Lecture 22: Decomposition of Operators

MATH 110-3

Franny Dean

July 31, 2023

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$:

Def'n:

We say $v \in V$ is a generalized eigenvector if there exists positive integer j such that $(T-\lambda /)^{j} v=0$.

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$:

Def'n:

We say $v \in V$ is a generalized eigenvector if there exists positive integer j such that $(T-\lambda /)^{j} v=0$.

Def'n:

The generalized eigenspace $G(\lambda, T)$ is the set of all generalized eigenvectors of T corresponding to λ, along with 0 .

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$:

Def'n:

We say $v \in V$ is a generalized eigenvector if there exists positive integer j such that $(T-\lambda /)^{j} v=0$.

Def'n:

The generalized eigenspace $G(\lambda, T)$ is the set of all generalized eigenvectors of T corresponding to λ, along with 0 .

Prop'n 1:

$$
G(\lambda, T)=\operatorname{null}(T-\lambda /)^{\operatorname{dim} V}
$$

S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$:

Def'n:

We say $v \in V$ is a generalized eigenvector if there exists positive integer j such that $(T-\lambda /)^{j} v=0$.

Def'n:

The generalized eigenspace $G(\lambda, T)$ is the set of all generalized eigenvectors of T corresponding to λ, along with 0 .

Prop'n 1:

$$
G(\lambda, T)=\operatorname{null}(T-\lambda /)^{\operatorname{dim} V}
$$

Prop'n 2:

Let $n=\operatorname{dim} V$. Then $V=\operatorname{null} T^{n} \oplus \operatorname{range} T^{n}$.

Main Result

Description of Operators on Complex Vector Spaces

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_{1}, \ldots, \lambda_{m}$ be the distinct eigenvalues of T. Then

1. $V=G\left(\lambda_{1}, T\right) \oplus \cdots \oplus G\left(\lambda_{m}, T\right)$;
2. each $G\left(\lambda_{j}, T\right)$ is invariant under T;
3. each $\left.\left(T-\lambda_{j} I\right)\right|_{G\left(\lambda_{j}, T\right)}$ is nilpotent.

Description of Operators on Complex Vector Spaces

Proof.

Description of Operators on Complex Vector Spaces

Proof. Let's start with 3!

Description of Operators on Complex Vector Spaces

Proof. Let's start with 3! Unpack definitions!

Description of Operators on Complex Vector Spaces

Proof. Let's start with 3! Unpack definitions!
For 2:
Lemma:
S'pose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then null $p(T)$ and range $p(T)$ are invariant under T.

Description of Operators on Complex Vector Spaces

Proof. Let's start with 3! Unpack definitions!
For 2:
Lemma:
S'pose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then null $p(T)$ and range $p(T)$ are invariant under T.

Proof of lemma:

Description of Operators on Complex Vector Spaces

Proof. Let's start with 3! Unpack definitions!
For 2:
Lemma:
S'pose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then null $p(T)$ and range $p(T)$ are invariant under T.

Proof of lemma: S'pose $v \in \operatorname{null} p(T)$,

Description of Operators on Complex Vector Spaces

Proof. Let's start with 3! Unpack definitions!
For 2:
Lemma:
S'pose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then null $p(T)$ and range $p(T)$ are invariant under T.

Proof of lemma: S'pose $v \in \operatorname{null} p(T), p(T) v=0$

Description of Operators on Complex Vector Spaces

Proof. Let's start with 3! Unpack definitions!
For 2:
Lemma:
S'pose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then null $p(T)$ and range $p(T)$ are invariant under T.

Proof of lemma: S'pose $v \in$ null $p(T), p(T) v=0$

$$
((p(T)))(T v)=T(p(T) v)=T 0=0 .
$$

Description of Operators on Complex Vector Spaces

Proof. Let's start with 3! Unpack definitions!
For 2:

Lemma:

S'pose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then null $p(T)$ and range $p(T)$ are invariant under T.

Proof of lemma: S'pose $v \in \operatorname{null} p(T), p(T) v=0$

$$
((p(T)))(T v)=T(p(T) v)=T 0=0 .
$$

On the other hand, $v \in$ range $p(T)$,

Description of Operators on Complex Vector Spaces

Proof. Let's start with 3! Unpack definitions!
For 2:
Lemma:
S'pose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then null $p(T)$ and range $p(T)$ are invariant under T.

Proof of lemma: S'pose $v \in$ null $p(T), p(T) v=0$

$$
((p(T)))(T v)=T(p(T) v)=T 0=0 .
$$

On the other hand, $v \in$ range $p(T), u \in V$ such that $v=p(T) u$

Description of Operators on Complex Vector Spaces

Proof. Let's start with 3! Unpack definitions!
For 2:
Lemma:
S'pose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then null $p(T)$ and range $p(T)$ are invariant under T.

Proof of lemma: S'pose $v \in$ null $p(T), p(T) v=0$

$$
((p(T)))(T v)=T(p(T) v)=T 0=0 .
$$

On the other hand, $v \in$ range $p(T), u \in V$ such that $v=p(T) u$

$$
T v=T(p(T) u)=p(T)(T u) .
$$

Description of Operators on Complex Vector Spaces

Proof. Let's start with 3! Unpack definitions!
For 2:
Lemma:
S'pose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then null $p(T)$ and range $p(T)$ are invariant under T.

Proof of lemma: S'pose $v \in \operatorname{null} p(T), p(T) v=0$

$$
((p(T)))(T v)=T(p(T) v)=T 0=0 .
$$

On the other hand, $v \in$ range $p(T), u \in V$ such that $v=p(T) u$

$$
T v=T(p(T) u)=p(T)(T u) .
$$

How can we use to prove 2?

Description of Operators on Complex Vector Spaces

Proof (cont'd).

Description of Operators on Complex Vector Spaces

Proof (cont'd).
For 1: induction on $\operatorname{dim} V$.

Description of Operators on Complex Vector Spaces

Proof (cont'd).
For 1: induction on $\operatorname{dim} V$.
Base case: $n=1, V=G(\lambda, T)$.

Description of Operators on Complex Vector Spaces

Proof (cont'd).
For 1: induction on $\operatorname{dim} V$.
Base case: $n=1, V=G(\lambda, T)$.
Hypothesis: If $\operatorname{dim} V<n$, then $V=\sum G(\lambda, T)$.

Description of Operators on Complex Vector Spaces

Proof (cont'd).
For 1: induction on $\operatorname{dim} V$.
Base case: $n=1, V=G(\lambda, T)$.
Hypothesis: If $\operatorname{dim} V<n$, then $V=\sum G(\lambda, T)$.
Pick λ_{1}.

Description of Operators on Complex Vector Spaces

Proof (cont'd).
For 1: induction on $\operatorname{dim} V$.
Base case: $n=1, V=G(\lambda, T)$.
Hypothesis: If $\operatorname{dim} V<n$, then $V=\sum G(\lambda, T)$.
Pick λ_{1}. How?

Description of Operators on Complex Vector Spaces

Proof (cont'd).
For 1: induction on $\operatorname{dim} V$.
Base case: $n=1, V=G(\lambda, T)$.
Hypothesis: If $\operatorname{dim} V<n$, then $V=\sum G(\lambda, T)$.
Pick λ_{1}. How? Use Prop'n 2,

Description of Operators on Complex Vector Spaces

Proof (cont'd).
For 1: induction on $\operatorname{dim} V$.
Base case: $n=1, V=G(\lambda, T)$.
Hypothesis: If $\operatorname{dim} V<n$, then $V=\sum G(\lambda, T)$.
Pick λ_{1}. How? Use Prop'n 2, write

$$
V=G\left(\lambda_{1}, T\right) \oplus \operatorname{range}\left(T-\lambda_{1} /\right)^{n}
$$

Description of Operators on Complex Vector Spaces

Proof (cont'd).
For 1: induction on $\operatorname{dim} V$.
Base case: $n=1, V=G(\lambda, T)$.
Hypothesis: If $\operatorname{dim} V<n$, then $V=\sum G(\lambda, T)$.
Pick λ_{1}. How? Use Prop'n 2, write

$$
V=G\left(\lambda_{1}, T\right) \oplus \operatorname{range}\left(T-\lambda_{1} /\right)^{n}
$$

range $\left(T-\lambda_{1} /\right)^{n}$ satisfies induction hypothesis.

Description of Operators on Complex Vector Spaces

Proof (cont'd).
For 1: induction on $\operatorname{dim} V$.
Base case: $n=1, V=G(\lambda, T)$.
Hypothesis: If $\operatorname{dim} V<n$, then $V=\sum G(\lambda, T)$.
Pick λ_{1}. How? Use Prop'n 2, write

$$
V=G\left(\lambda_{1}, T\right) \oplus \operatorname{range}\left(T-\lambda_{1} /\right)^{n}
$$

range $\left(T-\lambda_{1} /\right)^{n}$ satisfies induction hypothesis.
Call range $\left(T-\lambda_{1} I\right)^{n}=U$.

Description of Operators on Complex Vector Spaces

For $U=$ range $\left(T-\lambda_{1} I\right)^{n}$,

Description of Operators on Complex Vector Spaces

For $U=$ range $\left(T-\lambda_{1} I\right)^{n}$, the eigenvalues of $\left.T\right|_{U}$ are $\left\{\lambda_{2}, \ldots, \lambda_{m}\right\}$.

Description of Operators on Complex Vector Spaces

For $U=$ range $\left(T-\lambda_{1} I\right)^{n}$, the eigenvalues of $\left.T\right|_{U}$ are $\left\{\lambda_{2}, \ldots, \lambda_{m}\right\}$.

$$
U=G\left(\lambda_{2},\left.T\right|_{U}\right) \oplus \ldots \oplus G\left(\lambda_{m},\left.T\right|_{U}\right)
$$

Description of Operators on Complex Vector Spaces

For $U=$ range $\left(T-\lambda_{1} I\right)^{n}$, the eigenvalues of $\left.T\right|_{U}$ are $\left\{\lambda_{2}, \ldots, \lambda_{m}\right\}$.

$$
U=G\left(\lambda_{2},\left.T\right|_{U}\right) \oplus \ldots \oplus G\left(\lambda_{m},\left.T\right|_{U}\right)
$$

It suffices to show $G\left(\lambda_{k},\left.T\right|_{U}\right)=G\left(\lambda_{k}, T\right)$.

Description of Operators on Complex Vector Spaces

For $U=$ range $\left(T-\lambda_{1} I\right)^{n}$, the eigenvalues of $\left.T\right|_{U}$ are $\left\{\lambda_{2}, \ldots, \lambda_{m}\right\}$.

$$
U=G\left(\lambda_{2},\left.T\right|_{U}\right) \oplus \ldots \oplus G\left(\lambda_{m},\left.T\right|_{U}\right)
$$

It suffices to show $G\left(\lambda_{k},\left.T\right|_{U}\right)=G\left(\lambda_{k}, T\right)$. $G\left(\lambda_{k},\left.T\right|_{U}\right) \subseteq G\left(\lambda_{k}, T\right)$.

Description of Operators on Complex Vector Spaces

For $U=$ range $\left(T-\lambda_{1} I\right)^{n}$, the eigenvalues of $\left.T\right|_{U}$ are $\left\{\lambda_{2}, \ldots, \lambda_{m}\right\}$.

$$
U=G\left(\lambda_{2},\left.T\right|_{U}\right) \oplus \ldots \oplus G\left(\lambda_{m},\left.T\right|_{U}\right)
$$

It suffices to show $G\left(\lambda_{k},\left.T\right|_{U}\right)=G\left(\lambda_{k}, T\right)$.
$G\left(\lambda_{k},\left.T\right|_{U}\right) \subseteq G\left(\lambda_{k}, T\right)$.
On the other hand, s'pose $v \in G\left(\lambda_{k}, T\right)$.

Description of Operators on Complex Vector Spaces

For $U=$ range $\left(T-\lambda_{1} I\right)^{n}$, the eigenvalues of $\left.T\right|_{U}$ are $\left\{\lambda_{2}, \ldots, \lambda_{m}\right\}$.

$$
U=G\left(\lambda_{2},\left.T\right|_{U}\right) \oplus \ldots \oplus G\left(\lambda_{m},\left.T\right|_{U}\right)
$$

It suffices to show $G\left(\lambda_{k},\left.T\right|_{U}\right)=G\left(\lambda_{k}, T\right)$.
$G\left(\lambda_{k},\left.T\right|_{U}\right) \subseteq G\left(\lambda_{k}, T\right)$.
On the other hand, s'pose $v \in G\left(\lambda_{k}, T\right)$.
Then as $v \in V, v=v_{1}+u$ for $v_{1} \in G\left(\lambda_{1}, T\right)$ and $u \in U$.

Description of Operators on Complex Vector Spaces

For $U=$ range $\left(T-\lambda_{1} I\right)^{n}$, the eigenvalues of $\left.T\right|_{U}$ are $\left\{\lambda_{2}, \ldots, \lambda_{m}\right\}$.

$$
U=G\left(\lambda_{2},\left.T\right|_{U}\right) \oplus \ldots \oplus G\left(\lambda_{m},\left.T\right|_{U}\right)
$$

It suffices to show $G\left(\lambda_{k},\left.T\right|_{U}\right)=G\left(\lambda_{k}, T\right)$.
$G\left(\lambda_{k},\left.T\right|_{U}\right) \subseteq G\left(\lambda_{k}, T\right)$.
On the other hand, s'pose $v \in G\left(\lambda_{k}, T\right)$.
Then as $v \in V, v=v_{1}+u$ for $v_{1} \in G\left(\lambda_{1}, T\right)$ and $u \in U$.
$u=v_{2}+\ldots+v_{m}$ for $v_{j} \in G\left(\lambda_{j},\left.T\right|_{U}\right) \subseteq G\left(\lambda_{j}, T\right)$.

Description of Operators on Complex Vector Spaces

For $U=$ range $\left(T-\lambda_{1} I\right)^{n}$, the eigenvalues of $\left.T\right|_{U}$ are $\left\{\lambda_{2}, \ldots, \lambda_{m}\right\}$.

$$
U=G\left(\lambda_{2},\left.T\right|_{U}\right) \oplus \ldots \oplus G\left(\lambda_{m},\left.T\right|_{U}\right)
$$

It suffices to show $G\left(\lambda_{k},\left.T\right|_{U}\right)=G\left(\lambda_{k}, T\right)$.
$G\left(\lambda_{k},\left.T\right|_{U}\right) \subseteq G\left(\lambda_{k}, T\right)$.
On the other hand, s'pose $v \in G\left(\lambda_{k}, T\right)$.
Then as $v \in V, v=v_{1}+u$ for $v_{1} \in G\left(\lambda_{1}, T\right)$ and $u \in U$.
$u=v_{2}+\ldots+v_{m}$ for $v_{j} \in G\left(\lambda_{j},\left.T\right|_{u}\right) \subseteq G\left(\lambda_{j}, T\right)$.

$$
v=v_{1}+v_{2}+\ldots+v_{m}
$$

Description of Operators on Complex Vector Spaces

For $U=$ range $\left(T-\lambda_{1} I\right)^{n}$, the eigenvalues of $\left.T\right|_{U}$ are $\left\{\lambda_{2}, \ldots, \lambda_{m}\right\}$.

$$
U=G\left(\lambda_{2},\left.T\right|_{U}\right) \oplus \ldots \oplus G\left(\lambda_{m},\left.T\right|_{U}\right)
$$

It suffices to show $G\left(\lambda_{k},\left.T\right|_{U}\right)=G\left(\lambda_{k}, T\right)$.
$G\left(\lambda_{k},\left.T\right|_{U}\right) \subseteq G\left(\lambda_{k}, T\right)$.
On the other hand, s'pose $v \in G\left(\lambda_{k}, T\right)$.
Then as $v \in V, v=v_{1}+u$ for $v_{1} \in G\left(\lambda_{1}, T\right)$ and $u \in U$.
$u=v_{2}+\ldots+v_{m}$ for $v_{j} \in G\left(\lambda_{j},\left.T\right|_{U}\right) \subseteq G\left(\lambda_{j}, T\right)$.

$$
v=v_{1}+v_{2}+\ldots+v_{m}
$$

Linear independence of v_{j} guarentees $v_{j}=0$ unless possibly if $j=k$.

Description of Operators on Complex Vector Spaces

For $U=$ range $\left(T-\lambda_{1} I\right)^{n}$, the eigenvalues of $\left.T\right|_{U}$ are $\left\{\lambda_{2}, \ldots, \lambda_{m}\right\}$.

$$
U=G\left(\lambda_{2},\left.T\right|_{U}\right) \oplus \ldots \oplus G\left(\lambda_{m},\left.T\right|_{U}\right)
$$

It suffices to show $G\left(\lambda_{k},\left.T\right|_{U}\right)=G\left(\lambda_{k}, T\right)$.
$G\left(\lambda_{k},\left.T\right|_{U}\right) \subseteq G\left(\lambda_{k}, T\right)$.
On the other hand, s'pose $v \in G\left(\lambda_{k}, T\right)$.
Then as $v \in V, v=v_{1}+u$ for $v_{1} \in G\left(\lambda_{1}, T\right)$ and $u \in U$.
$u=v_{2}+\ldots+v_{m}$ for $v_{j} \in G\left(\lambda_{j},\left.T\right|_{U}\right) \subseteq G\left(\lambda_{j}, T\right)$.

$$
v=v_{1}+v_{2}+\ldots+v_{m}
$$

Linear independence of v_{j} guarentees $v_{j}=0$ unless possibly if $j=k$. So $v_{1}=0$ and $v=u \in U$ and $v \in G\left(\lambda_{k},\left.T\right|_{U}\right) . \square$.

Basis of Generalized Eigenvectors

Prop'n:
S'pose V is a complex vector space and $T \in \mathcal{L}(V)$. Then there is a basis of V consisting of generalized eigenvectors of T.

Basis of Generalized Eigenvectors

Prop'n:
S'pose V is a complex vector space and $T \in \mathcal{L}(V)$. Then there is a basis of V consisting of generalized eigenvectors of T.

Proof.

Basis of Generalized Eigenvectors

Prop'n:
S'pose V is a complex vector space and $T \in \mathcal{L}(V)$. Then there is a basis of V consisting of generalized eigenvectors of T.

Proof. Use previous result! \square.

Multiplicity of an Eigenvalue

Def'n:

S'pose $T \in \mathcal{L}(V)$.

- The (algebraic) multiplicity of an eigenvalue λ of T is defined to the the dimension of the corresponding generalized eigenspace $G(\lambda, T)$,

Multiplicity of an Eigenvalue

Def'n:

S'pose $T \in \mathcal{L}(V)$.
■ The (algebraic) multiplicity of an eigenvalue λ of T is defined to the the dimension of the corresponding generalized eigenspace $G(\lambda, T)$, i.e. $=\operatorname{dim}$ null $(T-\lambda /)^{\operatorname{dim} V}$.

Multiplicity of an Eigenvalue

Def'n:

S'pose $T \in \mathcal{L}(V)$.
■ The (algebraic) multiplicity of an eigenvalue λ of T is defined to the the dimension of the corresponding generalized eigenspace $G(\lambda, T)$, i.e. $=\operatorname{dim}$ null $(T-\lambda /)^{\operatorname{dim} V}$.
■ The geometric multiplicity of an eigenvalue λ of T is defined to be the dimension of the corresponding eigenspace $E(\lambda, T)$.

Recall Example

$$
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}+3 z_{2}+4 z_{3}, 6 z_{2}+2 z_{3}, 7 z_{3}\right)
$$

Recall Example

$$
\begin{gathered}
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}+3 z_{2}+4 z_{3}, 6 z_{2}+2 z_{3}, 7 z_{3}\right) \\
E(6, T)=\operatorname{span}(1,0,0) \text { and } E(7, T)=\operatorname{span}(0,0,1)
\end{gathered}
$$

Recall Example

$$
\begin{gathered}
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}+3 z_{2}+4 z_{3}, 6 z_{2}+2 z_{3}, 7 z_{3}\right) \\
E(6, T)=\operatorname{span}(1,0,0) \text { and } E(7, T)=\operatorname{span}(0,0,1)
\end{gathered}
$$

$$
G(6, T)=\operatorname{span}(1,0,0),(0,1,0) \text { and } G(7, T)=\operatorname{span}(10,2,1)
$$

Recall Example

$$
\begin{gathered}
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}+3 z_{2}+4 z_{3}, 6 z_{2}+2 z_{3}, 7 z_{3}\right) \\
E(6, T)=\operatorname{span}(1,0,0) \text { and } E(7, T)=\operatorname{span}(0,0,1)
\end{gathered}
$$

$$
\begin{gathered}
G(6, T)=\operatorname{span}(1,0,0),(0,1,0) \text { and } G(7, T)=\operatorname{span}(10,2,1) \\
\mathbb{C}^{3}=G(6, T) \oplus G(7, T)
\end{gathered}
$$

Sum of Multiplicities

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$. Then the sum of the algebraic multiplicities of the eigenvalues of T equals the dimension of V.

Sum of Multiplicities

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$. Then the sum of the algebraic multiplicities of the eigenvalues of T equals the dimension of V.

Proof.

Sum of Multiplicities

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$. Then the sum of the algebraic multiplicities of the eigenvalues of T equals the dimension of V.

Proof. Use previous result! \square.

Multiplicity of Eigenvalues and Upper Triangular Matrices

Prop'n [Ax[14]:

Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then for every basis of V with respect to which T has an upper triangular matrix, the number of times that λ appears on the diagonal of the matrix of T equals the algebraic multiplicity of λ as an eigenvalue of T.

Multiplicity of Eigenvalues and Upper Triangular Matrices

Prop'n [Ax[14]:

Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then for every basis of V with respect to which T has an upper triangular matrix, the number of times that λ appears on the diagonal of the matrix of T equals the algebraic multiplicity of λ as an eigenvalue of T.

Proof: Homework challenge problem.

Block Diagonal Matrices

Next goal: Interpret our results in matrix form.

Block Diagonal Matrices

Next goal: Interpret our results in matrix form.

Def'n:

A block diagonal matrix is a square matrix of the form

$$
\left(\begin{array}{ccc}
A_{1} & & 0 \\
& \ldots & \\
0 & & A_{m}
\end{array}\right)
$$

where A_{1}, \ldots, A_{m} are square matrices lying along the diagonal and all other entries are 0.

Example

8.28 Example The 5-by-5 matrix

$$
A=\left(\begin{array}{ccc}
\left(\begin{array}{c}
4
\end{array}\right) & 0 & 0 \\
0 \\
0 \\
0 \\
0
\end{array} \quad\left(\begin{array}{cc}
2 & -3 \\
0 & 2 \\
0 & 0 \\
0 & 0
\end{array}\right) \quad \begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right) ~\left(\begin{array}{ll}
1 & 7 \\
0 &
\end{array}\right)
$$

is a block diagonal matrix with

$$
A=\left(\begin{array}{ccc}
A_{1} & & 0 \\
& A_{2} & \\
0 & & A_{3}
\end{array}\right),
$$

where

$$
A_{1}=(4), \quad A_{2}=\left(\begin{array}{cc}
2 & -3 \\
0 & 2
\end{array}\right), \quad A_{3}=\left(\begin{array}{ll}
1 & 7 \\
0 & 1
\end{array}\right) .
$$

Block Diagonal Matrix with Upper Triangular Blocks

Prop'n:

S'pose V is complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_{1}, \ldots, \lambda_{m}$ be the distinct eigenvalues of T, with multiplicities d_{1}, \ldots, d_{m}. Then there is a basis of V with respect to which T has a block diagonal matrix of the form

$$
\left(\begin{array}{ccc}
A_{1} & & 0 \\
& \cdots & \\
0 & & A_{m}
\end{array}\right)
$$

where each A_{j} is a $d_{j} \times d_{j}$ upper triangular matrix of the form

$$
A_{j}=\left(\begin{array}{ccc}
\lambda_{j} & & * \\
& \ldots & \\
0 & & \lambda_{j}
\end{array}\right) .
$$

Proof of Block Diagonal UT Form

Proof.

Proof of Block Diagonal UT Form

Proof. Each $\left.\left(T-\lambda_{j} /\right)\right|_{G\left(\lambda_{j}, T\right)}$ is nilpotent.

Proof of Block Diagonal UT Form

Proof. Each $\left.\left(T-\lambda_{j} /\right)\right|_{G\left(\lambda_{j}, T\right)}$ is nilpotent.
Choose a basis such that this matrix has 0's on and below the main diagonal.

Proof of Block Diagonal UT Form

Proof. Each $\left.\left(T-\lambda_{j} /\right)\right|_{G\left(\lambda_{j}, T\right)}$ is nilpotent.
Choose a basis such that this matrix has 0's on and below the main diagonal.
What is the matrix of $\left.T\right|_{G\left(\lambda_{j}, T\right)}=\left.\left(T-\lambda_{j} /\right)\right|_{G\left(\lambda_{j}, T\right)}+\left.\lambda_{j}\right|_{G\left(\lambda_{j}, T\right)}$?

Proof of Block Diagonal UT Form

Proof. Each $\left.\left(T-\lambda_{j} /\right)\right|_{G\left(\lambda_{j}, T\right)}$ is nilpotent.
Choose a basis such that this matrix has 0's on and below the main diagonal.
What is the matrix of $\left.T\right|_{G\left(\lambda_{j}, T\right)}=\left.\left(T-\lambda_{j} /\right)\right|_{G\left(\lambda_{j}, T\right)}+\left.\lambda_{j}\right|_{G\left(\lambda_{j}, T\right)}$?
The desired form.

Example

8.28 Example The 5-by-5 matrix

$$
A=\left(\begin{array}{ccc}
\left(\begin{array}{c}
4
\end{array}\right) & 0 & 0 \\
0 \\
0 \\
0 \\
0
\end{array} \quad\left(\begin{array}{cc}
2 & -3 \\
0 & 2
\end{array}\right) \quad \begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 7 \\
0 & 1
\end{array}\right) ~ \$ ~
$$

is a block diagonal matrix with

$$
A=\left(\begin{array}{ccc}
A_{1} & & 0 \\
& A_{2} & \\
0 & & A_{3}
\end{array}\right),
$$

where

$$
A_{1}=(4), \quad A_{2}=\left(\begin{array}{cc}
2 & -3 \\
0 & 2
\end{array}\right), \quad A_{3}=\left(\begin{array}{ll}
1 & 7 \\
0 & 1
\end{array}\right) .
$$

Example 2

$$
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}+3 z_{2}+4 z_{3}, 6 z_{2}+2 z_{3}, 7 z_{3}\right)
$$

Example 2

$$
\begin{gathered}
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}+3 z_{2}+4 z_{3}, 6 z_{2}+2 z_{3}, 7 z_{3}\right) \\
G(6, T)=\operatorname{span}(1,0,0),(0,1,0) \text { and } G(7, T)=\operatorname{span}(10,2,1)
\end{gathered}
$$

Example 2

$$
\begin{gathered}
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}+3 z_{2}+4 z_{3}, 6 z_{2}+2 z_{3}, 7 z_{3}\right) \\
G(6, T)=\operatorname{span}(1,0,0),(0,1,0) \text { and } G(7, T)=\operatorname{span}(10,2,1)
\end{gathered}
$$

What is the matrix with respect to this basis?

Example 2

$$
\begin{gathered}
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}+3 z_{2}+4 z_{3}, 6 z_{2}+2 z_{3}, 7 z_{3}\right) \\
G(6, T)=\operatorname{span}(1,0,0),(0,1,0) \text { and } G(7, T)=\operatorname{span}(10,2,1)
\end{gathered}
$$

What is the matrix with respect to this basis? Blocks:

$$
\left(\begin{array}{ll}
6 & 3 \\
0 & 6
\end{array}\right),(7)
$$

Application: Square Roots

Recall R is called a square root of an operator T if $R^{2}=T$.

Application: Square Roots

Recall R is called a square root of an operator T if $R^{2}=T$.
Recall having a positive or self-adjoint square root was equivalent to being a positive operator.

Application: Square Roots

Recall R is called a square root of an operator T if $R^{2}=T$.
Recall having a positive or self-adjoint square root was equivalent to being a positive operator.

Not every operator over \mathbb{C} has a square root in general.

Application: Square Roots

Recall R is called a square root of an operator T if $R^{2}=T$.
Recall having a positive or self-adjoint square root was equivalent to being a positive operator.

Not every operator over \mathbb{C} has a square root in general.
Non-example:

Application: Square Roots

Recall R is called a square root of an operator T if $R^{2}=T$.
Recall having a positive or self-adjoint square root was equivalent to being a positive operator.

Not every operator over \mathbb{C} has a square root in general.
Non-example:
$T(x, y, z)=(y, z, 0)$ has no square root.

Application: Square Roots

Recall R is called a square root of an operator T if $R^{2}=T$.
Recall having a positive or self-adjoint square root was equivalent to being a positive operator.

Not every operator over \mathbb{C} has a square root in general.
Non-example:
$T(x, y, z)=(y, z, 0)$ has no square root.
■ Notice $T^{3}=0$.

Application: Square Roots

Recall R is called a square root of an operator T if $R^{2}=T$.
Recall having a positive or self-adjoint square root was equivalent to being a positive operator.

Not every operator over \mathbb{C} has a square root in general.

Non-example:

$T(x, y, z)=(y, z, 0)$ has no square root.
■ Notice $T^{3}=0$.
■ If $S^{2}=T$, then $S^{6}=T$.

Application: Square Roots

Recall R is called a square root of an operator T if $R^{2}=T$.
Recall having a positive or self-adjoint square root was equivalent to being a positive operator.

Not every operator over \mathbb{C} has a square root in general.

Non-example:

$T(x, y, z)=(y, z, 0)$ has no square root.
■ Notice $T^{3}=0$.

- If $S^{2}=T$, then $S^{6}=T$.
- So $S^{3}=0$.

Application: Square Roots

Recall R is called a square root of an operator T if $R^{2}=T$.
Recall having a positive or self-adjoint square root was equivalent to being a positive operator.

Not every operator over \mathbb{C} has a square root in general.

Non-example:

$T(x, y, z)=(y, z, 0)$ has no square root.

- Notice $T^{3}=0$.
- If $S^{2}=T$, then $S^{6}=T$.
- So $S^{3}=0$.

■ So $T^{2}=S^{4}=S S^{3}=0$,

Application: Square Roots

Recall R is called a square root of an operator T if $R^{2}=T$.
Recall having a positive or self-adjoint square root was equivalent to being a positive operator.

Not every operator over \mathbb{C} has a square root in general.

Non-example:

$T(x, y, z)=(y, z, 0)$ has no square root.
■ Notice $T^{3}=0$.

- If $S^{2}=T$, then $S^{6}=T$.
- So $S^{3}=0$.

■ So $T^{2}=S^{4}=S S^{3}=0$, but $T^{2} \neq 0$, contradiction.

Identity plus nilpotent has a square root!

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $I+N$ has a square root.

Identity plus nilpotent has a square root!

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $I+N$ has a square root.
Proof.

Identity plus nilpotent has a square root!

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $I+N$ has a square root.
Proof. Out Inspiration: Taylor series for $\sqrt{1+x}$.

Identity plus nilpotent has a square root!

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $I+N$ has a square root.
Proof. Out Inspiration: Taylor series for $\sqrt{1+x}$.

$$
\sqrt{1+x}=1+a_{1} x+a_{2} x^{2}+\ldots
$$

Identity plus nilpotent has a square root!

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $I+N$ has a square root.
Proof. Out Inspiration: Taylor series for $\sqrt{1+x}$.

$$
\sqrt{1+x}=1+a_{1} x+a_{2} x^{2}+\ldots
$$

■ Because N is nilpotent, $N^{m}=0$, some m.

Identity plus nilpotent has a square root!

Prop'n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $I+N$ has a square root.
Proof. Out Inspiration: Taylor series for $\sqrt{1+x}$.

$$
\sqrt{1+x}=1+a_{1} x+a_{2} x^{2}+\ldots
$$

■ Because N is nilpotent, $N^{m}=0$, some m.
$■ I+a_{1} N+a_{2} N^{2}+\ldots+a_{m-1} N^{m-1}$.

Identity plus nilpotent has a square root!

Prop’n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $I+N$ has a square root.
Proof. Out Inspiration: Taylor series for $\sqrt{1+x}$.

$$
\sqrt{1+x}=1+a_{1} x+a_{2} x^{2}+\ldots
$$

- Because N is nilpotent, $N^{m}=0$, some m.
$\square I+a_{1} N+a_{2} N^{2}+\ldots+a_{m-1} N^{m-1}$.

$$
\begin{aligned}
& \left(I+a_{1} N+a_{2} N^{2}+\ldots+a_{m-1} N^{m-1}\right)^{2} \\
& =I+2 a_{1} N+\left(2 a_{2}+a_{1}^{2}\right) N^{2}+\left(2 a_{3}+2 a_{1} a_{2}\right) N^{3}+\ldots \\
& \ldots+\left(2 a_{m-1}+\text { terms with } a_{1}, \ldots, a_{m-2}\right) N^{m-1}
\end{aligned}
$$

Identity plus nilpotent has a square root!

Prop’n:

S'pose $N \in \mathcal{L}(V)$ is nilpotent. Then $I+N$ has a square root.
Proof. Out Inspiration: Taylor series for $\sqrt{1+x}$.

$$
\sqrt{1+x}=1+a_{1} x+a_{2} x^{2}+\ldots
$$

- Because N is nilpotent, $N^{m}=0$, some m.
$\square I+a_{1} N+a_{2} N^{2}+\ldots+a_{m-1} N^{m-1}$.

$$
\begin{aligned}
& \left(I+a_{1} N+a_{2} N^{2}+\ldots+a_{m-1} N^{m-1}\right)^{2} \\
& =I+2 a_{1} N+\left(2 a_{2}+a_{1}^{2}\right) N^{2}+\left(2 a_{3}+2 a_{1} a_{2}\right) N^{3}+\ldots \\
& \ldots+\left(2 a_{m-1}+\text { terms with } a_{1}, \ldots, a_{m-2}\right) N^{m-1}
\end{aligned}
$$

\square Just solve for a_{i} such that the RHS is $I+N$.

Over \mathbb{C}, invertible operators have square roots!

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$ is invertible. Then T has a square root.

Over \mathbb{C}, invertible operators have square roots!

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$ is invertible. Then T has a square root.

Proof.

Over \mathbb{C}, invertible operators have square roots!

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$ is invertible. Then T has a square root.

Proof.
■ Let $\lambda_{1}, \ldots, \lambda_{m}$ be the distinct eigenvalues of T.

Over \mathbb{C}, invertible operators have square roots!

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$ is invertible. Then T has a square root.

Proof.
■ Let $\lambda_{1}, \ldots, \lambda_{m}$ be the distinct eigenvalues of T.
$■$ For each $j, N_{j} \in \mathcal{L}\left(G\left(\lambda_{j}, T\right)\right)$ such that $\left.T\right|_{G\left(\lambda_{j}, T\right)}=\lambda_{j} I+N_{j}$.

Over \mathbb{C}, invertible operators have square roots!

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$ is invertible. Then T has a square root.

Proof.
■ Let $\lambda_{1}, \ldots, \lambda_{m}$ be the distinct eigenvalues of T.
■ For each $j, N_{j} \in \mathcal{L}\left(G\left(\lambda_{j}, T\right)\right)$ such that $\left.T\right|_{G\left(\lambda_{j}, T\right)}=\lambda_{j} I+N_{j}$.

- T invertible so λ_{j} can't be zero.

Over \mathbb{C}, invertible operators have square roots!

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$ is invertible. Then T has a square root.

Proof.
■ Let $\lambda_{1}, \ldots, \lambda_{m}$ be the distinct eigenvalues of T.
■ For each $j, N_{j} \in \mathcal{L}\left(G\left(\lambda_{j}, T\right)\right)$ such that $\left.T\right|_{G\left(\lambda_{j}, T\right)}=\lambda_{j} I+N_{j}$.

- T invertible so λ_{j} can't be zero.
$\left.\square T\right|_{G\left(\lambda_{j}, T\right)}=\lambda_{j}\left(I+\frac{N_{j}}{\lambda_{j}}\right)$.

Over \mathbb{C}, invertible operators have square roots!

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$ is invertible. Then T has a square root.

Proof.
■ Let $\lambda_{1}, \ldots, \lambda_{m}$ be the distinct eigenvalues of T.
■ For each $j, N_{j} \in \mathcal{L}\left(G\left(\lambda_{j}, T\right)\right)$ such that $\left.T\right|_{G\left(\lambda_{j}, T\right)}=\lambda_{j} I+N_{j}$.

- T invertible so λ_{j} can't be zero.
$\left.\square T\right|_{G\left(\lambda_{j}, T\right)}=\lambda_{j}\left(I+\frac{N_{j}}{\lambda_{j}}\right)$.
\square Let R_{j} be the root of $\lambda_{j}\left(I+\frac{N_{j}}{\lambda_{j}}\right)$.

Over \mathbb{C}, invertible operators have square roots!

Prop'n:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$ is invertible. Then T has a square root.

Proof.
■ Let $\lambda_{1}, \ldots, \lambda_{m}$ be the distinct eigenvalues of T.
■ For each $j, N_{j} \in \mathcal{L}\left(G\left(\lambda_{j}, T\right)\right)$ such that $\left.T\right|_{G\left(\lambda_{j}, T\right)}=\lambda_{j} I+N_{j}$.

- T invertible so λ_{j} can't be zero.

■ $\left.T\right|_{G\left(\lambda_{j}, T\right)}=\lambda_{j}\left(I+\frac{N_{j}}{\lambda_{j}}\right)$.
■ Let R_{j} be the root of $\lambda_{j}\left(I+\frac{N_{j}}{\lambda_{j}}\right)$.
■ Then for $v=u_{1}+\ldots+u_{m}, R v=R_{1} u_{1}+\ldots+R_{m} u_{m}$ is the square root of T.

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

