Lecture 24: Characteristic and Minimal Polynomials

MATH 110-3

Franny Dean

August 2, 2023

Definitions

Def'n:

Suppose V is a complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_{1}, \ldots, \lambda_{m}$ denote the distinct eigenvalues of T, with algebraic multiplicities d_{1}, \ldots, d_{m}. The polynomial

$$
\left(z-\lambda_{1}\right)^{d_{1}} \cdots\left(z-\lambda_{m}\right)^{d_{m}}
$$

is called the characteristic polynomial of T.

Definitions

Def'n:

Suppose V is a complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_{1}, \ldots, \lambda_{m}$ denote the distinct eigenvalues of T, with algebraic multiplicities d_{1}, \ldots, d_{m}. The polynomial

$$
\left(z-\lambda_{1}\right)^{d_{1}} \cdots\left(z-\lambda_{m}\right)^{d_{m}}
$$

is called the characteristic polynomial of T.

Example:

Definitions

Def'n:

Suppose V is a complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_{1}, \ldots, \lambda_{m}$ denote the distinct eigenvalues of T, with algebraic multiplicities d_{1}, \ldots, d_{m}. The polynomial

$$
\left(z-\lambda_{1}\right)^{d_{1}} \cdots\left(z-\lambda_{m}\right)^{d_{m}}
$$

is called the characteristic polynomial of T.

Example:

$$
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}+3 z_{2}+4 z_{3}, 6 z_{2}+2 z_{3}, 7 z_{3}\right)
$$

Definitions

Def'n:

Suppose V is a complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_{1}, \ldots, \lambda_{m}$ denote the distinct eigenvalues of T, with algebraic multiplicities d_{1}, \ldots, d_{m}. The polynomial

$$
\left(z-\lambda_{1}\right)^{d_{1}} \cdots\left(z-\lambda_{m}\right)^{d_{m}}
$$

is called the characteristic polynomial of T.

Example:

$$
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}+3 z_{2}+4 z_{3}, 6 z_{2}+2 z_{3}, 7 z_{3}\right)
$$

The characteristic polynomial is $(z-6)^{2}(z-7)$.

Properties of the Characteristic Polynomial

Prop'n:

Suppose V is a complex vector space and $T \in \mathcal{L}(V)$. Then

1. the characteristic polynomial of T has degree $\operatorname{dim} V$;
2. the zeros of the characteristic polynomial of T are the eigenvalues of T.

Properties of the Characteristic Polynomial

Prop'n:

Suppose V is a complex vector space and $T \in \mathcal{L}(V)$. Then

1. the characteristic polynomial of T has $\operatorname{degree} \operatorname{dim} V$;
2. the zeros of the characteristic polynomial of T are the eigenvalues of T.

Recall:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$. Then the sum of the algebraic multiplicities of the eigenvalues of T equals the dimension of V.

Properties of the Characteristic Polynomial

Prop'n:

Suppose V is a complex vector space and $T \in \mathcal{L}(V)$. Then

1. the characteristic polynomial of T has $\operatorname{degree} \operatorname{dim} V$;
2. the zeros of the characteristic polynomial of T are the eigenvalues of T.

Recall:

S'pose V is a complex vector space and $T \in \mathcal{L}(V)$. Then the sum of the algebraic multiplicities of the eigenvalues of T equals the dimension of V.

Properties of the Characteristic Polynomial

Cayley-Hamilton Theorem:

Suppose V is a complex vector space and $T \in \mathcal{L}(V)$. Let q denote the characteristic polynomial of T. Then $q(T)=0$.

Properties of the Characteristic Polynomial

Cayley-Hamilton Theorem:

Suppose V is a complex vector space and $T \in \mathcal{L}(V)$. Let q denote the characteristic polynomial of T. Then $q(T)=0$.

Proof.

Properties of the Characteristic Polynomial

Cayley-Hamilton Theorem:

Suppose V is a complex vector space and $T \in \mathcal{L}(V)$. Let q denote the characteristic polynomial of T. Then $q(T)=0$.

Proof.
■ $\lambda_{1}, \ldots, \lambda_{m}$ are the distinct eigenvalues of T, d_{1}, \ldots, d_{m} are corresponding algebraic multiplicities.

Properties of the Characteristic Polynomial

Cayley-Hamilton Theorem:

Suppose V is a complex vector space and $T \in \mathcal{L}(V)$. Let q denote the characteristic polynomial of T. Then $q(T)=0$.

Proof.
■ $\lambda_{1}, \ldots, \lambda_{m}$ are the distinct eigenvalues of T, d_{1}, \ldots, d_{m} are corresponding algebraic multiplicities.
$\left.■\left(T-\lambda_{j} /\right)\right|_{G\left(\lambda_{j}, T\right)}$ is nilpotent and $\left.\left(T-\lambda_{j} /\right)^{d_{j}}\right|_{G\left(\lambda_{j}, T\right)}=0$.

Properties of the Characteristic Polynomial

Cayley-Hamilton Theorem:

Suppose V is a complex vector space and $T \in \mathcal{L}(V)$. Let q denote the characteristic polynomial of T. Then $q(T)=0$.

Proof.

- $\lambda_{1}, \ldots, \lambda_{m}$ are the distinct eigenvalues of T, d_{1}, \ldots, d_{m} are corresponding algebraic multiplicities.
$\left.\square\left(T-\lambda_{j} /\right)\right|_{G\left(\lambda_{j}, T\right)}$ is nilpotent and $\left.\left(T-\lambda_{j} /\right)^{d_{j}}\right|_{G\left(\lambda_{j}, T\right)}=0$.
■ Since every vector $v \in V$ is sum of vectors in the $G\left(\lambda_{j}, T\right)$, we can show $\left.q(T)\right|_{G\left(\lambda_{j}, T\right)}=0$ for each j.

Properties of the Characteristic Polynomial

Cayley-Hamilton Theorem:

Suppose V is a complex vector space and $T \in \mathcal{L}(V)$. Let q denote the characteristic polynomial of T. Then $q(T)=0$.

Proof.

■ $\lambda_{1}, \ldots, \lambda_{m}$ are the distinct eigenvalues of T, d_{1}, \ldots, d_{m} are corresponding algebraic multiplicities.
$\left.\square\left(T-\lambda_{j} /\right)\right|_{G\left(\lambda_{j}, T\right)}$ is nilpotent and $\left.\left(T-\lambda_{j} /\right)^{d_{j}}\right|_{G\left(\lambda_{j}, T\right)}=0$.
■ Since every vector $v \in V$ is sum of vectors in the $G\left(\lambda_{j}, T\right)$, we can show $\left.q(T)\right|_{G\left(\lambda_{j}, T\right)}=0$ for each j.
■ Terms commute:

$$
q(T)=\left(T-\lambda_{1} /\right)^{d_{1}} \cdots\left(T-\lambda_{m} I\right)^{d_{m}}
$$

Properties of the Characteristic Polynomial

Cayley-Hamilton Theorem:

Suppose V is a complex vector space and $T \in \mathcal{L}(V)$. Let q denote the characteristic polynomial of T. Then $q(T)=0$.

Proof.

- $\lambda_{1}, \ldots, \lambda_{m}$ are the distinct eigenvalues of T, d_{1}, \ldots, d_{m} are corresponding algebraic multiplicities.
$\left.\square\left(T-\lambda_{j} /\right)\right|_{G\left(\lambda_{j}, T\right)}$ is nilpotent and $\left.\left(T-\lambda_{j} /\right)^{d_{j}}\right|_{G\left(\lambda_{j}, T\right)}=0$.
■ Since every vector $v \in V$ is sum of vectors in the $G\left(\lambda_{j}, T\right)$, we can show $\left.q(T)\right|_{G\left(\lambda_{j}, T\right)}=0$ for each j.
■ Terms commute:

$$
q(T)=\left(T-\lambda_{1} /\right)^{d_{1}} \cdots\left(T-\lambda_{m} /\right)^{d_{m}}
$$

Definitions

Def'n:

A monic polynomial is a polynomial whose highest-degree coefficient is equal to 1.

Definitions

Def'n:

A monic polynomial is a polynomial whose highest-degree coefficient is equal to 1 .

Example: $z^{8}+6 z^{7}+z^{2}+90$,

Definitions

Def'n:

A monic polynomial is a polynomial whose highest-degree coefficient is equal to 1.

Example: $z^{8}+6 z^{7}+z^{2}+90, z^{2}-3$,

Definitions

Def'n:

A monic polynomial is a polynomial whose highest-degree coefficient is equal to 1.

Example: $z^{8}+6 z^{7}+z^{2}+90, z^{2}-3, z^{2}+z^{5}+7 z^{3}-1$

Def'n:

Suppose $T \in \mathcal{L}(V)$. Then the minimal polynomial of T is the unique monic polynomial of p of smallest degree such that $p(T)=0$.

Minimal Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$. Then there is a unique monic polynomial p of smallest degree such that $p(T)=0$.

Minimal Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$. Then there is a unique monic polynomial p of smallest degree such that $p(T)=0$.

Proof.

Minimal Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$. Then there is a unique monic polynomial p of smallest degree such that $p(T)=0$.

Proof.
■ Existence: $1, T, T^{2}, \ldots, T^{n^{2}}$ is linearly dependent in $\mathcal{L}(V)$

Minimal Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$. Then there is a unique monic polynomial p of smallest degree such that $p(T)=0$.

Proof.
■ Existence: $1, T, T^{2}, \ldots, T^{n^{2}}$ is linearly dependent in $\mathcal{L}(V)$
■ Pick m smallest such that $1, T, \ldots, T^{m}$ are linearly dependent.

Minimal Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$. Then there is a unique monic polynomial p of smallest degree such that $p(T)=0$.

Proof.
■ Existence: $1, T, T^{2}, \ldots, T^{n^{2}}$ is linearly dependent in $\mathcal{L}(V)$
$■$ Pick m smallest such that $1, T, \ldots, T^{m}$ are linearly dependent.
$\square a_{0} I+a_{1} T+a_{2} T^{2}+\ldots+a_{m-1} T^{m-1}+T^{m}=0$.

Minimal Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$. Then there is a unique monic polynomial p of smallest degree such that $p(T)=0$.

Proof.
$■$ Existence: $1, T, T^{2}, \ldots, T^{n^{2}}$ is linearly dependent in $\mathcal{L}(V)$
$■$ Pick m smallest such that $1, T, \ldots, T^{m}$ are linearly dependent.
$\square a_{0} I+a_{1} T+a_{2} T^{2}+\ldots+a_{m-1} T^{m-1}+T^{m}=0$.
$\square p(z):=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{m-1} z^{m-1}+z^{m}$

Minimal Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$. Then there is a unique monic polynomial p of smallest degree such that $p(T)=0$.

Proof.
$■$ Existence: $1, T, T^{2}, \ldots, T^{n^{2}}$ is linearly dependent in $\mathcal{L}(V)$
$■$ Pick m smallest such that $1, T, \ldots, T^{m}$ are linearly dependent.
$\square a_{0} I+a_{1} T+a_{2} T^{2}+\ldots+a_{m-1} T^{m-1}+T^{m}=0$.
$■ p(z):=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{m-1} z^{m-1}+z^{m}$
■ Uniqueness: S'pose q with same degree.

Minimal Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$. Then there is a unique monic polynomial p of smallest degree such that $p(T)=0$.

Proof.
■ Existence: $1, T, T^{2}, \ldots, T^{n^{2}}$ is linearly dependent in $\mathcal{L}(V)$
$■$ Pick m smallest such that $1, T, \ldots, T^{m}$ are linearly dependent.
$\square a_{0} I+a_{1} T+a_{2} T^{2}+\ldots+a_{m-1} T^{m-1}+T^{m}=0$.
$\square p(z):=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{m-1} z^{m-1}+z^{m}$
■ Uniqueness: S'pose q with same degree.
$\square q(T)=0$ implies $(p-q)(T)=0$, contradiction! Why?

Finding the Minimal Polynomial

Finding the Minimal Polynomial

Consider a system of linear equations:

$$
a_{0} \mathcal{M}(I)+a_{1} \mathcal{M}(T)+\ldots+a_{m-1} \mathcal{M}(T)^{m-1}=-\mathcal{M}(T)^{m}
$$

for successive values of m until a set of a_{i} exist.

Finding the Minimal Polynomial

Consider a system of linear equations:

$$
a_{0} \mathcal{M}(I)+a_{1} \mathcal{M}(T)+\ldots+a_{m-1} \mathcal{M}(T)^{m-1}=-\mathcal{M}(T)^{m}
$$

for successive values of m until a set of a_{i} exist.Example:

$$
\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & -3 \\
1 & 0 & 0 & 0 & 6 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Finding the Minimal Polynomial

Consider a system of linear equations:

$$
a_{0} \mathcal{M}(I)+a_{1} \mathcal{M}(T)+\ldots+a_{m-1} \mathcal{M}(T)^{m-1}=-\mathcal{M}(T)^{m}
$$

for successive values of m until a set of a_{i} exist.Example:

$$
\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & -3 \\
1 & 0 & 0 & 0 & 6 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

The minimal polynomial is $z^{5}-6 z+3$.

Properties of the Minimal Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$ and $q \in \mathcal{P}(\mathbb{F})$. Then $q(T)=0$ if and only if q is a multiple of the minimal polynomial of T.

Properties of the Minimal Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$ and $q \in \mathcal{P}(\mathbb{F})$. Then $q(T)=0$ if and only if q is a multiple of the minimal polynomial of T.

Proof.

Properties of the Minimal Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$ and $q \in \mathcal{P}(\mathbb{F})$. Then $q(T)=0$ if and only if q is a multiple of the minimal polynomial of T.

Proof.
■ Plug into product.

Properties of the Minimal Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$ and $q \in \mathcal{P}(\mathbb{F})$. Then $q(T)=0$ if and only if q is a multiple of the minimal polynomial of T.

Proof.
■ Plug into product.

- Division algorithm.

Properties of the Minimal Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$ and $q \in \mathcal{P}(\mathbb{F})$. Then $q(T)=0$ if and only if q is a multiple of the minimal polynomial of T.

Proof.

■ Plug into product.
■ Division algorithm.

Corollary:

The characteristic polynomial is a polynomial multiple of the minimal polynomial.

Eigenvalues are zeros of the minimal polynomial!

Prop'n:

Let $T \in \mathcal{L}(V)$. Then the zeros of the minimal polynomial are precisely the eigenvalues of T.

Eigenvalues are zeros of the minimal polynomial!

Prop'n:

Let $T \in \mathcal{L}(V)$. Then the zeros of the minimal polynomial are precisely the eigenvalues of T.

Proof.

Eigenvalues are zeros of the minimal polynomial!

Prop'n:

Let $T \in \mathcal{L}(V)$. Then the zeros of the minimal polynomial are precisely the eigenvalues of T.

Proof.

- S'pose λ is a zero of minimal polynomial p.

Eigenvalues are zeros of the minimal polynomial!

Prop'n:

Let $T \in \mathcal{L}(V)$. Then the zeros of the minimal polynomial are precisely the eigenvalues of T.

Proof.
■ S'pose λ is a zero of minimal polynomial p.
■ $p(z)=(z-\lambda) q(z), q$ monic.

Eigenvalues are zeros of the minimal polynomial!

Prop'n:

Let $T \in \mathcal{L}(V)$. Then the zeros of the minimal polynomial are precisely the eigenvalues of T.

Proof.
■ S'pose λ is a zero of minimal polynomial p.

- $p(z)=(z-\lambda) q(z), q$ monic.

■ $0=p(T)=(T-\lambda /)(q(T)) v$.

Eigenvalues are zeros of the minimal polynomial!

Prop'n:

Let $T \in \mathcal{L}(V)$. Then the zeros of the minimal polynomial are precisely the eigenvalues of T.

Proof.

- S'pose λ is a zero of minimal polynomial p.
- $p(z)=(z-\lambda) q(z), q$ monic.

■ $0=p(T)=(T-\lambda /)(q(T)) v$. Thus, $(T-\lambda /) v=0$.

Eigenvalues are zeros of the minimal polynomial!

Prop'n:

Let $T \in \mathcal{L}(V)$. Then the zeros of the minimal polynomial are precisely the eigenvalues of T.

Proof.

- S'pose λ is a zero of minimal polynomial p.
- $p(z)=(z-\lambda) q(z), q$ monic.

■ $0=p(T)=(T-\lambda /)(q(T)) v$. Thus, $(T-\lambda /) v=0$.
■ On the other hand, λ such that $T v=\lambda v$.

Eigenvalues are zeros of the minimal polynomial!

Prop'n:

Let $T \in \mathcal{L}(V)$. Then the zeros of the minimal polynomial are precisely the eigenvalues of T.

Proof.

- S'pose λ is a zero of minimal polynomial p.
- $p(z)=(z-\lambda) q(z), q$ monic.

■ $0=p(T)=(T-\lambda /)(q(T)) v$. Thus, $(T-\lambda /) v=0$.

- On the other hand, λ such that $T v=\lambda v$. Gives, $T^{j} v=\lambda^{j} v$.

Eigenvalues are zeros of the minimal polynomial!

Prop'n:

Let $T \in \mathcal{L}(V)$. Then the zeros of the minimal polynomial are precisely the eigenvalues of T.

Proof.
■ S'pose λ is a zero of minimal polynomial p.
■ $p(z)=(z-\lambda) q(z), q$ monic.
$\square 0=p(T)=(T-\lambda /)(q(T)) v$. Thus, $(T-\lambda /) v=0$.
■ On the other hand, λ such that $T v=\lambda v$. Gives, $T^{j} v=\lambda^{j} v$.

$$
\begin{array}{r}
0=p(T) v=\left(a_{0} /+a_{1} T+a_{2} T^{2}+\ldots+a_{m-1} T^{m-1}+T^{m}\right) v \\
=\left(a_{0}+a_{1} \lambda+a_{2} \lambda^{2}+\ldots+a_{m-1} \lambda^{m-1}+\lambda^{m}\right) v \\
=p(\lambda) v
\end{array}
$$

Computations and Examples

$$
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}+3 z_{2}+4 z_{3}, 6 z_{2}+2 z_{3}, 7 z_{3}\right)
$$

Computations and Examples

$$
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}+3 z_{2}+4 z_{3}, 6 z_{2}+2 z_{3}, 7 z_{3}\right)
$$

The minimal polynomial is ...

Computations and Examples

$$
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}+3 z_{2}+4 z_{3}, 6 z_{2}+2 z_{3}, 7 z_{3}\right)
$$

The minimal polynomial is ...
■ A polynomial multiple of $(z-6)(z-7)$.

Computations and Examples

$$
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}+3 z_{2}+4 z_{3}, 6 z_{2}+2 z_{3}, 7 z_{3}\right)
$$

The minimal polynomial is ...

- A polynomial multiple of $(z-6)(z-7)$.

■ Divides the characteristic polynomial which was $(z-6)^{2}(z-7)$.

Computations and Examples

$$
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}+3 z_{2}+4 z_{3}, 6 z_{2}+2 z_{3}, 7 z_{3}\right)
$$

The minimal polynomial is ...
■ A polynomial multiple of $(z-6)(z-7)$.
■ Divides the characteristic polynomial which was $(z-6)^{2}(z-7)$.
$■$ Can be $(z-6)(z-7)$ or $(z-6)^{2}(z-7)$, the one of lower degree where T is a root.

Computations and Examples

$$
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}+3 z_{2}+4 z_{3}, 6 z_{2}+2 z_{3}, 7 z_{3}\right)
$$

The minimal polynomial is ...

- A polynomial multiple of $(z-6)(z-7)$.

■ Divides the characteristic polynomial which was $(z-6)^{2}(z-7)$.
$■$ Can be $(z-6)(z-7)$ or $(z-6)^{2}(z-7)$, the one of lower degree where T is a root.
■ $(T-6 I)(T-7 I) \neq 0$.

Computations and Examples

$$
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}+3 z_{2}+4 z_{3}, 6 z_{2}+2 z_{3}, 7 z_{3}\right)
$$

The minimal polynomial is ...

- A polynomial multiple of $(z-6)(z-7)$.

■ Divides the characteristic polynomial which was $(z-6)^{2}(z-7)$.
■ Can be $(z-6)(z-7)$ or $(z-6)^{2}(z-7)$, the one of lower degree where T is a root.

- $(T-6 I)(T-7 I) \neq 0$.
- The minimial polynomial is $(z-6)^{2}(z-7)$.

Computations and Examples

$$
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}, 6 z_{2}, 7 z_{3}\right)
$$

Computations and Examples

$$
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}, 6 z_{2}, 7 z_{3}\right)
$$

The minimal polynomial is ...

Computations and Examples

$$
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}, 6 z_{2}, 7 z_{3}\right)
$$

The minimal polynomial is ...
$\square(z-6)(z-7)$ or $(z-6)^{2}(z-7)$

Computations and Examples

$$
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}, 6 z_{2}, 7 z_{3}\right)
$$

The minimal polynomial is ...
$\square(z-6)(z-7)$ or $(z-6)^{2}(z-7)$
■ Here $(T-6 /)(T-7 I)=0$.

Computations and Examples

$$
T\left(z_{1}, z_{2}, z_{3}\right)=\left(6 z_{1}, 6 z_{2}, 7 z_{3}\right)
$$

The minimal polynomial is ...
$\square(z-6)(z-7)$ or $(z-6)^{2}(z-7)$
■ Here $(T-6 I)(T-7 I)=0$.
\square The minimial polynomial is $(z-6)(z-7)$.

Computations and Examples

What are the eigenvalues of the operator given by

$$
\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & -3 \\
1 & 0 & 0 & 0 & 6 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Computations and Examples

What are the eigenvalues of the operator given by

$$
\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & -3 \\
1 & 0 & 0 & 0 & 6 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

The minimal polynomial is $z^{5}-6 z+3$.

Computations and Examples

What are the eigenvalues of the operator given by

$$
\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & -3 \\
1 & 0 & 0 & 0 & 6 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

The minimal polynomial is $z^{5}-6 z+3$.
A computer can compute the roots to be $-1.67,0.51,1.40,-0.12+1.59 i,-0.12-1.59 i$.

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

