *T*.

We can make the U_i one-dimensional invariant subspaces if and only if V has an eigenspace decomposition, i.e.

$$V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$$

The Spectral Thm guaranteed this to exist for normal operators if $\mathbb{F} = \mathbb{C}$ and self-adjoint operators if $\mathbb{F} = \mathbb{R}$.

Fix $T \in \mathcal{L}(V)$.

We want to describe *T* by writing $V = U_1 \oplus \cdots \oplus U_m$ where the U_i are invariant under *T*.

We can make the U_i one-dimensional invariant subspaces if and only if V has an eigenspace decomposition, i.e.

$$V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$$

The Spectral Thm guaranteed this to exist for normal operators if $\mathbb{F} = \mathbb{C}$ and self-adjoint operators if $\mathbb{F} = \mathbb{R}$.

In general, we do not have this decomposition.

Def'n:

S'pose $T \in \mathcal{L}(V)$ and λ is an eigenvalue of T. A vector $v \in V$ is a **generalized eigenvector** of T corresponding to λ if $v \neq 0$ and $(T - \lambda I)^j v = 0$ for some positive integer j.

Def'n:

S'pose $T \in \mathcal{L}(V)$ and λ is an eigenvalue of T. A vector $v \in V$ is a **generalized eigenvector** of T corresponding to λ if $v \neq 0$ and $(T - \lambda I)^j v = 0$ for some positive integer j.

Def'n:

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. The **generalized eigenspace** of T corresponding to λ denoted $G(\lambda, T)$ is defined to be the set of all generalized eigenvectors of T corresponding to λ , along with 0.

Def'n:

S'pose $T \in \mathcal{L}(V)$ and λ is an eigenvalue of T. A vector $v \in V$ is a **generalized eigenvector** of T corresponding to λ if $v \neq 0$ and $(T - \lambda I)^j v = 0$ for some positive integer j.

Def'n:

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. The **generalized eigenspace** of T corresponding to λ denoted $G(\lambda, T)$ is defined to be the set of all generalized eigenvectors of T corresponding to λ , along with 0.

Remark. $E(\lambda, T) \subset G(\lambda, T)$

Description of Generalized Eigenspaces

Prop'n:

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T) = \text{null } (T - \lambda I)^{\dim V}$.

Define T(x, y, z) = (4y, 0, 5z) to be an operator in $\mathcal{L}(\mathbb{C}^3)$.

Define T(x, y, z) = (4y, 0, 5z) to be an operator in $\mathcal{L}(\mathbb{C}^3)$.

Let's find the eigenvalues,

Define T(x, y, z) = (4y, 0, 5z) to be an operator in $\mathcal{L}(\mathbb{C}^3)$.

Let's find the eigenvalues, their eigenspaces,

Define T(x, y, z) = (4y, 0, 5z) to be an operator in $\mathcal{L}(\mathbb{C}^3)$.

Let's find the eigenvalues, their eigenspaces, and their *generalized* eigenspaces.

Define T(x, y, z) = (4y, 0, 5z) to be an operator in $\mathcal{L}(\mathbb{C}^3)$.

Let's find the eigenvalues, their eigenspaces, and their *generalized* eigenspaces.

 $E(0,T) = \{(x,0,0) : x \in \mathbb{C}\}, E(5,T) = \{(0,0,z) : z \in \mathbb{C}\},\$

Define T(x, y, z) = (4y, 0, 5z) to be an operator in $\mathcal{L}(\mathbb{C}^3)$.

Let's find the eigenvalues, their eigenspaces, and their *generalized* eigenspaces.

 $E(0,T) = \{(x,0,0) : x \in \mathbb{C}\}, E(5,T) = \{(0,0,z) : z \in \mathbb{C}\}, \text{ which don't span } \mathbb{C}^3.$

Define T(x, y, z) = (4y, 0, 5z) to be an operator in $\mathcal{L}(\mathbb{C}^3)$.

Let's find the eigenvalues, their eigenspaces, and their *generalized* eigenspaces.

 $E(0,T) = \{(x,0,0) : x \in \mathbb{C}\}, E(5,T) = \{(0,0,z) : z \in \mathbb{C}\},$ which don't span \mathbb{C}^3 .

 $(T - 0I)^3 = T^3$ and $T^3(x, y, z) = (0, 0, 125z)$

Define T(x, y, z) = (4y, 0, 5z) to be an operator in $\mathcal{L}(\mathbb{C}^3)$.

Let's find the eigenvalues, their eigenspaces, and their *generalized* eigenspaces.

 $E(0,T) = \{(x,0,0) : x \in \mathbb{C}\}, E(5,T) = \{(0,0,z) : z \in \mathbb{C}\}, \text{ which don't span } \mathbb{C}^3.$

$$(T - 0I)^3 = T^3$$
 and $T^3(x, y, z) = (0, 0, 125z) \implies$
 $G(0, T) = \{(x, y, 0) : x, y \in \mathbb{C}\}.$

Define T(x, y, z) = (4y, 0, 5z) to be an operator in $\mathcal{L}(\mathbb{C}^3)$.

Let's find the eigenvalues, their eigenspaces, and their *generalized* eigenspaces.

 $E(0,T) = \{(x,0,0) : x \in \mathbb{C}\}, E(5,T) = \{(0,0,z) : z \in \mathbb{C}\},$ which don't span \mathbb{C}^3 .

$$(T - 0I)^3 = T^3 \text{ and } T^3(x, y, z) = (0, 0, 125z) \implies$$

 $G(0, T) = \{(x, y, 0) : x, y \in \mathbb{C}\}.$

 $(T-5I)^{3}(x,y,z) = (-125x + 300y, -125y, 0)$

Define T(x, y, z) = (4y, 0, 5z) to be an operator in $\mathcal{L}(\mathbb{C}^3)$.

Let's find the eigenvalues, their eigenspaces, and their *generalized* eigenspaces.

 $E(0,T) = \{(x,0,0) : x \in \mathbb{C}\}, E(5,T) = \{(0,0,z) : z \in \mathbb{C}\}, \text{ which don't span } \mathbb{C}^3.$

$$(T - 0I)^3 = T^3$$
 and $T^3(x, y, z) = (0, 0, 125z) \implies$
 $G(0, T) = \{(x, y, 0) : x, y \in \mathbb{C}\}.$

 $(T-5I)^{3}(x,y,z) = (-125x+300y,-125y,0) \implies G(5,T) = \{(0,0,z) : z \in \mathbb{C}\}.$

Define T(x, y, z) = (4y, 0, 5z) to be an operator in $\mathcal{L}(\mathbb{C}^3)$.

Let's find the eigenvalues, their eigenspaces, and their *generalized* eigenspaces.

 $E(0,T) = \{(x,0,0) : x \in \mathbb{C}\}, E(5,T) = \{(0,0,z) : z \in \mathbb{C}\},$ which don't span \mathbb{C}^3 .

$$(T - 0I)^3 = T^3$$
 and $T^3(x, y, z) = (0, 0, 125z) \implies$
 $G(0, T) = \{(x, y, 0) : x, y \in \mathbb{C}\}.$

 $(T-5I)^{3}(x,y,z) = (-125x+300y,-125y,0) \implies$ $G(5,T) = \{(0,0,z) : z \in \mathbb{C}\}.$

Notice $\mathbb{C}^3 = G(0, T) \oplus G(5, T)$.

Define T(x, y, z) = (6x + 3y + 4z, 6y + 2z, 7z) to be an operator in $\mathcal{L}(\mathbb{C}^3)$.

Define T(x, y, z) = (6x + 3y + 4z, 6y + 2z, 7z) to be an operator in $\mathcal{L}(\mathbb{C}^3)$.

What are the eigenvalues?

Define T(x, y, z) = (6x + 3y + 4z, 6y + 2z, 7z) to be an operator in $\mathcal{L}(\mathbb{C}^3)$.

What are the eigenvalues? 6,7. Why?

Define T(x, y, z) = (6x + 3y + 4z, 6y + 2z, 7z) to be an operator in $\mathcal{L}(\mathbb{C}^3)$.

What are the eigenvalues? 6,7. Why?

We calculate the generalized eigenspaces as $G(\lambda, T) = \text{null } (T - \lambda I)^3$.

$$(T-6I)^{3}(x,y,z) = (10z,2z,z)$$

Define T(x, y, z) = (6x + 3y + 4z, 6y + 2z, 7z) to be an operator in $\mathcal{L}(\mathbb{C}^3)$.

What are the eigenvalues? 6,7. Why?

We calculate the generalized eigenspaces as $G(\lambda, T) = \text{null } (T - \lambda I)^3$. $(T - 6I)^3(x, y, z) = (10z, 2z, z) \implies \text{null} = \text{span}(1, 0, 0), (0, 1, 0)$

Define T(x, y, z) = (6x + 3y + 4z, 6y + 2z, 7z) to be an operator in $\mathcal{L}(\mathbb{C}^3)$.

What are the eigenvalues? 6,7. Why?

We calculate the generalized eigenspaces as $G(\lambda, T) = \text{null } (T - \lambda I)^3$. $(T - 6I)^3(x, y, z) = (10z, 2z, z) \implies \text{null} = \text{span}(1, 0, 0), (0, 1, 0)$ $(T - 7I)^3(x, y, z) = (-x + 9y - 8z, -y + 2z, 0)$

Define T(x, y, z) = (6x + 3y + 4z, 6y + 2z, 7z) to be an operator in $\mathcal{L}(\mathbb{C}^3)$.

What are the eigenvalues? 6,7. Why?

We calculate the generalized eigenspaces as $G(\lambda, T) = \text{null } (T - \lambda I)^3$. $(T - 6I)^3(x, y, z) = (10z, 2z, z) \implies \text{null} = \text{span}(1, 0, 0), (0, 1, 0)$ $(T - 7I)^3(x, y, z) = (-x + 9y - 8z, -y + 2z, 0) \implies$ null = span(10, 2, 1)

Description of Generalized Eigenspaces

Prop'n:

Spose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T) = \text{null } (T - \lambda I)^{\dim V}$.

Description of Generalized Eigenspaces

Prop'n:

Spose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T) = \text{null } (T - \lambda I)^{\dim V}$.

Proof.
Prop'n:

Spose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T) = \text{null } (T - \lambda I)^{\dim V}$.

Proof.

S'pose $v \in \text{null } (T - \lambda I)^{\dim V}$.

Prop'n:

Spose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T) = \text{null } (T - \lambda I)^{\dim V}$.

Proof.

S'pose $v \in \text{null } (T - \lambda I)^{\dim V}$. By definition, $v \in G(\lambda, T)$.

Prop'n:

Spose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T) = \text{null } (T - \lambda I)^{\dim V}$.

Proof.

S'pose $v \in \text{null } (T - \lambda I)^{\dim V}$. By definition, $v \in G(\lambda, T)$.

S'pose $v \in G(\lambda, T)$.

Prop'n:

Spose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T) = \text{null } (T - \lambda I)^{\dim V}$.

Proof.

S'pose $v \in \text{null } (T - \lambda I)^{\dim V}$. By definition, $v \in G(\lambda, T)$.

S'pose $v \in G(\lambda, T)$. Then there is a *j* such that $v \in \text{null } (T - \lambda I)^j$.

Prop'n:

Spose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T) = \text{null } (T - \lambda I)^{\dim V}$.

Proof.

S'pose $v \in \text{null } (T - \lambda I)^{\dim V}$. By definition, $v \in G(\lambda, T)$.

S'pose $v \in G(\lambda, T)$. Then there is a *j* such that $v \in \text{null } (T - \lambda I)^j$. Recall:

Prop'n:

Spose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T) = \text{null } (T - \lambda I)^{\dim V}$.

Proof.

S'pose $v \in \text{null } (T - \lambda I)^{\dim V}$. By definition, $v \in G(\lambda, T)$.

S'pose $v \in G(\lambda, T)$. Then there is a *j* such that $v \in \text{null } (T - \lambda I)^{j}$. Recall:

 $\{0\} = \text{null } T^0 \subseteq \text{null } T^1 \subseteq \ldots \subseteq \text{null } T^k \subseteq \text{null } T^{k+1} \subseteq \ldots$

Prop'n:

S'pose
$$\mathcal{T} \in \mathcal{L}(V)$$
 and $\lambda \in \mathbb{F}$. Then $\mathcal{G}(\lambda, \mathcal{T}) = \mathsf{null} \; (\mathcal{T} - \lambda \mathcal{I})^{\mathsf{dim} \, V}$.

Proof.

S'pose $v \in \text{null } (T - \lambda I)^{\dim V}$. By definition, $v \in G(\lambda, T)$.

S'pose $v \in G(\lambda, T)$. Then there is a *j* such that $v \in \text{null } (T - \lambda I)^j$. Recall:

$$\{0\} =$$
null $T^0 \subseteq$ null $T^1 \subseteq \ldots \subseteq$ null $T^k \subseteq$ null $T^{k+1} \subseteq \ldots$

and for $n = \dim V$

null
$$T^n$$
 = null T^{n+1} = null T^{n+2} = ...

Prop'n:

S'pose
$$\mathcal{T} \in \mathcal{L}(V)$$
 and $\lambda \in \mathbb{F}$. Then $\mathcal{G}(\lambda, \mathcal{T}) = \mathsf{null} \; (\mathcal{T} - \lambda \mathcal{I})^{\mathsf{dim} \, V}$.

Proof.

S'pose $v \in \text{null } (T - \lambda I)^{\dim V}$. By definition, $v \in G(\lambda, T)$.

S'pose $v \in G(\lambda, T)$. Then there is a *j* such that $v \in \text{null } (T - \lambda I)^j$. Recall:

$$\{0\} = \mathsf{null} \ T^0 \subseteq \mathsf{null} \ T^1 \subseteq \ldots \subseteq \mathsf{null} \ T^k \subseteq \mathsf{null} \ T^{k+1} \subseteq \ldots$$

and for $n = \dim V$

null
$$T^n$$
 = null T^{n+1} = null T^{n+2} = ...

Thus, $v \in \text{null } (T - \lambda I)^{\dim V}$.

FD • MATH 110 • July 27, 2023

Linearly Independent Generalized Eigenvectors

Prop'n [Axl14]:

Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding generalized eigenvectors. Then v_1, \ldots, v_m are linearly independent.

Def'n:

An operator is called **nilpotent** if some power of it is equal to 0.

Def'n:

An operator is called **nilpotent** if some power of it is equal to 0.

Examples:

Def'n:

An operator is called **nilpotent** if some power of it is equal to 0.

Examples:

•
$$N \in \mathcal{L}(\mathbb{F}^4)$$
 defined $N(z_1, z_2, z_3, z_4) = (z_3, z_4, 0, 0)$

Def'n:

An operator is called **nilpotent** if some power of it is equal to 0.

Examples:

- $N \in \mathcal{L}(\mathbb{F}^4)$ defined $N(z_1, z_2, z_3, z_4) = (z_3, z_4, 0, 0)$
- The derivative operator on $\mathcal{P}_n(\mathbb{R})$

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $N^{\dim V} = 0$.

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $N^{\dim V} = 0$.

Proof.

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $N^{\dim V} = 0$.

Proof.

By definition, $N^k v = 0$ for all v and some k.

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $N^{\dim V} = 0$.

Proof.

By definition, $N^k v = 0$ for all v and some k.

Then $(N - 0I)^k v = 0$ for all v and some k.

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $N^{\dim V} = 0$.

Proof.

By definition, $N^k v = 0$ for all v and some k.

Then $(N - 0I)^k v = 0$ for all v and some k. So G(0, N) = V.

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $N^{\dim V} = 0$.

Proof.

By definition, $N^k v = 0$ for all v and some k.

Then $(N - 0I)^k v = 0$ for all v and some k. So G(0, N) = V.

 $V = G(0, N) = \operatorname{null} (N - 0I)^{\dim V} = \operatorname{null} N^{\dim V}$

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $N^{\dim V} = 0$.

Proof.

By definition, $N^k v = 0$ for all v and some k.

Then
$$(N - 0I)^{k}v = 0$$
 for all *v* and some *k*. So $G(0, N) = V$.

$$V = G(0, N) = \text{null } (N - 0I)^{\dim V} = \text{null } N^{\dim V} \Longrightarrow N^{\dim V} = 0$$

Matrix of nilpotent operator:

S'pose *N* is a nilpotent operator on *V*. Then there is a basis of *V* for which the matrix $\mathcal{M}(N)$ has the form:

$$\left(\begin{array}{cc} 0 & & * \\ & \dots & \\ 0 & & 0 \end{array}\right)$$

where entries on and below the diagonal are zero.

Proof.

Proof. Choose a basis of null *N*.

Proof. Choose a basis of null *N*. Extend this to a basis of null N^2 .

Proof. Choose a basis of null *N*. Extend this to a basis of null N^2 . Extend to a basis of null N^3 .

Proof. Choose a basis of null *N*. Extend this to a basis of null N^2 . Extend to a basis of null N^3 . Continue in this fashion arriving at a basis of *V* since null $N^{\dim V} = V$.

Proof. Choose a basis of null *N*. Extend this to a basis of null N^2 . Extend to a basis of null N^3 . Continue in this fashion arriving at a basis of *V* since null $N^{\dim V} = V$.

Proof. Choose a basis of null *N*. Extend this to a basis of null N^2 . Extend to a basis of null N^3 . Continue in this fashion arriving at a basis of *V* since null $N^{\dim V} = V$.

What does the matrix with respect to this basis look like?

Basis vectors of null *N* give all 0s.

Proof. Choose a basis of null *N*. Extend this to a basis of null N^2 . Extend to a basis of null N^3 . Continue in this fashion arriving at a basis of *V* since null $N^{\dim V} = V$.

- Basis vectors of null *N* give all 0s.
- Basis vectors of null N² under N are linear combinations of the vectors in null N.

Proof. Choose a basis of null *N*. Extend this to a basis of null N^2 . Extend to a basis of null N^3 . Continue in this fashion arriving at a basis of *V* since null $N^{\dim V} = V$.

- Basis vectors of null *N* give all 0s.
- Basis vectors of null N² under N are linear combinations of the vectors in null N. Non-zero entries are above the diagonal.

Proof. Choose a basis of null *N*. Extend this to a basis of null N^2 . Extend to a basis of null N^3 . Continue in this fashion arriving at a basis of *V* since null $N^{\dim V} = V$.

- Basis vectors of null *N* give all 0s.
- Basis vectors of null N² under N are linear combinations of the vectors in null N. Non-zero entries are above the diagonal.
- Same with rest of columns.

[Ax114] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.