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S’pose T ∈ L(V) and λ ∈ F:

Def’n:
We say v ∈ V is a generalized eigenvector if there exists positive
integer j such that (T − λI)jv = 0.

Def’n:
The generalized eigenspace G(λ, T) is the set of all generalized
eigenvectors of T corresponding to λ, along with 0.

Prop’n 1:
G(λ, T) = null (T − λI)dim V

Prop’n 2:
Let n = dim V . Then V = null Tn ⊕ range Tn.
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Main Result

Description of Operators on Complex Vector Spaces
S’pose V is a complex vector space and T ∈ L(V). Let λ1, . . . , λm be
the distinct eigenvalues of T . Then
1. V = G(λ1, T)⊕ · · · ⊕ G(λm, T);
2. each G(λj, T) is invariant under T ;
3. each (T − λjI)|G(λj,T) is nilpotent.
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Description of Operators on Complex Vector Spaces

Proof.

Let’s start with 3! Unpack definitions!

For 2:

Lemma:
S’pose T ∈ L(V) and p ∈ P(F). Then null p(T) and range p(T) are
invariant under T .

Proof of lemma: S’pose v ∈ null p(T), p(T)v = 0

((p(T)))(Tv) = T(p(T)v) = T0 = 0.

On the other hand, v ∈ range p(T), u ∈ V such that v = p(T)u

Tv = T(p(T)u) = p(T)(Tu).

How can we use to prove 2?
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Description of Operators on Complex Vector Spaces

Proof (cont’d).

For 1: induction on dim V .

Base case: n = 1, V = G(λ, T).

Hypothesis: If dim V < n, then V =
∑

G(λ, T).

Pick λ1. How? Use Prop’n 2, write

V = G(λ1, T)⊕ range (T − λ1I)n.

range (T − λ1I)n satisfies induction hypothesis.

Call range (T − λ1I)n = U.
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Description of Operators on Complex Vector Spaces

For U = range (T − λ1I)n,

the eigenvalues of T |U are {λ2, . . . , λm}.

U = G(λ2, T |U)⊕ . . .⊕ G(λm, T |U)

It suffices to show G(λk, T |U) = G(λk, T).
G(λk, T |U) ⊆ G(λk, T).
On the other hand, s’pose v ∈ G(λk, T).
Then as v ∈ V , v = v1 + u for v1 ∈ G(λ1, T) and u ∈ U.
u = v2 + . . .+ vm for vj ∈ G(λj, T |U) ⊆ G(λj, T).

v = v1 + v2 + . . .+ vm

Linear independence of vj guarentees vj = 0 unless possibly if j = k.

So v1 = 0 and v = u ∈ U and v ∈ G(λk, T |U). □.
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Basis of Generalized Eigenvectors

Prop’n:
S’pose V is a complex vector space and T ∈ L(V). Then there is a
basis of V consisting of generalized eigenvectors of T .

Proof. Use previous result! □.
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Multiplicity of an Eigenvalue

Def’n:
S’pose T ∈ L(V).

The (algebraic) multiplicity of an eigenvalue λ of T is defined to
the the dimension of the corresponding generalized eigenspace
G(λ, T),

i.e. = dim null (T − λI)dim V .
The geometric multiplicity of an eigenvalue λ of T is defined to
be the dimension of the corresponding eigenspace E(λ, T).
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Recall Example

T(z1, z2, z3) = (6z1 + 3z2 + 4z3, 6z2 + 2z3, 7z3)

E(6, T) = span(1, 0, 0) and E(7, T) = span(0, 0, 1)

G(6, T) = span(1, 0, 0), (0, 1, 0) and G(7, T) = span(10, 2, 1)

C3 = G(6, T)⊕ G(7, T)
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Sum of Multiplicities

Prop’n:
S’pose V is a complex vector space and T ∈ L(V). Then the sum of
the algebraic multiplicities of the eigenvalues of T equals the
dimension of V .

Proof. Use previous result! □.
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Multiplicity of Eigenvalues and Upper Triangular
Matrices

Prop’n [Axl14]:
Suppose T ∈ L(V) and λ ∈ F. Then for every basis of V with respect
to which T has an upper triangular matrix, the number of times that
λ appears on the diagonal of the matrix of T equals the algebraic
multiplicity of λ as an eigenvalue of T .

Proof: Homework challenge problem.
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Block Diagonal Matrices

Next goal: Interpret our results in matrix form.

Def’n:
A block diagonal matrix is a square matrix of the form A1 0

. . .
0 Am


where A1, . . . ,Am are square matrices lying along the diagonal and all
other entries are 0.
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Example
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Block Diagonal Matrix with Upper Triangular Blocks

Prop’n:
S’pose V is complex vector space and T ∈ L(V). Let λ1, . . . , λm be the
distinct eigenvalues of T , with multiplicities d1, . . . , dm. Then there is
a basis of V with respect to which T has a block diagonal matrix of
the form  A1 0

. . .
0 Am


where each Aj is a dj × dj upper triangular matrix of the form

Aj =

 λj ∗
. . .

0 λj

 .
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Proof of Block Diagonal UT Form

Proof.

Each (T − λjI)|G(λj,T) is nilpotent.
Choose a basis such that this matrix has 0’s on and below the main
diagonal.

What is the matrix of T |G(λj,T) = (T − λjI)|G(λj,T) + λjI|G(λj,T)?
The desired form.

FD · MATH 110 · July 31, 2023 15 / 21



Proof of Block Diagonal UT Form

Proof. Each (T − λjI)|G(λj,T) is nilpotent.

Choose a basis such that this matrix has 0’s on and below the main
diagonal.

What is the matrix of T |G(λj,T) = (T − λjI)|G(λj,T) + λjI|G(λj,T)?
The desired form.

FD · MATH 110 · July 31, 2023 15 / 21



Proof of Block Diagonal UT Form

Proof. Each (T − λjI)|G(λj,T) is nilpotent.
Choose a basis such that this matrix has 0’s on and below the main
diagonal.

What is the matrix of T |G(λj,T) = (T − λjI)|G(λj,T) + λjI|G(λj,T)?
The desired form.

FD · MATH 110 · July 31, 2023 15 / 21



Proof of Block Diagonal UT Form

Proof. Each (T − λjI)|G(λj,T) is nilpotent.
Choose a basis such that this matrix has 0’s on and below the main
diagonal.

What is the matrix of T |G(λj,T) = (T − λjI)|G(λj,T) + λjI|G(λj,T)?

The desired form.

FD · MATH 110 · July 31, 2023 15 / 21



Proof of Block Diagonal UT Form

Proof. Each (T − λjI)|G(λj,T) is nilpotent.
Choose a basis such that this matrix has 0’s on and below the main
diagonal.

What is the matrix of T |G(λj,T) = (T − λjI)|G(λj,T) + λjI|G(λj,T)?
The desired form.

FD · MATH 110 · July 31, 2023 15 / 21



Example
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Example 2

T(z1, z2, z3) = (6z1 + 3z2 + 4z3, 6z2 + 2z3, 7z3)

G(6, T) = span(1, 0, 0), (0, 1, 0) and G(7, T) = span(10, 2, 1)

What is the matrix with respect to this basis?

Blocks: (
6 3
0 6

)
, (7)
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Application: Square Roots

Recall R is called a square root of an operator T if R2 = T .

Recall having a positive or self-adjoint square root was equivalent to
being a positive operator.

Not every operator over C has a square root in general.

Non-example:
T(x, y, z) = (y, z, 0) has no square root.

Notice T3 = 0.
If S2 = T , then S6 = T .
So S3 = 0.
So T2 = S4 = SS3 = 0, but T2 ̸= 0, contradiction.
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Identity plus nilpotent has a square root!

Prop’n:
S’pose N ∈ L(V) is nilpotent. Then I + N has a square root.

Proof. Out Inspiration: Taylor series for
√
1+ x.

√
1+ x = 1+ a1x + a2x2 + . . .

Because N is nilpotent, Nm = 0, some m.
I + a1N + a2N2 + . . .+ am−1Nm−1.

(I + a1N + a2N2 + . . .+ am−1Nm−1)2

= I + 2a1N + (2a2 + a21)N
2 + (2a3 + 2a1a2)N3 + . . .

. . .+ (2am−1 + terms with a1, . . . , am−2)Nm−1

.
Just solve for ai such that the RHS is I + N.
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Over C, invertible operators have square roots!

Prop’n:
S’pose V is a complex vector space and T ∈ L(V) is invertible. Then T
has a square root.

Proof.
Let λ1, . . . , λm be the distinct eigenvalues of T .
For each j, Nj ∈ L(G(λj, T)) such that T |G(λj,T) = λjI + Nj.
T invertible so λj can’t be zero.

T |G(λj,T) = λj

(
I +

Nj
λj

)
.

Let Rj be the root of λj
(
I + Nj

λj

)
.

Then for v = u1 + . . .+ um, Rv = R1u1 + . . .+ Rmum is the square
root of T .
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