

Lecture 22: Decomposition of Operators

MATH 110-3

Franny Dean

July 31, 2023

Def'n:

We say $v \in V$ is a **generalized eigenvector** if there exists positive integer *j* such that $(T - \lambda I)^j v = 0$.

Def'n:

We say $v \in V$ is a **generalized eigenvector** if there exists positive integer *j* such that $(T - \lambda I)^j v = 0$.

Def'n:

The **generalized eigenspace** $G(\lambda, T)$ is the set of all generalized eigenvectors of T corresponding to λ , along with 0.

Def'n:

We say $v \in V$ is a **generalized eigenvector** if there exists positive integer *j* such that $(T - \lambda I)^j v = 0$.

Def'n:

The **generalized eigenspace** $G(\lambda, T)$ is the set of all generalized eigenvectors of T corresponding to λ , along with 0.

Prop'n 1:

 $G(\lambda, T) = \operatorname{null} (T - \lambda I)^{\dim V}$

Def'n:

We say $v \in V$ is a **generalized eigenvector** if there exists positive integer *j* such that $(T - \lambda I)^j v = 0$.

Def'n:

The **generalized eigenspace** $G(\lambda, T)$ is the set of all generalized eigenvectors of T corresponding to λ , along with 0.

Prop'n 1:

$$G(\lambda, T) = \operatorname{null} (T - \lambda I)^{\dim V}$$

Prop'n 2:

Let $n = \dim V$. Then $V = \operatorname{null} T^n \oplus \operatorname{range} T^n$.

FD • MATH 110 • July 31, 2023

Main Result

Description of Operators on Complex Vector Spaces

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of T. Then

1.
$$V = G(\lambda_1, T) \oplus \cdots \oplus G(\lambda_m, T);$$

2. each
$$G(\lambda_j, T)$$
 is invariant under T;

3. each
$$(T - \lambda_j I)|_{\mathcal{G}(\lambda_j, T)}$$
 is nilpotent.

Proof.

Proof. Let's start with 3!

Proof. Let's start with 3! Unpack definitions!

Proof. Let's start with 3! Unpack definitions!

For 2:

Lemma:

S'pose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then null p(T) and range p(T) are invariant under T.

Proof. Let's start with 3! Unpack definitions!

For 2:

Lemma:

S'pose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then null p(T) and range p(T) are invariant under T.

Proof of lemma:

Proof. Let's start with 3! Unpack definitions!

For 2:

Lemma:

S'pose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then null p(T) and range p(T) are invariant under T.

Proof of lemma: S'pose $v \in \text{null } p(T)$,

Proof. Let's start with 3! Unpack definitions!

For 2:

Lemma:

S'pose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then null p(T) and range p(T) are invariant under T.

Proof of lemma: S'pose $v \in \text{null } p(T)$, p(T)v = 0

Proof. Let's start with 3! Unpack definitions!

For 2:

Lemma:

S'pose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then null p(T) and range p(T) are invariant under T.

Proof of lemma: S'pose $v \in \text{null } p(T)$, p(T)v = 0

$$((p(T)))(Tv) = T(p(T)v) = T0 = 0.$$

Proof. Let's start with 3! Unpack definitions!

For 2:

Lemma:

S'pose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then null p(T) and range p(T) are invariant under T.

Proof of lemma: S'pose $v \in \text{null } p(T)$, p(T)v = 0

$$((p(T)))(Tv) = T(p(T)v) = T0 = 0.$$

On the other hand, $v \in \text{range } p(T)$,

Proof. Let's start with 3! Unpack definitions!

For 2:

Lemma:

S'pose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then null p(T) and range p(T) are invariant under T.

Proof of lemma: S'pose $v \in \text{null } p(T)$, p(T)v = 0

$$((p(T)))(Tv) = T(p(T)v) = T0 = 0.$$

On the other hand, $v \in \text{range } p(T)$, $u \in V$ such that v = p(T)u

Proof. Let's start with 3! Unpack definitions!

For 2:

Lemma:

S'pose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then null p(T) and range p(T) are invariant under T.

Proof of lemma: S'pose $v \in \text{null } p(T)$, p(T)v = 0

$$((p(T)))(Tv) = T(p(T)v) = T0 = 0.$$

On the other hand, $v \in \text{range } p(T)$, $u \in V$ such that v = p(T)u

$$Tv = T(p(T)u) = p(T)(Tu).$$

Proof. Let's start with 3! Unpack definitions!

For 2:

Lemma:

S'pose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then null p(T) and range p(T) are invariant under T.

Proof of lemma: S'pose $v \in \text{null } p(T)$, p(T)v = 0

$$((p(T)))(Tv) = T(p(T)v) = T0 = 0.$$

On the other hand, $v \in \text{range } p(T)$, $u \in V$ such that v = p(T)u

$$Tv = T(p(T)u) = p(T)(Tu).$$

How can we use to prove 2?

FD • MATH 110 • July 31, 2023

Proof (cont'd).

Proof (cont'd).

For 1: induction on dim V.

Proof (cont'd).

For 1: induction on dim V.

Base case: n = 1, $V = G(\lambda, T)$.

Proof (cont'd).

For 1: induction on dim V.

Base case: n = 1, $V = G(\lambda, T)$.

Hypothesis: If dim V < n, then $V = \sum G(\lambda, T)$.

Proof (cont'd).

For 1: induction on dim V.

Base case: n = 1, $V = G(\lambda, T)$.

Hypothesis: If dim V < n, then $V = \sum G(\lambda, T)$.

Pick λ_1 .

Proof (cont'd).

For 1: induction on dim V.

Base case: n = 1, $V = G(\lambda, T)$.

Hypothesis: If dim V < n, then $V = \sum G(\lambda, T)$.

Pick λ_1 . How?

Proof (cont'd).

For 1: induction on dim V.

Base case: n = 1, $V = G(\lambda, T)$.

Hypothesis: If dim V < n, then $V = \sum G(\lambda, T)$.

Pick λ_1 . How? Use Prop'n 2,

Proof (cont'd).

For 1: induction on dim V.

Base case: n = 1, $V = G(\lambda, T)$.

Hypothesis: If dim V < n, then $V = \sum G(\lambda, T)$.

Pick λ_1 . How? Use Prop'n 2, write

$$V = G(\lambda_1, T) \oplus ext{range} (T - \lambda_1 I)^n.$$

Proof (cont'd).

For 1: induction on dim V.

Base case: n = 1, $V = G(\lambda, T)$.

Hypothesis: If dim V < n, then $V = \sum G(\lambda, T)$.

Pick λ_1 . How? Use Prop'n 2, write

$$V = \mathcal{G}(\lambda_1, T) \oplus ext{range} (T - \lambda_1 I)^n.$$

range $(T - \lambda_1 I)^n$ satisfies induction hypothesis.

Proof (cont'd).

For 1: induction on dim V.

Base case: n = 1, $V = G(\lambda, T)$.

Hypothesis: If dim V < n, then $V = \sum G(\lambda, T)$.

Pick λ_1 . How? Use Prop'n 2, write

$$V = G(\lambda_1, T) \oplus$$
range $(T - \lambda_1 I)^n$.

range $(T - \lambda_1 I)^n$ satisfies induction hypothesis. Call range $(T - \lambda_1 I)^n = U$.

For $U = \text{range} (T - \lambda_1 I)^n$,

For $U = \text{range} (T - \lambda_1 I)^n$, the eigenvalues of $T|_U$ are $\{\lambda_2, \ldots, \lambda_m\}$.

For $U = \text{range } (T - \lambda_1 I)^n$, the eigenvalues of $T|_U$ are $\{\lambda_2, \ldots, \lambda_m\}$.

 $U = G(\lambda_2, T|_U) \oplus \ldots \oplus G(\lambda_m, T|_U)$

For $U = \text{range} (T - \lambda_1 I)^n$, the eigenvalues of $T|_U$ are $\{\lambda_2, \ldots, \lambda_m\}$.

 $U = G(\lambda_2, T|_U) \oplus \ldots \oplus G(\lambda_m, T|_U)$

It suffices to show $G(\lambda_k, T|_U) = G(\lambda_k, T)$.

For $U = \text{range} (T - \lambda_1 I)^n$, the eigenvalues of $T|_U$ are $\{\lambda_2, \ldots, \lambda_m\}$.

 $U = G(\lambda_2, T|_U) \oplus \ldots \oplus G(\lambda_m, T|_U)$

It suffices to show $G(\lambda_k, T|_U) = G(\lambda_k, T)$. $G(\lambda_k, T|_U) \subseteq G(\lambda_k, T)$.

For $U = \text{range} (T - \lambda_1 I)^n$, the eigenvalues of $T|_U$ are $\{\lambda_2, \ldots, \lambda_m\}$.

 $U = G(\lambda_2, T|_U) \oplus \ldots \oplus G(\lambda_m, T|_U)$

It suffices to show $G(\lambda_k, T|_U) = G(\lambda_k, T)$. $G(\lambda_k, T|_U) \subseteq G(\lambda_k, T)$. On the other hand, s'pose $v \in G(\lambda_k, T)$.

For $U = \text{range} (T - \lambda_1 I)^n$, the eigenvalues of $T|_U$ are $\{\lambda_2, \ldots, \lambda_m\}$.

 $U = G(\lambda_2, T|_U) \oplus \ldots \oplus G(\lambda_m, T|_U)$

It suffices to show $G(\lambda_k, T|_U) = G(\lambda_k, T)$. $G(\lambda_k, T|_U) \subseteq G(\lambda_k, T)$. On the other hand, s'pose $v \in G(\lambda_k, T)$. Then as $v \in V$, $v = v_1 + u$ for $v_1 \in G(\lambda_1, T)$ and $u \in U$.

For $U = \text{range} (T - \lambda_1 I)^n$, the eigenvalues of $T|_U$ are $\{\lambda_2, \ldots, \lambda_m\}$.

 $U = G(\lambda_2, T|_U) \oplus \ldots \oplus G(\lambda_m, T|_U)$

It suffices to show $G(\lambda_k, T|_U) = G(\lambda_k, T)$. $G(\lambda_k, T|_U) \subseteq G(\lambda_k, T)$. On the other hand, s'pose $v \in G(\lambda_k, T)$. Then as $v \in V$, $v = v_1 + u$ for $v_1 \in G(\lambda_1, T)$ and $u \in U$. $u = v_2 + \ldots + v_m$ for $v_j \in G(\lambda_j, T|_U) \subseteq G(\lambda_j, T)$.
Description of Operators on Complex Vector Spaces

For $U = \text{range} (T - \lambda_1 I)^n$, the eigenvalues of $T|_U$ are $\{\lambda_2, \ldots, \lambda_m\}$.

 $U = G(\lambda_2, T|_U) \oplus \ldots \oplus G(\lambda_m, T|_U)$

It suffices to show $G(\lambda_k, T|_U) = G(\lambda_k, T)$. $G(\lambda_k, T|_U) \subseteq G(\lambda_k, T)$. On the other hand, s'pose $v \in G(\lambda_k, T)$. Then as $v \in V$, $v = v_1 + u$ for $v_1 \in G(\lambda_1, T)$ and $u \in U$. $u = v_2 + \ldots + v_m$ for $v_j \in G(\lambda_j, T|_U) \subseteq G(\lambda_j, T)$.

$$v = v_1 + v_2 + \ldots + v_m$$

Description of Operators on Complex Vector Spaces

For $U = \text{range} (T - \lambda_1 I)^n$, the eigenvalues of $T|_U$ are $\{\lambda_2, \ldots, \lambda_m\}$.

 $U = G(\lambda_2, T|_U) \oplus \ldots \oplus G(\lambda_m, T|_U)$

It suffices to show $G(\lambda_k, T|_U) = G(\lambda_k, T)$. $G(\lambda_k, T|_U) \subseteq G(\lambda_k, T)$. On the other hand, s'pose $v \in G(\lambda_k, T)$. Then as $v \in V$, $v = v_1 + u$ for $v_1 \in G(\lambda_1, T)$ and $u \in U$. $u = v_2 + \ldots + v_m$ for $v_j \in G(\lambda_j, T|_U) \subseteq G(\lambda_j, T)$.

$$v = v_1 + v_2 + \ldots + v_m$$

Linear independence of v_i guarentees $v_i = 0$ unless possibly if j = k.

Description of Operators on Complex Vector Spaces

For $U = \text{range} (T - \lambda_1 I)^n$, the eigenvalues of $T|_U$ are $\{\lambda_2, \ldots, \lambda_m\}$.

 $U = G(\lambda_2, T|_U) \oplus \ldots \oplus G(\lambda_m, T|_U)$

It suffices to show $G(\lambda_k, T|_U) = G(\lambda_k, T)$. $G(\lambda_k, T|_U) \subseteq G(\lambda_k, T)$. On the other hand, s'pose $v \in G(\lambda_k, T)$. Then as $v \in V$, $v = v_1 + u$ for $v_1 \in G(\lambda_1, T)$ and $u \in U$. $u = v_2 + \ldots + v_m$ for $v_j \in G(\lambda_j, T|_U) \subseteq G(\lambda_j, T)$.

$$v = v_1 + v_2 + \ldots + v_m$$

Linear independence of v_j guarentees $v_j = 0$ unless possibly if j = k. So $v_1 = 0$ and $v = u \in U$ and $v \in G(\lambda_k, T|_U)$. \Box .

Basis of Generalized Eigenvectors

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$. Then there is a basis of V consisting of generalized eigenvectors of T.

Basis of Generalized Eigenvectors

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$. Then there is a basis of V consisting of generalized eigenvectors of T.

Proof.

Basis of Generalized Eigenvectors

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$. Then there is a basis of V consisting of generalized eigenvectors of T.

Proof. Use previous result! \Box .

Multiplicity of an Eigenvalue

Def'n:

S'pose $T \in \mathcal{L}(V)$.

The (algebraic) multiplicity of an eigenvalue λ of T is defined to the the dimension of the corresponding generalized eigenspace G(λ, T),

Multiplicity of an Eigenvalue

Def'n:

S'pose $T \in \mathcal{L}(V)$.

■ The **(algebraic) multiplicity** of an eigenvalue λ of *T* is defined to the the dimension of the corresponding generalized eigenspace $G(\lambda, T)$, i.e. = dim null $(T - \lambda I)^{\dim V}$.

Multiplicity of an Eigenvalue

Def'n:

S'pose $T \in \mathcal{L}(V)$.

- The **(algebraic) multiplicity** of an eigenvalue λ of *T* is defined to the the dimension of the corresponding generalized eigenspace $G(\lambda, T)$, i.e. = dim null $(T \lambda I)^{\dim V}$.
- The **geometric multiplicity** of an eigenvalue λ of T is defined to be the dimension of the corresponding eigenspace $E(\lambda, T)$.

$T(z_1, z_2, z_3) = (6z_1 + 3z_2 + 4z_3, 6z_2 + 2z_3, 7z_3)$

$$T(z_1, z_2, z_3) = (6z_1 + 3z_2 + 4z_3, 6z_2 + 2z_3, 7z_3)$$

E(6, T) = span(1, 0, 0) and E(7, T) = span(0, 0, 1)

$$T(z_1, z_2, z_3) = (6z_1 + 3z_2 + 4z_3, 6z_2 + 2z_3, 7z_3)$$

E(6, T) = span(1, 0, 0) and E(7, T) = span(0, 0, 1)

G(6, T) = span(1, 0, 0), (0, 1, 0) and G(7, T) = span(10, 2, 1)

$$T(z_1, z_2, z_3) = (6z_1 + 3z_2 + 4z_3, 6z_2 + 2z_3, 7z_3)$$

E(6, T) = span(1, 0, 0) and E(7, T) = span(0, 0, 1)

G(6, T) = span(1, 0, 0), (0, 1, 0) and G(7, T) = span(10, 2, 1)

$$\mathbb{C}^3 = G(6,T) \oplus G(7,T)$$

Sum of Multiplicities

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$. Then the sum of the algebraic multiplicities of the eigenvalues of T equals the dimension of V.

Sum of Multiplicities

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$. Then the sum of the algebraic multiplicities of the eigenvalues of T equals the dimension of V.

Proof.

Sum of Multiplicities

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$. Then the sum of the algebraic multiplicities of the eigenvalues of T equals the dimension of V.

Proof. Use previous result! \Box .

Multiplicity of Eigenvalues and Upper Triangular Matrices

Prop'n [Axl14]:

Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then for every basis of V with respect to which T has an upper triangular matrix, the number of times that λ appears on the diagonal of the matrix of T equals the algebraic multiplicity of λ as an eigenvalue of T.

Multiplicity of Eigenvalues and Upper Triangular Matrices

Prop'n [Axl14]:

Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then for every basis of V with respect to which T has an upper triangular matrix, the number of times that λ appears on the diagonal of the matrix of T equals the algebraic multiplicity of λ as an eigenvalue of T.

Proof: Homework challenge problem.

Block Diagonal Matrices

Next goal: Interpret our results in matrix form.

Block Diagonal Matrices

Next goal: Interpret our results in matrix form.

Def'n:

A block diagonal matrix is a square matrix of the form

$$\left(\begin{array}{cc}A_1 & 0\\ & \dots & \\ 0 & A_m\end{array}\right)$$

where A_1, \ldots, A_m are square matrices lying along the diagonal and all other entries are 0.

8.28 **Example** The 5-by-5 matrix $A = \begin{pmatrix} (4) & 0 & 0 & 0 & 0 \\ 0 & (2 & -3) & 0 & 0 \\ 0 & 0 & 2 &) & 0 & 0 \\ 0 & 0 & 0 & (1 & 7) \\ 0 & 0 & 0 & (1 & 7) \end{pmatrix}$

is a block diagonal matrix with

$$A = \left(\begin{array}{cc} A_1 & 0 \\ & A_2 & \\ 0 & & A_3 \end{array}\right),$$

where

$$A_1 = (4), \quad A_2 = \begin{pmatrix} 2 & -3 \\ 0 & 2 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 7 \\ 0 & 1 \end{pmatrix}.$$

FD • MATH 110 • July 31, 2023

Block Diagonal Matrix with Upper Triangular Blocks

Prop'n:

S'pose V is complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of T, with multiplicities d_1, \ldots, d_m . Then there is a basis of V with respect to which T has a block diagonal matrix of the form

$$\left(\begin{array}{ccc}
A_1 & 0 \\
& \cdots & \\
0 & A_m
\end{array}\right)$$

where each A_j is a $d_j \times d_j$ upper triangular matrix of the form

$$egin{array}{ccc} egin{array}{ccc} A_j & & * \ & & \ddots & \ & & & \ 0 & & & \lambda_j \end{array}
ight).$$

Proof.

Proof. Each $(T - \lambda_j I)|_{\mathcal{G}(\lambda_j,T)}$ is nilpotent.

Proof. Each $(T - \lambda_j I)|_{\mathcal{G}(\lambda_j,T)}$ is nilpotent.

Choose a basis such that this matrix has 0's on and below the main diagonal.

Proof. Each $(T - \lambda_j I)|_{G(\lambda_j,T)}$ is nilpotent.

Choose a basis such that this matrix has 0's on and below the main diagonal.

What is the matrix of $T|_{\mathcal{G}(\lambda_j,T)} = (T - \lambda_j I)|_{\mathcal{G}(\lambda_j,T)} + \lambda_j I|_{\mathcal{G}(\lambda_j,T)}$?

Proof. Each $(T - \lambda_j I)|_{G(\lambda_j,T)}$ is nilpotent.

Choose a basis such that this matrix has 0's on and below the main diagonal.

What is the matrix of $T|_{G(\lambda_j,T)} = (T - \lambda_j I)|_{G(\lambda_j,T)} + \lambda_j I|_{G(\lambda_j,T)}$? The desired form.

8.28 **Example** The 5-by-5 matrix $A = \begin{pmatrix} (4) & 0 & 0 & 0 & 0 \\ 0 & (2 & -3) & 0 & 0 \\ 0 & 0 & 2 &) & 0 & 0 \\ 0 & 0 & 0 & (1 & 7) \\ 0 & 0 & 0 & (1 & 7) \end{pmatrix}$

is a block diagonal matrix with

$$A = \left(\begin{array}{cc} A_1 & 0 \\ & A_2 & \\ 0 & & A_3 \end{array}\right),$$

where

$$A_1 = (4), \quad A_2 = \begin{pmatrix} 2 & -3 \\ 0 & 2 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 7 \\ 0 & 1 \end{pmatrix}.$$

FD • MATH 110 • July 31, 2023

$T(z_1, z_2, z_3) = (6z_1 + 3z_2 + 4z_3, 6z_2 + 2z_3, 7z_3)$

$$T(z_1, z_2, z_3) = (6z_1 + 3z_2 + 4z_3, 6z_2 + 2z_3, 7z_3)$$

G(6, T) = span(1, 0, 0), (0, 1, 0) and G(7, T) = span(10, 2, 1)

$$T(z_1, z_2, z_3) = (6z_1 + 3z_2 + 4z_3, 6z_2 + 2z_3, 7z_3)$$

G(6, T) = span(1, 0, 0), (0, 1, 0) and G(7, T) = span(10, 2, 1)

What is the matrix with respect to this basis?

$$T(z_1, z_2, z_3) = (6z_1 + 3z_2 + 4z_3, 6z_2 + 2z_3, 7z_3)$$

G(6, T) = span(1, 0, 0), (0, 1, 0) and G(7, T) = span(10, 2, 1)

What is the matrix with respect to this basis?

Blocks:

$$\left(\begin{array}{cc} 6 & 3 \\ 0 & 6 \end{array}\right), (7)$$

Recall *R* is called a square root of an operator *T* if $R^2 = T$.

Recall *R* is called a square root of an operator *T* if $R^2 = T$.

Recall having a positive or self-adjoint square root was equivalent to being a positive operator.

Recall *R* is called a square root of an operator *T* if $R^2 = T$.

Recall having a positive or self-adjoint square root was equivalent to being a positive operator.

Not every operator over \mathbb{C} has a square root in general.

Recall *R* is called a square root of an operator *T* if $R^2 = T$.

Recall having a positive or self-adjoint square root was equivalent to being a positive operator.

Not every operator over \mathbb{C} has a square root in general.

Non-example:
Recall *R* is called a square root of an operator *T* if $R^2 = T$.

Recall having a positive or self-adjoint square root was equivalent to being a positive operator.

Not every operator over \mathbb{C} has a square root in general.

Non-example:

T(x, y, z) = (y, z, 0) has no square root.

Recall *R* is called a square root of an operator *T* if $R^2 = T$.

Recall having a positive or self-adjoint square root was equivalent to being a positive operator.

Not every operator over \mathbb{C} has a square root in general.

Non-example:

$$T(x, y, z) = (y, z, 0)$$
 has no square root.

• Notice
$$T^3 = 0$$
.

Recall *R* is called a square root of an operator *T* if $R^2 = T$.

Recall having a positive or self-adjoint square root was equivalent to being a positive operator.

Not every operator over \mathbb{C} has a square root in general.

Non-example:

$$T(x, y, z) = (y, z, 0)$$
 has no square root.

• Notice
$$T^3 = 0$$
.

If
$$S^2 = T$$
, then $S^6 = T$.

Recall *R* is called a square root of an operator *T* if $R^2 = T$.

Recall having a positive or self-adjoint square root was equivalent to being a positive operator.

Not every operator over \mathbb{C} has a square root in general.

Non-example:

$$T(x, y, z) = (y, z, 0)$$
 has no square root.

• Notice
$$T^3 = 0$$
.

If
$$S^2 = T$$
, then $S^6 = T$.

So
$$S^3 = 0$$
.

Recall *R* is called a square root of an operator *T* if $R^2 = T$.

Recall having a positive or self-adjoint square root was equivalent to being a positive operator.

Not every operator over \mathbb{C} has a square root in general.

Non-example:

T(x, y, z) = (y, z, 0) has no square root.

• Notice $T^3 = 0$.

• If
$$S^2 = T$$
, then $S^6 = T$.

So
$$S^3 = 0$$
.

So
$$T^2 = S^4 = SS^3 = 0$$
,

Recall *R* is called a square root of an operator *T* if $R^2 = T$.

Recall having a positive or self-adjoint square root was equivalent to being a positive operator.

Not every operator over \mathbb{C} has a square root in general.

Non-example:

$$T(x, y, z) = (y, z, 0)$$
 has no square root.

• Notice $T^3 = 0$.

If
$$S^2 = T$$
, then $S^6 = T$.

So
$$S^3 = 0$$
.

So $T^2 = S^4 = SS^3 = 0$, but $T^2 \neq 0$, contradiction.

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then I + N has a square root.

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then I + N has a square root.

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then I + N has a square root.

Proof. Out Inspiration: Taylor series for $\sqrt{1+x}$.

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then I + N has a square root.

Proof. Out Inspiration: Taylor series for $\sqrt{1+x}$.

$$\sqrt{1+x} = 1 + a_1x + a_2x^2 + \dots$$

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then I + N has a square root.

Proof. Out Inspiration: Taylor series for $\sqrt{1+x}$.

$$\sqrt{1+x} = 1 + a_1x + a_2x^2 + \dots$$

Because N is nilpotent, $N^m = 0$, some m.

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then I + N has a square root.

Proof. Out Inspiration: Taylor series for $\sqrt{1+x}$.

$$\sqrt{1+x}=1+a_1x+a_2x^2+\ldots$$

Because *N* is nilpotent,
$$N^m = 0$$
, some *m*.
 $I + a_1N + a_2N^2 + ... + a_{m-1}N^{m-1}$.

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then I + N has a square root.

Proof. Out Inspiration: Taylor series for $\sqrt{1+x}$.

$$\sqrt{1+x}=1+a_1x+a_2x^2+\ldots$$

Because N is nilpotent,
$$N^m = 0$$
, some m.
 $I + a_1N + a_2N^2 + \dots + a_{m-1}N^{m-1}$.
 $(I + a_1N + a_2N^2 + \dots + a_{m-1}N^{m-1})^2$
 $= I + 2a_1N + (2a_2 + a_1^2)N^2 + (2a_3 + 2a_1a_2)N^3 + \dots$
 $\dots + (2a_{m-1} + \text{ terms with } a_1, \dots, a_{m-2})N^{m-1}$

.

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then I + N has a square root.

Proof. Out Inspiration: Taylor series for $\sqrt{1+x}$.

$$\sqrt{1+x}=1+a_1x+a_2x^2+\ldots$$

Because N is nilpotent,
$$N^m = 0$$
, some m.
 $I + a_1N + a_2N^2 + \dots + a_{m-1}N^{m-1}$.
 $(I + a_1N + a_2N^2 + \dots + a_{m-1}N^{m-1})^2$
 $= I + 2a_1N + (2a_2 + a_1^2)N^2 + (2a_3 + 2a_1a_2)N^3 + \dots$
 $\dots + (2a_{m-1} + \text{ terms with } a_1, \dots, a_{m-2})N^{m-1}$

■ Just solve for a_i such that the RHS is I + N. FD • MATH 110 • July 31, 2023

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$ is invertible. Then T has a square root.

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$ is invertible. Then T has a square root.

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$ is invertible. Then T has a square root.

Proof.

• Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of *T*.

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$ is invertible. Then T has a square root.

- Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of *T*.
- For each *j*, $N_j \in \mathcal{L}(G(\lambda_j, T))$ such that $T|_{G(\lambda_j, T)} = \lambda_j I + N_j$.

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$ is invertible. Then T has a square root.

- Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of T.
- For each *j*, $N_j \in \mathcal{L}(G(\lambda_j, T))$ such that $T|_{G(\lambda_j, T)} = \lambda_j I + N_j$.
- **T** invertible so λ_i can't be zero.

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$ is invertible. Then T has a square root.

- Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of *T*.
- For each *j*, $N_j \in \mathcal{L}(G(\lambda_j, T))$ such that $T|_{G(\lambda_j, T)} = \lambda_j I + N_j$.
- **T** invertible so λ_i can't be zero.

$$T|_{G(\lambda_j,T)} = \lambda_j \left(I + \frac{N_j}{\lambda_j} \right).$$

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$ is invertible. Then T has a square root.

- Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of *T*.
- For each *j*, $N_j \in \mathcal{L}(G(\lambda_j, T))$ such that $T|_{G(\lambda_j, T)} = \lambda_j I + N_j$.
- **T** invertible so λ_i can't be zero.

$$T|_{G(\lambda_j,T)} = \lambda_j \left(I + \frac{N_j}{\lambda_j} \right).$$

• Let
$$R_j$$
 be the root of $\lambda_j \left(I + \frac{N_j}{\lambda_j}\right)$.

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$ is invertible. Then T has a square root.

- Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of *T*.
- For each *j*, $N_j \in \mathcal{L}(G(\lambda_j, T))$ such that $T|_{G(\lambda_j, T)} = \lambda_j I + N_j$.
- **T** invertible so λ_j can't be zero.

$$T|_{G(\lambda_j,T)} = \lambda_j \left(I + \frac{N_j}{\lambda_j} \right).$$

- Let R_j be the root of $\lambda_j \left(I + \frac{N_j}{\lambda_j}\right)$.
- Then for $v = u_1 + \ldots + u_m$, $Rv = R_1u_1 + \ldots + R_mu_m$ is the square root of T.

[Ax114] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.