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Spose T € L(V)and \ € F:

We say v € V is a generalized eigenvector if there exists positive
integer j such that (T — MYv = 0.

FD - MATH 110 - July 31, 2023 2/21



Spose T € L(V)and \ € F:

We say v € V is a generalized eigenvector if there exists positive
integer j such that (T — AMYv = 0.

The generalized eigenspace G(\, T) is the set of all generalized
eigenvectors of T corresponding to A, along with 0.

FD - MATH 110 - July 31, 2023 2/21



Spose T € L(V)and \ € F:

We say v € V is a generalized eigenvector if there exists positive
integer j such that (T — AMYv = 0.

The generalized eigenspace G(\, T) is the set of all generalized
eigenvectors of T corresponding to A, along with 0.

G(A, T) = null (T — Af)dimV

FD - MATH 110 - July 31, 2023 2/21



Spose T € L(V)and \ € F:

We say v € V is a generalized eigenvector if there exists positive
integer j such that (T — M/Yv = 0.

The generalized eigenspace G(\, T) is the set of all generalized
eigenvectors of T corresponding to )\, along with O.

G(A, T) = null (T — Af)dimV

Letn=dimV. Then V = null T" @ range T".
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Main Result

Description of Operators on Complex Vector Spaces

S’pose V is a complex vector space and T € L(V). Let A\q,..., Ay be
the distinct eigenvalues of 7. Then

2. each G(\;, T) is invariant under T;
3. each (T — Ajl)|g(x;, 7 is nilpotent.
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Description of Operators on Complex Vector Spaces
Proof.
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Description of Operators on Complex Vector Spaces

Proof. Let’s start with 3! Unpack definitions!
For 2:

Spose T € L(V) and p € P(F). Then null p(T) and range p(T) are
invariant under T.

Proof of lemma: S’pose v € null p(T), p(T)v =0

((p(T)))(TV) = T(p(T)v) = T0 = 0.
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Description of Operators on Complex Vector Spaces

Proof. Let’s start with 3! Unpack definitions!
For 2:

Spose T € L(V) and p € P(F). Then null p(T) and range p(T) are
invariant under T.

Proof of lemma: S’pose v € null p(T), p(T)v =0

((p(T)))(TV) = T(p(T)v) = T0 = 0.

On the other hand, v € range p(T), u € V such that v = p(T)u
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Description of Operators on Complex Vector Spaces

Proof. Let’s start with 3! Unpack definitions!
For 2:

Spose T € L(V) and p € P(F). Then null p(T) and range p(T) are
invariant under T.

Proof of lemma: S’pose v € null p(T), p(T)v =0

((p(T)))(TV) = T(p(T)v) = T0 = 0.

On the other hand, v € range p(T), u € V such that v = p(T)u

Tv = T(p(T)u) = p(T)(Tu).
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Description of Operators on Complex Vector Spaces

Proof. Let’s start with 3! Unpack definitions!
For 2:

Spose T € L(V) and p € P(F). Then null p(T) and range p(T) are
invariant under T.

Proof of lemma: S’pose v € null p(T), p(T)v =0
((p(T))(Tv) = T(p(T)v) = TO = 0.
On the other hand, v € range p(T), u € V such that v = p(T)u
Tv = T(p(T)u) = p(T)(Tu).
How can we use to prove 2?

FD - MATH 110 - July 31, 2023 4/21



Description of Operators on Complex Vector Spaces

Proof (cont’d).

FD - MATH 110 - July 31, 2023 5/21



Description of Operators on Complex Vector Spaces

Proof (cont’d).

For 1: induction on dim V.

FD - MATH 110 - July 31, 2023 5/21



Description of Operators on Complex Vector Spaces

Proof (cont’d).

For 1: induction on dim V.
Basecase:n =1,V = G(\, T).

FD - MATH 110 - July 31, 2023 5/21



Description of Operators on Complex Vector Spaces

Proof (cont’d).

For 1: induction on dim V.
Basecase:n =1,V = G(\, T).
Hypothesis: If dim V < n, then V =) " G(), 7).

FD - MATH 110 - July 31, 2023 5/21



Description of Operators on Complex Vector Spaces

Proof (cont’d).

For 1: induction on dim V.

Basecase:n =1,V = G(\, T).
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Description of Operators on Complex Vector Spaces

Proof (cont’d).

For 1: induction on dim V.

Basecase:n =1,V = G(\, T).

Hypothesis: If dim V < n, then V =) " G(), 7).
Pick A\q. How? Use Propn 2,
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Description of Operators on Complex Vector Spaces

Proof (cont’d).

For 1: induction on dim V.
Basecase:n =1,V = G(\, T).
Hypothesis: If dim V < n, then V =) " G(), 7).
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Description of Operators on Complex Vector Spaces

Proof (cont’d).

For 1: induction on dim V.
Basecase:n =1,V = G(\, T).
Hypothesis: If dim V < n, then V =) " G(), 7).

Pick A1. How? Use Propn 2, write
V =G(\, T)@range (T — M\ /)"

range (T — A\1/)" satisfies induction hypothesis.
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Description of Operators on Complex Vector Spaces

Proof (cont’d).

For 1: induction on dim V.

Basecase:n =1,V = G(\, T).

Hypothesis: If dim V < n, then V =) " G(), 7).
Pick A1. How? Use Propn 2, write

V =G(\, T)@range (T — M\ /)"

range (T — A\1/)" satisfies induction hypothesis.
Callrange (T — A\1/)" = U.
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Description of Operators on Complex Vector Spaces

For U =range (T — A\ /)",
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Description of Operators on Complex Vector Spaces
For U = range (T — A1/)", the eigenvalues of T|y are {2, ..., An}.

U=GATly)®...® G Am, Tly)
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Description of Operators on Complex Vector Spaces
For U = range (T — A1/)", the eigenvalues of T|y are {2, ..., An}.
U=6G6(A2:Tlu) & ... & G(Am, Tly)

It suffices to show G(A«, T|y) = G( Ak, T).
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For U = range (T — A1/)", the eigenvalues of T|y are {2, ..., An}.
U=6G6(A2:Tlu) & ... & G(Am, Tly)

It suffices to show G(A«, T|y) = G( Ak, T).
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Description of Operators on Complex Vector Spaces
For U = range (T — A1/)", the eigenvalues of T|y are {2, ..., An}.
U=6G6(A2:Tlu) & ... & G(Am, Tly)

It suffices to show G( Ak, T|y) = G(Ak, T).

Gk, Tlu) € G(Mk, T).

On the other hand, s’pose v € G( Ak, T).

Thenasve V,v=vy+uforvy € G(\,T)andu € U.
Uu=vy+...+vpforvie G\, Tly) €GN, T).

V=VvVi+Vy+...+Vp

Linear independence of v; guarentees v; = 0 unless possibly if j = k.
Sovi=0andv=ueUandve G\, T|y). O
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Basis of Generalized Eigenvectors

S’pose V is a complex vector space and T € L(V). Then there is a
basis of V consisting of generalized eigenvectors of T.
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Basis of Generalized Eigenvectors

S’pose V is a complex vector space and T € L(V). Then there is a
basis of V consisting of generalized eigenvectors of T.

Proof.
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Basis of Generalized Eigenvectors

S’pose V is a complex vector space and T € L(V). Then there is a
basis of V consisting of generalized eigenvectors of T.

Proof. Use previous result! (.
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Multiplicity of an Eigenvalue

Spose T € L(V).
m The (algebraic) multiplicity of an eigenvalue A of T is defined to

the the dimension of the corresponding generalized eigenspace
G(A, T),
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Multiplicity of an Eigenvalue

Spose T € L(V).
m The (algebraic) multiplicity of an eigenvalue A of T is defined to

the the dimension of the corresponding generalized eigenspace
G(\, T),i.e. =dimnull (T — )\/)dim v
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Multiplicity of an Eigenvalue

Spose T € L(V).

m The (algebraic) multiplicity of an eigenvalue A of T is defined to
the the dimension of the corresponding generalized eigenspace
G(\, T),i.e. = dimnull (T — A/)dimV,

m The geometric multiplicity of an eigenvalue X of T is defined to
be the dimension of the corresponding eigenspace E(\, T).
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Recall Example

T(z1,23,23) = (621 + 32y + 423,62 + 223,723)
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Recall Example

T(z1,23,23) = (621 + 32y + 423,62 + 223,723)

E(6,T) =span(1,0,0) and E(7,T) = span(0,0,1)

G(6,T) =span(1,0,0),(0,1,0) and G(7,T) = span(10,2,1)
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Recall Example

T(z1,23,23) = (621 + 32y + 423,62; + 223,773)
E(6,T) =span(1,0,0) and E(7,T) = span(0,0,1)
G(6,T) =span(1,0,0),(0,1,0) and G(7,T) = span(10, 2, 1)

C>=G(6,T)®G(7,7)
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Sum of Multiplicities

S’pose V is a complex vector space and T € L(V). Then the sum of
the algebraic multiplicities of the eigenvalues of T equals the
dimension of V.
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Sum of Multiplicities

S’pose V is a complex vector space and T € L(V). Then the sum of
the algebraic multiplicities of the eigenvalues of T equals the
dimension of V.

Proof.
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Sum of Multiplicities

S’pose V is a complex vector space and T € L(V). Then the sum of
the algebraic multiplicities of the eigenvalues of T equals the
dimension of V.

Proof. Use previous result! (.
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Multiplicity of Eigenvalues and Upper Triangular
Matrices

Prop'n [Axl14]:

Suppose T € L(V) and X € F. Then for every basis of V with respect
to which T has an upper triangular matrix, the number of times that
A appears on the diagonal of the matrix of T equals the algebraic
multiplicity of A as an eigenvalue of T.
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Multiplicity of Eigenvalues and Upper Triangular
Matrices

Prop'n [Axl14]:

Suppose T € L(V) and X € F. Then for every basis of V with respect
to which T has an upper triangular matrix, the number of times that
A appears on the diagonal of the matrix of T equals the algebraic
multiplicity of A as an eigenvalue of T.

Proof: Homework challenge problem.
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Block Diagonal Matrices

Next goal: Interpret our results in matrix form.
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Block Diagonal Matrices

Next goal: Interpret our results in matrix form.

A block diagonal matrix is a square matrix of the form

Aq 0
0 Am

where A4, ..., Ay are square matrices lying along the diagonal and all
other entries are 0.

v
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Example

828 Example The 5-by-5 matrix

(4) 00 00
0 2 -3 00
A= o (02) 0 0
0 00 17
0 00 (()1)

is a block diagonal matrix with

where
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Block Diagonal Matrix with Upper Triangular Blocks

S’pose V' is complex vector space and T € L(V). Let A\q,..., Ay be the
distinct eigenvalues of T, with multiplicities dq, ..., dn. Then there is
a basis of V with respect to which T has a block diagonal matrix of

the form
Aq 0
0 A

where each A; is a d; x d; upper triangular matrix of the form

Aj *
A= .
0 Aj
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Proof of Block Diagonal UT Form

Proof.
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Proof of Block Diagonal UT Form

Proof. Each (T — )\j/)|6(,\,-,r) is nilpotent.
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Proof of Block Diagonal UT Form

Proof. Each (T — )\/-I)IG(A].’T) is nilpotent.
Choose a basis such that this matrix has 0’s on and below the main
diagonal.
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Proof of Block Diagonal UT Form

Proof. Each (T — )‘j/)’G(A,-,T) is nilpotent.

Choose a basis such that this matrix has 0’s on and below the main
diagonal.

What is the matrix of T|G()\j,T) = (T — Aj’)’G()\j,T) + )‘jI|G()\j,T)?
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Proof of Block Diagonal UT Form

Proof. Each (T — )‘j/)’G(A,-,T) is nilpotent.

Choose a basis such that this matrix has 0’s on and below the main
diagonal.

What is the matrix of T|G(Aj,7) =(T - Aj/)!G(A,,T) + )\jI|G()\j,T)?

The desired form.
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Example

828 Example The 5-by-5 matrix

(4) 00 00
0 2 -3 00
A= o (02) 0 0
0 00 17
0 00 (()1)

is a block diagonal matrix with

where
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Example 2

T(21,22,23) = (621 + 32y + 423,627 + 223, 723)
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Example 2

T(21,22,23) = (621 + 32y + 423,627 + 223, 723)

G(6,T) =span(1,0,0),(0,1,0) and G(7,T) = span(10, 2, 1)
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Example 2

T(21,22,23) = (621 + 32y + 423,627 + 223, 723)

G(6,T) =span(1,0,0),(0,1,0) and G(7,T) = span(10, 2, 1)

What is the matrix with respect to this basis?

(53)o

Blocks:
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Application: Square Roots

Recall R is called a square root of an operator T if R = T.
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Recall having a positive or self-adjoint square root was equivalent to
being a positive operator.
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Recall having a positive or self-adjoint square root was equivalent to
being a positive operator.

Not every operator over C has a square root in general.
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Application: Square Roots

Recall R is called a square root of an operator T if R = T.

Recall having a positive or self-adjoint square root was equivalent to
being a positive operator.

Not every operator over C has a square root in general.

Non-example:

T(x,y,z) = (y,z,0) has no square root.
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Recall having a positive or self-adjoint square root was equivalent to
being a positive operator.
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Recall having a positive or self-adjoint square root was equivalent to
being a positive operator.

Not every operator over C has a square root in general.

Non-example:

T(x,y,z) = (y,z,0) has no square root.
m Notice 73> = 0.
mIfS?2="T,thenS® =T.

FD - MATH 110 - July 31, 2023 18/21
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being a positive operator.
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Application: Square Roots

Recall R is called a square root of an operator T if R = T.

Recall having a positive or self-adjoint square root was equivalent to
being a positive operator.

Not every operator over C has a square root in general.

Non-example:

T(x,y,z) = (y,z,0) has no square root.
m Notice 73> = 0.
mIfS?2="T,thenS® =T.

m SoS®=0.
mSoT?=5%=55"=0,
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Application: Square Roots

Recall R is called a square root of an operator T if R = T.

Recall having a positive or self-adjoint square root was equivalent to
being a positive operator.

Not every operator over C has a square root in general.

Non-example:
T(x,y,z) = (y,z,0) has no square root.
m Notice 73> = 0.
mIfS?=T, then St =T.
m SoS®=0.
m So 72 = S* = SS° = 0, but T? # 0, contradiction.
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Identity plus nilpotent has a square root!

Spose N € L(V) is nilpotent. Then / + N has a square root.
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Identity plus nilpotent has a square root!

Spose N € L(V) is nilpotent. Then / + N has a square root.

Proof.
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Identity plus nilpotent has a square root!

Spose N € L(V) is nilpotent. Then / + N has a square root.

Proof. Out Inspiration: Taylor series for v/1 + x.
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Identity plus nilpotent has a square root!
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Proof. Out Inspiration: Taylor series for v/1 + x.
Vitx=1+ax+ax*+...
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Identity plus nilpotent has a square root!

Spose N € L(V) is nilpotent. Then / + N has a square root.

Proof. Out Inspiration: Taylor series for v/1 + x.
Vitx=1+ax—+ax*+...

m Because N is nilpotent, N = 0, some m.
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Identity plus nilpotent has a square root!

Spose N € L(V) is nilpotent. Then / + N has a square root.

Proof. Out Inspiration: Taylor series for v/1 + x.
Vitx=1+ax—+ax*+...

m Because N is nilpotent, N = 0, some m.
m/+aN+aN+ ... +a,_(N" L
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Identity plus nilpotent has a square root!

Spose N € L(V) is nilpotent. Then / + N has a square root.

Proof. Out Inspiration: Taylor series for v/1 + x.
Vitx=1+ax—+ax*+...

m Because N is nilpotent, N = 0, some m.
m/+aN+aN+ ... +a,_(N" L
|

(I+aiN+aN* + ... +ap_(N"1)2
= [+ 2a1N + (2a; + a})N* + (2a3 + 2a1a)N° + ..

o+ (20,1 + terms with ay, ..., a,_2)N™?
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Identity plus nilpotent has a square root!

Spose N € L(V) is nilpotent. Then / + N has a square root.

Proof. Out Inspiration: Taylor series for v/1 + x.
Vitx=1+ax—+ax*+...

m Because N is nilpotent, N = 0, some m.
m/+aN+aN + ... +a,_(N" 1
|

(I+aiN+aN* + ... +ap_(N"1)2
= [+ 2a1N + (2a; + a})N* + (2a3 + 2a1a)N° + ..

o+ (20,1 + terms with ay, ..., a,_2)N™?

m Just solve for a; such that the RHS is / + N.
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Over C, invertible operators have square roots!

S’pose V is a complex vector space and T € L(V) is invertible. Then T
has a square root.
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Over C, invertible operators have square roots!

S’pose V is a complex vector space and T € L(V) is invertible. Then T
has a square root.

Proof.
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Over C, invertible operators have square roots!

S’pose V is a complex vector space and T € L(V) is invertible. Then T
has a square root.

Proof.
m Let \q,..., \p be the distinct eigenvalues of T.
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Over C, invertible operators have square roots!

S’pose V is a complex vector space and T € L(V) is invertible. Then T
has a square root.

Proof.
m Let \q,..., \p be the distinct eigenvalues of T.
m Foreachj, N; € L(G();, T)) such that Tl 1) = Al + N;.
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Over C, invertible operators have square roots!

S’pose V is a complex vector space and T € L(V) is invertible. Then T
has a square root.

Proof.
m Let \q,..., \p be the distinct eigenvalues of T.
m Foreachj, N; € L(G();, T)) such that Tl 1) = Al + N;.
m T invertible so \; can’t be zero.
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Over C, invertible operators have square roots!

S’pose V is a complex vector space and T € L(V) is invertible. Then T
has a square root.

Proof.
m Let \q,..., \p be the distinct eigenvalues of T.
m Foreachj, N; € L(G();, T)) such that Tl 1) = Al + N;.
m T invertible so \; can’t be zero.

N:
® Tloym) =% </ + )\j>
j
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Over C, invertible operators have square roots!

S’pose V is a complex vector space and T € L(V) is invertible. Then T
has a square root.

Proof.
m Let \q,..., \p be the distinct eigenvalues of T.
m Foreachj, N; € L(G();, T)) such that Tl 1) = Al + N;.
m T invertible so \; can’t be zero.

N.
[ | T|G()\j,T) = )\/ </+ )\j>
J
N;

m Let R; be the root of ); (I + 7/).
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Over C, invertible operators have square roots!

S’pose V is a complex vector space and T € L(V) is invertible. Then T
has a square root.

Proof.
m Let \q,..., \p be the distinct eigenvalues of T.
m Foreachj, N; € L(G();, T)) such that Tl 1) = Al + N;.
m T invertible so \; can’t be zero.

N:
| ] T|G()\j,T) = )\/ </+ )\j>
J
m Let R; be the root of ); (I + %)

m Thenforv=uy+ ...+ Uy, Rv = Riu1 + ...+ Rpup is the square
root of T.
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