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Setting

F = C

V is finite-dimensional and non-zero
Regular vector space - no inner products
(We are in Chapter 8 now!)
Recall Tk = TT · · · T (composition of operators k times)
Goal: Decomposing/understanding more general operators
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Null Spaces of Powers of an Operator

Prop’n:
S’pose T ∈ L(V). Then

{0} = null T0 ⊆ null T1 ⊆ . . . ⊆ null Tk ⊆ null Tk+1 ⊆ . . . .

Proof. S’pose k is a nonnegative integer and v ∈ null Tk .

Tkv = 0

Tk+1v = TTkv = T0 = 0

Thus, v ∈ null Tk+1.
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Null Spaces Stop Growing

Prop’n:
S’pose T ∈ L(V). Let n = dim V . Then

null Tn = null Tn+1 = null Tn+2 = . . . .

Proof.

Step 1: S’pose null Tm = null Tm+1 for some m, we show for any k:
null Tm+k = null Tm+k+1.

We must show null Tm+k ⊇ null Tm+k+1.

v ∈ null Tm+k+1
Tm+1(Tkv) = Tm+k+1v = 0

Tkv ∈ null Tm+1 = null Tm =⇒ v ∈ null Tm+k
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Null Spaces Stop Growing (Cont’d)

Proof (Cont’d):

Step 2: We show null Tn = null Tn+1.

S’pose not.

Then

{0} ⊊ null T1 ⊊ null T2 ⊊ . . . ⊊ null Tn ⊊ null Tn+1

But, dimension must grow in this chain, of subsets of V , contradiction.
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V is the direct sum of null Tdim V and range Tdim V

Prop’n:
S’pose T ∈ L(V). Let n = dim V . Then V = null Tn ⊕ range Tn.

Proof. Step 1: null Tn ∩ range Tn = {0}

S’pose v ∈ null Tn ∩ range Tn. Then Tnv = 0 and there exists u ∈ V
such that v = Tnu.

Tnv = T2nu = 0

By by the previous result, then Tnu = 0 and v = 0.

Step 2: Then using Fundamental Theorem of Linear Maps:

dim(null T ⊕ range T) = dim null Tn + dim range Tn = dim V

implying null T + range T = null T ⊕ range T ⊆ V is all of V . □
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Example

T ∈ L(F3) defined T(x, y, z) = (4y, 0, 5z)

We do not have null T ⊕ range T = V since

null T = {(x, 0, 0) : x ∈ F}

range T = {(x, 0, z) : x, z ∈ F}

But we do have null T3 ⊕ range T3 = V since
T3(x, y, z) = (0, 0, 125z) and

null T3 = {(x, y, 0) : x, y ∈ F}

range T3 = {(0, 0, z) : z ∈ F}
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Generalized Eigenvectors

Motivation:

Goal: We want to describe structure of operators.

Problem: Eigenvalues, upper triangular/diagonal matrices not enough

Solution: Generalized eigenvectors.
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Generalized Eigenvectors

Fix T ∈ L(V).

We want to describe T by writing V = U1 ⊕ · · · ⊕ Um where the Ui are
invariant under T .

We can make the Ui one-dimensional invariant subspaces if and only
if V has an eigenspace decomposition, i.e.

V = E(λ1, T)⊕ · · · ⊕ E(λm, T)

The Spectral Thm guaranteed this to exist for normal operators if
F = C and self-adjoint operators if F = R.

In general, we do not have this decomposition.

FD · MATH 110 · July 27, 2023 9 / 20



Generalized Eigenvectors

Fix T ∈ L(V).

We want to describe T by writing V = U1 ⊕ · · · ⊕ Um where the Ui are
invariant under T .

We can make the Ui one-dimensional invariant subspaces if and only
if V has an eigenspace decomposition, i.e.

V = E(λ1, T)⊕ · · · ⊕ E(λm, T)

The Spectral Thm guaranteed this to exist for normal operators if
F = C and self-adjoint operators if F = R.

In general, we do not have this decomposition.

FD · MATH 110 · July 27, 2023 9 / 20



Generalized Eigenvectors

Fix T ∈ L(V).

We want to describe T by writing V = U1 ⊕ · · · ⊕ Um where the Ui are
invariant under T .

We can make the Ui one-dimensional invariant subspaces if and only
if V has an eigenspace decomposition, i.e.

V = E(λ1, T)⊕ · · · ⊕ E(λm, T)

The Spectral Thm guaranteed this to exist for normal operators if
F = C and self-adjoint operators if F = R.

In general, we do not have this decomposition.

FD · MATH 110 · July 27, 2023 9 / 20



Generalized Eigenvectors

Fix T ∈ L(V).

We want to describe T by writing V = U1 ⊕ · · · ⊕ Um where the Ui are
invariant under T .

We can make the Ui one-dimensional invariant subspaces if and only
if V has an eigenspace decomposition, i.e.

V = E(λ1, T)⊕ · · · ⊕ E(λm, T)

The Spectral Thm guaranteed this to exist for normal operators if
F = C and self-adjoint operators if F = R.

In general, we do not have this decomposition.

FD · MATH 110 · July 27, 2023 9 / 20



Generalized Eigenvectors

Fix T ∈ L(V).

We want to describe T by writing V = U1 ⊕ · · · ⊕ Um where the Ui are
invariant under T .

We can make the Ui one-dimensional invariant subspaces if and only
if V has an eigenspace decomposition, i.e.

V = E(λ1, T)⊕ · · · ⊕ E(λm, T)

The Spectral Thm guaranteed this to exist for normal operators if
F = C and self-adjoint operators if F = R.

In general, we do not have this decomposition.

FD · MATH 110 · July 27, 2023 9 / 20



Generalized Eigenvectors

Fix T ∈ L(V).

We want to describe T by writing V = U1 ⊕ · · · ⊕ Um where the Ui are
invariant under T .

We can make the Ui one-dimensional invariant subspaces if and only
if V has an eigenspace decomposition, i.e.

V = E(λ1, T)⊕ · · · ⊕ E(λm, T)

The Spectral Thm guaranteed this to exist for normal operators if
F = C and self-adjoint operators if F = R.

In general, we do not have this decomposition.

FD · MATH 110 · July 27, 2023 9 / 20



Generalized Eigenvectors

Def’n:
S’pose T ∈ L(V) and λ is an eigenvalue of T . A vector v ∈ V is a
generalized eigenvector of T corresponding to λ if v ̸= 0 and
(T − λI)jv = 0 for some positive integer j.

Def’n:
S’pose T ∈ L(V) and λ ∈ F. The generalized eigenspace of T
corresponding to λ denoted G(λ, T) is defined to be the set of all
generalized eigenvectors of T corresponding to λ, along with 0.

Remark. E(λ, T) ⊂ G(λ, T)
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Example

Define T(x, y, z) = (4y, 0, 5z) to be an operator in L(C3).

Let’s find the eigenvalues, their eigenspaces, and their generalized
eigenspaces.

E(0, T) = {(x, 0, 0) : x ∈ C}, E(5, T) = {(0, 0, z) : z ∈ C}, which don’t
span C3.

(T − 0I)3 = T3 and T3(x, y, z) = (0, 0, 125z) =⇒
G(0, T) = {(x, y, 0) : x, y ∈ C}.

(T − 5I)3(x, y, z) = (−125x + 300y,−125y, 0) =⇒
G(5, T) = {(0, 0, z) : z ∈ C}.

Notice C3 = G(0, T)⊕ G(5, T).
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Another Example

Define T(x, y, z) = (6x + 3y + 4z, 6y + 2z, 7z) to be an operator in
L(C3).

What are the eigenvalues? 6,7. Why?

We calculate the generalized eigenspaces as G(λ, T) = null (T − λI)3.

(T − 6I)3(x, y, z) = (10z, 2z, z) =⇒ null = span(1, 0, 0), (0, 1, 0)

(T − 7I)3(x, y, z) = (−x + 9y − 8z,−y + 2z, 0) =⇒
null = span(10, 2, 1)
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Description of Generalized Eigenspaces

Prop’n:
S’pose T ∈ L(V) and λ ∈ F. Then G(λ, T) = null (T − λI)dim V .

Proof.

S’pose v ∈ null (T − λI)dim V . By definition, v ∈ G(λ, T).

S’pose v ∈ G(λ, T). Then there is a j such that v ∈ null (T − λI)j.
Recall:

{0} = null T0 ⊆ null T1 ⊆ . . . ⊆ null Tk ⊆ null Tk+1 ⊆ . . . .

and for n = dim V

null Tn = null Tn+1 = null Tn+2 = . . .

Thus, v ∈ null (T − λI)dim V .
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Linearly Independent Generalized Eigenvectors

Prop’n [Axl14]:
Let T ∈ L(V). Suppose λ1, . . . , λm are distinct eigenvalues of T and
v1, . . . , vm are corresponding generalized eigenvectors. Then
v1, . . . , vm are linearly independent.
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Nilpotent Operators

Def’n:
An operator is called nilpotent if some power of it is equal to 0.

Examples:
N ∈ L(F4) defined N(z1, z2, z3, z4) = (z3, z4, 0, 0)
The derivative operator on Pn(R)
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Characterizations of Nilpotent Operators

Prop’n:
S’pose N ∈ L(V) is nilpotent. Then Ndim V = 0.

Proof.

By definition, Nkv = 0 for all v and some k.

Then (N − 0I)kv = 0 for all v and some k. So G(0,N) = V .

V = G(0,N) = null (N − 0I)dim V = null Ndim V =⇒ Ndim V = 0
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Characterizations of Nilpotent Operators

Matrix of nilpotent operator:
S’pose N is a nilpotent operator on V . Then there is a basis of V for
which the matrixM(N) has the form: 0 ∗

· · ·
0 0


where entries on and below the diagonal are zero.
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Proof of Matrix

Proof.

Choose a basis of null N. Extend this to a basis of null N2.
Extend to a basis of null N3. Continue in this fashion arriving at a
basis of V since null Ndim V = V .

What does the matrix with respect to this basis look like?
Basis vectors of null N give all 0s.
Basis vectors of null N2 under N are linear combinations of the
vectors in null N. Non-zero entries are above the diagonal.
Same with rest of columns.
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