Lectures 24: Jordan Form

MATH 110-3

Franny Dean

August 3, 2023

Today

We have...

S'pose V is complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_{1}, \ldots, \lambda_{m}$ be the distinct eigenvalues of T, with multiplicities d_{1}, \ldots, d_{m}. Then there is a basis of V with respect to which T has a block diagonal matrix of the form

$$
\left(\begin{array}{ccc}
A_{1} & & 0 \\
& \cdots & \\
0 & & A_{m}
\end{array}\right)
$$

where each A_{j} is a $d_{j} \times d_{j}$ upper triangular matrix of the form

$$
A_{j}=\left(\begin{array}{ccc}
\lambda_{j} & & * \\
& \ldots & \\
0 & & \lambda_{j}
\end{array}\right) .
$$

But we can do even better!

Jordan Basis

Def'n:

Suppose $T \in \mathcal{L}(V)$. A basis is called a Jordan basis for T if with respect to this basis T has a block diagonal matrix of the form

$$
\left(\begin{array}{ccc}
A_{1} & & 0 \\
& \cdots & \\
0 & & A_{p}
\end{array}\right)
$$

where each A_{j} is an upper triangular matrix of the form

$$
A_{j}=\left(\begin{array}{cccc}
\lambda_{j} & 1 & & 0 \\
& \cdots & \ldots & \\
& & \cdots & 1 \\
0 & & & \lambda_{j}
\end{array}\right) .
$$

Jordan Form

Prop'n:

Suppose V is a complex vector space. If $T \in \mathcal{L}(V)$, then there is a basis of V that is a Jordan basis for T.

Jordan Form

Prop'n:

Suppose V is a complex vector space. If $T \in \mathcal{L}(V)$, then there is a basis of V that is a Jordan basis for T.

How do we prove this?

Jordan Form

Prop'n:

Suppose V is a complex vector space. If $T \in \mathcal{L}(V)$, then there is a basis of V that is a Jordan basis for T.

How do we prove this? Start with nilpotent operators again!

Bases for Nilpotent Operators

Example 1:

Bases for Nilpotent Operators

Example 1: Let $N \in \mathcal{L}\left(\mathbb{F}^{4}\right)$ be the nilpotent operator $N\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(0, z_{1}, z_{2}, z_{3}\right)$.

Bases for Nilpotent Operators

Example 1: Let $N \in \mathcal{L}\left(\mathbb{F}^{4}\right)$ be the nilpotent operator $N\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(0, z_{1}, z_{2}, z_{3}\right)$.

Let $v=(1,0,0,0)$.

Bases for Nilpotent Operators

Example 1: Let $N \in \mathcal{L}\left(\mathbb{F}^{4}\right)$ be the nilpotent operator $N\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(0, z_{1}, z_{2}, z_{3}\right)$.

Let $v=(1,0,0,0)$. Then $N^{3} v, N^{2} v, N v, v$ is a basis of \mathbb{F}^{4}.

Bases for Nilpotent Operators

Example 1: Let $N \in \mathcal{L}\left(\mathbb{F}^{4}\right)$ be the nilpotent operator $N\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(0, z_{1}, z_{2}, z_{3}\right)$.
Let $v=(1,0,0,0)$. Then $N^{3} v, N^{2} v, N v, v$ is a basis of \mathbb{F}^{4}.
The matrix is

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Bases for Nilpotent Operators

Example 2:

Bases for Nilpotent Operators

Example 2: Let $N \in \mathcal{L}\left(\mathbb{F}^{6}\right)$ be the nilpotent operator $N\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6}\right)=\left(0, z_{1}, z_{2}, 0, z_{4}, 0\right)$.

Bases for Nilpotent Operators

Example 2: Let $N \in \mathcal{L}\left(\mathbb{F}^{6}\right)$ be the nilpotent operator $N\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6}\right)=\left(0, z_{1}, z_{2}, 0, z_{4}, 0\right)$.

There is no v such that $N^{5} v, N^{4} v, N^{3} v, N^{2} v, N v, v$ forms a basis...

Bases for Nilpotent Operators

Example 2: Let $N \in \mathcal{L}\left(\mathbb{F}^{6}\right)$ be the nilpotent operator $N\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6}\right)=\left(0, z_{1}, z_{2}, 0, z_{4}, 0\right)$.

There is no v such that $N^{5} v, N^{4} v, N^{3} v, N^{2} v, N v, v$ forms a basis...
However for
$v_{1}=(1,0,0,0,0,0), v_{2}=(0,0,0,1,0,0), v_{1}=(0,0,0,0,0,1)$,

Bases for Nilpotent Operators

Example 2: Let $N \in \mathcal{L}\left(\mathbb{F}^{6}\right)$ be the nilpotent operator $N\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6}\right)=\left(0, z_{1}, z_{2}, 0, z_{4}, 0\right)$.

There is no v such that $N^{5} v, N^{4} v, N^{3} v, N^{2} v, N v, v$ forms a basis...
However for
$v_{1}=(1,0,0,0,0,0), v_{2}=(0,0,0,1,0,0), v_{1}=(0,0,0,0,0,1)$, then $N^{2} v_{1}, N v_{1}, v_{1}, N v_{2}, v_{2}, v_{3}$ is a basis for \mathbb{F}^{6}.

Bases for Nilpotent Operators

Example 2: Let $N \in \mathcal{L}\left(\mathbb{F}^{6}\right)$ be the nilpotent operator
$N\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6}\right)=\left(0, z_{1}, z_{2}, 0, z_{4}, 0\right)$.
There is no v such that $N^{5} v, N^{4} v, N^{3} v, N^{2} v, N v, v$ forms a basis...
However for
$v_{1}=(1,0,0,0,0,0), v_{2}=(0,0,0,1,0,0), v_{1}=(0,0,0,0,0,1)$, then $N^{2} v_{1}, N v_{1}, v_{1}, N v_{2}, v_{2}, v_{3}$ is a basis for \mathbb{F}^{6}.

The matrix is

$$
\left(\begin{array}{lll}
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) & \begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & 0
\end{array} 0 & \left(\begin{array}{ll}
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right. \\
0 & 0 \\
0
\end{array}\right)
$$

Bases for Nilpotent Operators

Prop’n:

Suppose $N \in \mathcal{L}(V)$ is nilpotent. Then there exists vectors $v_{1}, \ldots, v_{n} \in V$ and nonnegative integers m_{1}, \ldots, m_{n} such that
■ $N^{m_{1}} v_{1}, \ldots, N v_{1}, v_{1}, \ldots, N^{m_{n}} v_{n}, \ldots, N v_{n}, v_{n}$ is a basis of V;

- $N^{m_{1}+1} v_{1}=\ldots=N^{m_{n}+1} v_{n}=0$.

Bases for Nilpotent Operators

Prop'n:

Suppose $N \in \mathcal{L}(V)$ is nilpotent. Then there exists vectors $v_{1}, \ldots, v_{n} \in V$ and nonnegative integers m_{1}, \ldots, m_{n} such that
■ $N^{m_{1}} v_{1}, \ldots, N v_{1}, v_{1}, \ldots, N^{m_{n}} v_{n}, \ldots, N v_{n}, v_{n}$ is a basis of V;

- $N^{m_{1}+1} v_{1}=\ldots=N^{m_{n}+1} v_{n}=0$.

Proof.

Bases for Nilpotent Operators

Prop'n:

Suppose $N \in \mathcal{L}(V)$ is nilpotent. Then there exists vectors $v_{1}, \ldots, v_{n} \in V$ and nonnegative integers m_{1}, \ldots, m_{n} such that
■ $N^{m_{1}} v_{1}, \ldots, N v_{1}, v_{1}, \ldots, N^{m_{n}} v_{n}, \ldots, N v_{n}, v_{n}$ is a basis of V;

- $N^{m_{1}+1} v_{1}=\ldots=N^{m_{n}+1} v_{n}=0$.

Proof. We will use induction on $\operatorname{dim} V$.

Bases for Nilpotent Operators

Prop'n:

Suppose $N \in \mathcal{L}(V)$ is nilpotent. Then there exists vectors $v_{1}, \ldots, v_{n} \in V$ and nonnegative integers m_{1}, \ldots, m_{n} such that
■ $N^{m_{1}} v_{1}, \ldots, N v_{1}, v_{1}, \ldots, N^{m_{n}} v_{n}, \ldots, N v_{n}, v_{n}$ is a basis of V;

- $N^{m_{1}+1} v_{1}=\ldots=N^{m_{n}+1} v_{n}=0$.

Proof. We will use induction on $\operatorname{dim} V$.
Base case: $\operatorname{dim} V=1$, the only nilpotent operator is 0 . Take v_{1} to be any non-zero vector and $m_{1}=0$.

Bases for Nilpotent Operators

Prop'n:

Suppose $N \in \mathcal{L}(V)$ is nilpotent. Then there exists vectors $v_{1}, \ldots, v_{n} \in V$ and nonnegative integers m_{1}, \ldots, m_{n} such that
■ $N^{m_{1}} v_{1}, \ldots, N v_{1}, v_{1}, \ldots, N^{m_{n}} v_{n}, \ldots, N v_{n}, v_{n}$ is a basis of V;

- $N^{m_{1}+1} v_{1}=\ldots=N^{m_{n}+1} v_{n}=0$.

Proof. We will use induction on $\operatorname{dim} V$.
Base case: $\operatorname{dim} V=1$, the only nilpotent operator is 0 . Take v_{1} to be any non-zero vector and $m_{1}=0$.

Now assume true for $\operatorname{dim} V<n$.

Bases for Nilpotent Operators

Prop'n:

Suppose $N \in \mathcal{L}(V)$ is nilpotent. Then there exists vectors $v_{1}, \ldots, v_{n} \in V$ and nonnegative integers m_{1}, \ldots, m_{n} such that
■ $N^{m_{1}} v_{1}, \ldots, N v_{1}, v_{1}, \ldots, N^{m_{n}} v_{n}, \ldots, N v_{n}, v_{n}$ is a basis of V;

- $N^{m_{1}+1} v_{1}=\ldots=N^{m_{n}+1} v_{n}=0$.

Proof. We will use induction on $\operatorname{dim} V$.
Base case: $\operatorname{dim} V=1$, the only nilpotent operator is 0 . Take v_{1} to be any non-zero vector and $m_{1}=0$.

Now assume true for $\operatorname{dim} V<n$.
N is nilpotent and so not injective nor surjective.

Bases for Nilpotent Operators

Prop'n:

Suppose $N \in \mathcal{L}(V)$ is nilpotent. Then there exists vectors $v_{1}, \ldots, v_{n} \in V$ and nonnegative integers m_{1}, \ldots, m_{n} such that

- $N^{m_{1}} v_{1}, \ldots, N v_{1}, v_{1}, \ldots, N^{m_{n}} v_{n}, \ldots, N v_{n}, v_{n}$ is a basis of V;
- $N^{m_{1}+1} v_{1}=\ldots=N^{m_{n}+1} v_{n}=0$.

Proof. We will use induction on $\operatorname{dim} V$.
Base case: $\operatorname{dim} V=1$, the only nilpotent operator is 0 . Take v_{1} to be any non-zero vector and $m_{1}=0$.

Now assume true for $\operatorname{dim} V<n$.
N is nilpotent and so not injective nor surjective.
Consider $N \mid$ range $N \in \mathcal{L}($ range $N)$.

Bases for Nilpotent Operators

Prop'n:

Suppose $N \in \mathcal{L}(V)$ is nilpotent. Then there exists vectors $v_{1}, \ldots, v_{n} \in V$ and nonnegative integers m_{1}, \ldots, m_{n} such that

- $N^{m_{1}} v_{1}, \ldots, N v_{1}, v_{1}, \ldots, N^{m_{n}} v_{n}, \ldots, N v_{n}, v_{n}$ is a basis of V;
- $N^{m_{1}+1} v_{1}=\ldots=N^{m_{n}+1} v_{n}=0$.

Proof. We will use induction on $\operatorname{dim} V$.
Base case: $\operatorname{dim} V=1$, the only nilpotent operator is 0 . Take v_{1} to be any non-zero vector and $m_{1}=0$.

Now assume true for $\operatorname{dim} V<n$.
N is nilpotent and so not injective nor surjective.
Consider $N \mid$ range $N \in \mathcal{L}($ range $N)$. (Why can we ignore range $N=\{0\}$?)

Bases for Nilpotent Operators

Proof (cont'd). Consider $N \mid$ range $N \in \mathcal{L}$ (range N)...

Bases for Nilpotent Operators

Proof (cont'd). Consider $N \mid$ range $N \in \mathcal{L}($ range $N)$...
Using our induction hypothesis,

$$
N^{m_{1}} v_{1}, \ldots, N v_{1}, v_{1}, \ldots, N^{m_{n}} v_{n}, \ldots, N v_{n}, v_{n}
$$

is a basis of range $N \subset V$ with $N^{m_{1}+1} v_{1}=\ldots=N^{m_{n}+1} v_{n}=0$.

Bases for Nilpotent Operators

Proof (cont'd). Consider $N \mid$ range $N \in \mathcal{L}$ (range N)...
Using our induction hypothesis,

$$
N^{m_{1}} v_{1}, \ldots, N v_{1}, v_{1}, \ldots, N^{m_{n}} v_{n}, \ldots, N v_{n}, v_{n}
$$

is a basis of range $N \subset V$ with $N^{m_{1}+1} v_{1}=\ldots=N^{m_{n}+1} v_{n}=0$.
Since each $v_{i} \in \operatorname{range} N$, there is a u_{i} such that $v_{i}=N u_{i}$.

Bases for Nilpotent Operators

Proof (cont'd). Consider $N \mid$ range $N \in \mathcal{L}($ range $N)$...
Using our induction hypothesis,

$$
N^{m_{1}} v_{1}, \ldots, N v_{1}, v_{1}, \ldots, N^{m_{n}} v_{n}, \ldots, N v_{n}, v_{n}
$$

is a basis of range $N \subset V$ with $N^{m_{1}+1} v_{1}=\ldots=N^{m_{n}+1} v_{n}=0$.
Since each $v_{i} \in \operatorname{range} N$, there is a u_{i} such that $v_{i}=N u_{i}$.

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}
$$

Bases for Nilpotent Operators

Proof (cont'd). Consider $N \mid$ range $N \in \mathcal{L}($ range $N) \ldots$
Using our induction hypothesis,

$$
N^{m_{1}} v_{1}, \ldots, N v_{1}, v_{1}, \ldots, N^{m_{n}} v_{n}, \ldots, N v_{n}, v_{n}
$$

is a basis of range $N \subset V$ with $N^{m_{1}+1} v_{1}=\ldots=N^{m_{n}+1} v_{n}=0$.
Since each $v_{i} \in \operatorname{range} N$, there is a u_{i} such that $v_{i}=N u_{i}$.

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}
$$

We claim this list is linearly independent in V.

Bases for Nilpotent Operators

Proof (cont'd). Consider $N \mid$ range $N \in \mathcal{L}($ range $N) \ldots$
Using our induction hypothesis,

$$
N^{m_{1}} v_{1}, \ldots, N v_{1}, v_{1}, \ldots, N^{m_{n}} v_{n}, \ldots, N v_{n}, v_{n}
$$

is a basis of range $N \subset V$ with $N^{m_{1}+1} v_{1}=\ldots=N^{m_{n}+1} v_{n}=0$.
Since each $v_{i} \in \operatorname{range} N$, there is a u_{i} such that $v_{i}=N u_{i}$.

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}
$$

We claim this list is linearly independent in V.
$■$ Write out a linear combo equaling 0 .

Bases for Nilpotent Operators

Proof (cont'd). Consider $N \mid$ range $N \in \mathcal{L}($ range $N) \ldots$
Using our induction hypothesis,

$$
N^{m_{1}} v_{1}, \ldots, N v_{1}, v_{1}, \ldots, N^{m_{n}} v_{n}, \ldots, N v_{n}, v_{n}
$$

is a basis of range $N \subset V$ with $N^{m_{1}+1} v_{1}=\ldots=N^{m_{n}+1} v_{n}=0$.
Since each $v_{i} \in \operatorname{range} N$, there is a u_{i} such that $v_{i}=N u_{i}$.

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}
$$

We claim this list is linearly independent in V.
\square Write out a linear combo equaling 0.

- Apply N.

Bases for Nilpotent Operators

Proof (cont'd). Consider $N \mid$ range $N \in \mathcal{L}($ range $N)$...
Using our induction hypothesis,

$$
N^{m_{1}} v_{1}, \ldots, N v_{1}, v_{1}, \ldots, N^{m_{n}} v_{n}, \ldots, N v_{n}, v_{n}
$$

is a basis of range $N \subset V$ with $N^{m_{1}+1} v_{1}=\ldots=N^{m_{n}+1} v_{n}=0$.
Since each $v_{i} \in \operatorname{range} N$, there is a u_{i} such that $v_{i}=N u_{i}$.

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}
$$

We claim this list is linearly independent in V.
\square Write out a linear combo equaling 0 .

- Apply N.

■ All coefficients except possibly those in front of $N^{m_{i}+1} u_{i}^{\prime} s$ are 0 .

Bases for Nilpotent Operators

Proof (cont'd). Consider $N \mid$ range $N \in \mathcal{L}($ range $N)$...
Using our induction hypothesis,

$$
N^{m_{1}} v_{1}, \ldots, N v_{1}, v_{1}, \ldots, N^{m_{n}} v_{n}, \ldots, N v_{n}, v_{n}
$$

is a basis of range $N \subset V$ with $N^{m_{1}+1} v_{1}=\ldots=N^{m_{n}+1} v_{n}=0$.
Since each $v_{i} \in$ range N, there is a u_{i} such that $v_{i}=N u_{i}$.

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}
$$

We claim this list is linearly independent in V.

- Write out a linear combo equaling 0 .
- Apply N.
- All coefficients except possibly those in front of $N^{m_{i}+1} u_{i}^{\prime} s$ are 0 .
- The $N^{m_{i}+1} u_{i}^{\prime} s=N^{m_{i}} v_{i}$ are linearly independent.

Bases for Nilpotent Operators

So we have

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}
$$

Bases for Nilpotent Operators

So we have

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}
$$

Extend to a basis of V :

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}, w_{1}, \ldots, w_{p}
$$

Bases for Nilpotent Operators

So we have

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}
$$

Extend to a basis of V :

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}, w_{1}, \ldots, w_{p}
$$

$N w_{j} \in$ range N,

Bases for Nilpotent Operators

So we have

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}
$$

Extend to a basis of V :

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}, w_{1}, \ldots, w_{p}
$$

$N w_{j} \in$ range N, so there is some $x_{j} \in$ the span of the vectors in the previous list such that $N w_{j}=N x_{j}$.

Bases for Nilpotent Operators

So we have

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}
$$

Extend to a basis of V :

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}, w_{1}, \ldots, w_{p}
$$

$N w_{j} \in$ range N, so there is some $x_{j} \in$ the span of the vectors in the previous list such that $N w_{j}=N x_{j}$.

$$
u_{n+j}=w_{j}-x_{j}
$$

Bases for Nilpotent Operators

So we have

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}
$$

Extend to a basis of V :

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}, w_{1}, \ldots, w_{p}
$$

$N w_{j} \in$ range N, so there is some $x_{j} \in$ the span of the vectors in the previous list such that $N w_{j}=N x_{j}$.

$$
u_{n+j}=w_{j}-x_{j}
$$

Then

1. $N u_{n+j}=0$

Bases for Nilpotent Operators

So we have

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}
$$

Extend to a basis of V :

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}, w_{1}, \ldots, w_{p}
$$

$N w_{j} \in$ range N, so there is some $x_{j} \in$ the span of the vectors in the previous list such that $N w_{j}=N x_{j}$.

$$
u_{n+j}=w_{j}-x_{j}
$$

Then

1. $N u_{n+j}=0$
2. $N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}, u_{n+1}, \ldots, u_{n+p}$ spans V

Bases for Nilpotent Operators

So we have

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}
$$

Extend to a basis of V :

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}, w_{1}, \ldots, w_{p}
$$

$N w_{j} \in$ range N, so there is some $x_{j} \in$ the span of the vectors in the previous list such that $N w_{j}=N x_{j}$.

$$
u_{n+j}=w_{j}-x_{j}
$$

Then

1. $N u_{n+j}=0$
2. $N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}, u_{n+1}, \ldots, u_{n+p}$
spans V (because span contains x_{j} and u_{n+j} so contains w_{j}).

Bases for Nilpotent Operators

So we have

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}
$$

Extend to a basis of V :

$$
N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}, w_{1}, \ldots, w_{p}
$$

$N w_{j} \in$ range N, so there is some $x_{j} \in$ the span of the vectors in the previous list such that $N w_{j}=N x_{j}$.

$$
u_{n+j}=w_{j}-x_{j}
$$

Then

1. $N u_{n+j}=0$
2. $N^{m_{1}+1} u_{1}, \ldots, N u_{1}, u_{1}, \ldots, N^{m_{n}+1} u_{n}, \ldots, N u_{n}, u_{n}, u_{n+1}, \ldots, u_{n+p}$ spans V (because span contains x_{j} and u_{n+j} so contains w_{j}).
Thus, we have a basis of the desired form. \square.

Jordan Form

Prop'n:

Suppose V is a complex vector space. If $T \in \mathcal{L}(V)$, then there is a basis of V that is a Jordan basis for T.

Jordan Form

Prop'n:

Suppose V is a complex vector space. If $T \in \mathcal{L}(V)$, then there is a basis of V that is a Jordan basis for T.

Proof.

Jordan Form

Prop'n:

Suppose V is a complex vector space. If $T \in \mathcal{L}(V)$, then there is a basis of V that is a Jordan basis for T.

Proof. If the operator is nilpotent, the previous result gives us a basis.

Jordan Form

Prop'n:

Suppose V is a complex vector space. If $T \in \mathcal{L}(V)$, then there is a basis of V that is a Jordan basis for T.

Proof. If the operator is nilpotent, the previous result gives us a basis.
The matrix with respect to this basis is Jordan block's with zeros on the diagonal.

Jordan Form

Prop'n:

Suppose V is a complex vector space. If $T \in \mathcal{L}(V)$, then there is a basis of V that is a Jordan basis for T.

Proof. If the operator is nilpotent, the previous result gives us a basis.
The matrix with respect to this basis is Jordan block's with zeros on the diagonal.

Now for T not nilpotent, we have $V=G\left(\lambda_{1}, T\right) \oplus \ldots \oplus G\left(\lambda_{m}, T\right)$ where $\left.\left(T-\lambda_{j} /\right)\right|_{G\left(\lambda_{j}, T\right)}$ are nilpotent.

Jordan Form

Prop'n:

Suppose V is a complex vector space. If $T \in \mathcal{L}(V)$, then there is a basis of V that is a Jordan basis for T.

Proof. If the operator is nilpotent, the previous result gives us a basis.
The matrix with respect to this basis is Jordan block's with zeros on the diagonal.

Now for T not nilpotent, we have $V=G\left(\lambda_{1}, T\right) \oplus \ldots \oplus G\left(\lambda_{m}, T\right)$ where $\left.\left(T-\lambda_{j} /\right)\right|_{G\left(\lambda_{j}, T\right)}$ are nilpotent.

Add the λ_{j}^{\prime} s along the diagonal. Done. \square.

Example

Before we saw

$$
\left(\begin{array}{ccc}
(4) & 0 & 0 \\
0 & \left(\begin{array}{cc}
2 & -3 \\
0 & 2
\end{array}\right) & 0 \\
0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Example

Before we saw

$$
\left(\begin{array}{ccc}
(4) & 0 & 0 \\
0 & \left(\begin{array}{cc}
2 & -3 \\
0 & 2
\end{array}\right) & 0 \\
0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\left(\begin{array}{ll}
0 & 0 \\
1 & 7 \\
0 & 1
\end{array}\right) .\right.
$$

Its Jordan form is

$$
\left(\begin{array}{ccc}
(4) & 0 & 0 \\
0 & \left(\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right. & 2 \\
0 & 0 & 0
\end{array}\right)
$$

Jordan Form

We can actually say a bit more about what the Jordan form looks like:
■ Each Jordan block has basis $\left(T-\lambda_{j} l\right)^{m_{j}} v_{j}, \ldots,\left(T-\lambda_{j} l\right) v_{j}, v_{j}$ where m_{j} is such that $\left(T-\lambda_{j} /\right)^{m_{j}+1} v_{j}=0$.

Jordan Form

We can actually say a bit more about what the Jordan form looks like:
■ Each Jordan block has basis $\left(T-\lambda_{j} l\right)^{m_{j}} v_{j}, \ldots,\left(T-\lambda_{j} l\right) v_{j}, v_{j}$ where m_{j} is such that $\left(T-\lambda_{j} /\right)^{m_{j}+1} v_{j}=0$.
■ So $\left(T-\lambda_{j} l\right)^{m_{j}} v_{j}$ is an eigenvector with eigenvalue λ_{j}.

Jordan Form

We can actually say a bit more about what the Jordan form looks like:
■ Each Jordan block has basis $\left(T-\lambda_{j} /\right)^{m_{j}} v_{j}, \ldots,\left(T-\lambda_{j} /\right) v_{j}, v_{j}$ where m_{j} is such that $\left(T-\lambda_{j} /\right)^{m_{j}+1} v_{j}=0$.
■ So $\left(T-\lambda_{j} /\right)^{m_{j}} v_{j}$ is an eigenvector with eigenvalue λ_{j}.
■ Thus, the dimension of the eigenspace gives us the number of Jordan blocks associated to λ_{j}.

Jordan Form

We can actually say a bit more about what the Jordan form looks like:
$■$ Each Jordan block has basis $\left(T-\lambda_{j} /\right)^{m_{j}} v_{j}, \ldots,\left(T-\lambda_{j} /\right) v_{j}, v_{j}$ where m_{j} is such that $\left(T-\lambda_{j} /\right)^{m_{j}+1} v_{j}=0$.
■ So $\left(T-\lambda_{j} l\right)^{m_{j}} v_{j}$ is an eigenvector with eigenvalue λ_{j}.
■ Thus, the dimension of the eigenspace gives us the number of Jordan blocks associated to λ_{j}.

Summary:

Jordan Form

We can actually say a bit more about what the Jordan form looks like:
■ Each Jordan block has basis $\left(T-\lambda_{j} l\right)^{m_{j}} v_{j}, \ldots,\left(T-\lambda_{j} l\right) v_{j}, v_{j}$ where m_{j} is such that $\left(T-\lambda_{j} /\right)^{m_{j}+1} v_{j}=0$.
■ So $\left(T-\lambda_{j} l\right)^{m_{j}} v_{j}$ is an eigenvector with eigenvalue λ_{j}.
■ Thus, the dimension of the eigenspace gives us the number of Jordan blocks associated to λ_{j}.

Summary:

■ There are as many λ_{j} as the algebraic multiplicity or the $\operatorname{dim} G\left(\lambda_{j}, T\right)$.
■ The number of Jordan blocks is given by the eigenspace dimension or geometric multiplicity.

Jordan Form

We can actually say a bit more about what the Jordan form looks like:
■ Each Jordan block has basis $\left(T-\lambda_{j} l\right)^{m_{j}} v_{j}, \ldots,\left(T-\lambda_{j} l\right) v_{j}, v_{j}$ where m_{j} is such that $\left(T-\lambda_{j} /\right)^{m_{j}+1} v_{j}=0$.
■ So $\left(T-\lambda_{j} l\right)^{m_{j}} v_{j}$ is an eigenvector with eigenvalue λ_{j}.
■ Thus, the dimension of the eigenspace gives us the number of Jordan blocks associated to λ_{j}.

Summary:

■ There are as many λ_{j} as the algebraic multiplicity or the $\operatorname{dim} G\left(\lambda_{j}, T\right)$.

- The number of Jordan blocks is given by the eigenspace dimension or geometric multiplicity.
■ The size of the largest Jordan block is given by the power of ($z-\lambda_{j}$) in the minimal polynomial.

Jordan Form

We can actually say a bit more about what the Jordan form looks like:
■ Each Jordan block has basis $\left(T-\lambda_{j} l\right)^{m_{j}} v_{j}, \ldots,\left(T-\lambda_{j} l\right) v_{j}, v_{j}$ where m_{j} is such that $\left(T-\lambda_{j} /\right)^{m_{j}+1} v_{j}=0$.
■ So $\left(T-\lambda_{j} l\right)^{m_{j}} v_{j}$ is an eigenvector with eigenvalue λ_{j}.
■ Thus, the dimension of the eigenspace gives us the number of Jordan blocks associated to λ_{j}.

Summary:

■ There are as many λ_{j} as the algebraic multiplicity or the $\operatorname{dim} G\left(\lambda_{j}, T\right)$.

- The number of Jordan blocks is given by the eigenspace dimension or geometric multiplicity.
■ The size of the largest Jordan block is given by the power of ($z-\lambda_{j}$) in the minimal polynomial.
- $p\left(J_{j}\right)=0 \Leftrightarrow\left(z-\lambda_{j}\right)^{d} \mid p(z)$ where d is the size of the Jordan block J_{j}.

Example

Given the characteristic polynomial is $(z-5)^{2}(z-3)(z-1)^{3}$ and the minimal polynomial is $(z-5)(z-3)(z-1)$. What is the Jordan form?

Example

Given the characteristic polynomial is $(z-5)^{2}(z-3)(z-1)^{3}$ and the minimal polynomial is $(z-5)(z-3)(z-1)$. What is the Jordan form?

What if the minimal polynomial was instead $(z-5)^{2}(z-3)(z-1)^{2}$?

Break

Discussion Questions

1. Suppose V is a complex vector space, $N \in \mathcal{L}(V)$ and 0 is the only eigenvalue of N. Prove that N is nilpotent.
2. Give an example of an operator T on a finite-dimensional real vector space such that 0 is the only eigenvalue of T but T is not nilpotent.
3. Suppose $T \in \mathcal{L}\left(\mathbb{C}^{4}\right)$ is such that the eigenvalues of T are $3,4,5$. Prove that $(T-3 /)^{2}(T-5 /)^{2}(T-4 I)^{2}=0$.
4. Find examples of operators on \mathbb{C}^{4} such that 4.1 The char poly is $(z-1)(z-5)^{3}$ and the min poly is $(z-1)(z-5)^{2}$.
4.2 Both polys are $z(z-1)^{2}(z-3)$

Discussion Questions

5. Suppose $T \in \mathcal{L}(V)$. Prove that T is invertible if and only if the constant term in the minimal polynomial is nonzero.
6. Suppose $T \in \mathcal{L}(V)$ has minimal polynomial
$4+5 z-6 z^{2}-7 z^{3}+2 z^{4}+z^{5}$. Find the minimal polynomial of T^{-1}.
7. Suppose V is an inner product space and $T \in \mathcal{L}(V)$. Suppose $a_{0}+a_{1} z+\ldots+a_{m-1} z^{m-1}+a_{m} z^{m}$ is the minimal polynomial of T. Prove that $\overline{a_{0}}+\overline{a_{1}} z+\ldots+a_{m-1}^{-} z^{m-1}+\overline{a_{m}} z^{m}$ is the minimal polynomial of T^{*}.
8. What is the Jordan form for the operator on \mathbb{C}^{3} given by $T(x, y, z)=(3 x+4 y+7 z, 3 y+7 z, 2 z) ?$

Discussion Question Hints/Solutions

1. Our description of operators on complex vector spaces says that $V=G(0, T)=\operatorname{null}(T-0 /)^{\operatorname{dim} V}=\operatorname{null} T^{\operatorname{dim} V}$. Thus, T is nilpotent.
2. $T(x, y, z)=(-y, x, 0)$ works.
3. The multiplicity of the eigenvalues must sum to 4 . Characteristic polynomial is $(z-3)^{a}(z-4)^{b}(z-5)^{c}$ where $a+b+c=4$. This polynomial will divide the given polynomial. By Cayley-Hamilton, we have result.
4. Consider $T\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(z_{1}, 5 z_{2}+z_{4}, 5 z_{3}, 5 z_{4}\right)$ for the first one and $T\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(0, z_{2}+z_{3}, z_{3}, 3 z_{4}\right)$ for the second.

Discussion Question Hints/Solutions

5. T is invertible if and only if 0 is not an eigenvalue. Notice that this is equivalent to the constant term being nonzero in the minimal polynomial because its roots are the eigenvalues.
6. Multiply both sides by T^{-5} and divide by 4 to get

$$
z^{5}+5 / 4 z^{4}-3 / 2 z^{3}-7 / 2 z^{2}+1 / 4 z+1 / 4
$$

7. Take the adjoint of both sides of the equation with T plugged in. If there were another polynomial of lower degree, we could do the same process and contradict our choice of minimal polynomial for T.
8. $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3\end{array}\right)$

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

