

Lectures 24: Jordan Form

MATH 110-3

Franny Dean

August 3, 2023

Today

We have...

S'pose V is complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of T, with multiplicities d_1, \ldots, d_m . Then there is a basis of V with respect to which T has a block diagonal matrix of the form

$$\left(\begin{array}{cc}A_1 & 0\\ & \cdots & \\ 0 & A_m\end{array}\right)$$

where each A_i is a $d_i \times d_j$ upper triangular matrix of the form

$$egin{aligned} \mathcal{A}_{j} &= \left(egin{array}{ccc} \lambda_{j} & & st \ & \ldots & \ & 0 & & \lambda_{j} \end{array}
ight). \end{aligned}$$

But we can do even better!

FD • MATH 110 • August 3, 2023

Jordan Basis

Def'n:

Suppose $T \in \mathcal{L}(V)$. A basis is called a **Jordan basis** for T if with respect to this basis T has a block diagonal matrix of the form

$$\left(\begin{array}{ccc}
A_1 & 0 \\
& \dots & \\
0 & & A_p
\end{array}\right)$$

where each A_j is an upper triangular matrix of the form

$$egin{array}{cccc} eta_j = \left(egin{array}{cccc} \lambda_j & 1 & & 0 \ & \cdots & \cdots & \ & & \cdots & 1 \ 0 & & & \lambda_j \end{array}
ight) \end{array}$$

.

Suppose V is a complex vector space. If $T \in \mathcal{L}(V)$, then there is a basis of V that is a Jordan basis for T.

Suppose V is a complex vector space. If $T \in \mathcal{L}(V)$, then there is a basis of V that is a Jordan basis for T.

How do we prove this?

Suppose V is a complex vector space. If $T \in \mathcal{L}(V)$, then there is a basis of V that is a Jordan basis for T.

How do we prove this? Start with nilpotent operators again!

Example 1:

Example 1: Let $N \in \mathcal{L}(\mathbb{F}^4)$ be the nilpotent operator $N(z_1, z_2, z_3, z_4) = (0, z_1, z_2, z_3).$

Example 1: Let $N \in \mathcal{L}(\mathbb{F}^4)$ be the nilpotent operator $N(z_1, z_2, z_3, z_4) = (0, z_1, z_2, z_3).$

Let v = (1, 0, 0, 0).

Example 1: Let $N \in \mathcal{L}(\mathbb{F}^4)$ be the nilpotent operator $N(z_1, z_2, z_3, z_4) = (0, z_1, z_2, z_3).$

Let v = (1, 0, 0, 0). Then $N^3 v, N^2 v, Nv, v$ is a basis of \mathbb{F}^4 .

Example 1: Let $N \in \mathcal{L}(\mathbb{F}^4)$ be the nilpotent operator $N(z_1, z_2, z_3, z_4) = (0, z_1, z_2, z_3).$

Let v = (1, 0, 0, 0). Then $N^3 v, N^2 v, Nv, v$ is a basis of \mathbb{F}^4 .

The matrix is

$$\left(\begin{array}{rrrr} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Example 2:

Example 2: Let $N \in \mathcal{L}(\mathbb{F}^6)$ be the nilpotent operator $N(z_1, z_2, z_3, z_4, z_5, z_6) = (0, z_1, z_2, 0, z_4, 0).$

Example 2: Let $N \in \mathcal{L}(\mathbb{F}^6)$ be the nilpotent operator $N(z_1, z_2, z_3, z_4, z_5, z_6) = (0, z_1, z_2, 0, z_4, 0).$

There is no v such that N^5v , N^4v , N^3v , N^2v , Nv, v forms a basis...

Example 2: Let $N \in \mathcal{L}(\mathbb{F}^6)$ be the nilpotent operator $N(z_1, z_2, z_3, z_4, z_5, z_6) = (0, z_1, z_2, 0, z_4, 0).$

There is no v such that N^5v , N^4v , N^3v , N^2v , Nv, v forms a basis...

However for

 $v_1 = (1, 0, 0, 0, 0, 0), v_2 = (0, 0, 0, 1, 0, 0), v_1 = (0, 0, 0, 0, 0, 1),$

Example 2: Let $N \in \mathcal{L}(\mathbb{F}^6)$ be the nilpotent operator $N(z_1, z_2, z_3, z_4, z_5, z_6) = (0, z_1, z_2, 0, z_4, 0).$

There is no v such that N^5v , N^4v , N^3v , N^2v , Nv, v forms a basis...

However for

 $v_1=(1,0,0,0,0,0), v_2=(0,0,0,1,0,0), v_1=(0,0,0,0,0,1)$, then $N^2v_1, Nv_1, v_1, Nv_2, v_2, v_3$ is a basis for $\mathbb{F}^6.$

Example 2: Let $N \in \mathcal{L}(\mathbb{F}^6)$ be the nilpotent operator $N(z_1, z_2, z_3, z_4, z_5, z_6) = (0, z_1, z_2, 0, z_4, 0).$

There is no v such that N^5v , N^4v , N^3v , N^2v , Nv, v forms a basis...

However for

 $v_1=(1,0,0,0,0,0), v_2=(0,0,0,1,0,0), v_1=(0,0,0,0,0,1)$, then $N^2v_1, Nv_1, v_1, Nv_2, v_2, v_3$ is a basis for $\mathbb{F}^6.$

The matrix is

$$\left(\begin{array}{cccc} \left(\begin{array}{cccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right) & \begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \\ \left(\begin{array}{cccc} 0 & 1 \\ 0 & 0 \end{array}\right) & \begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \\ \left(\begin{array}{c} 0 & 1 \\ 0 & 0 \end{array}\right) & \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \\ \left(\begin{array}{c} 0 & 1 \\ 0 \end{array}\right) \\ \left(\begin{array}{c} 0 & 0 \\ 0 \end{array}\right) \end{array} \right)$$

Prop'n:

Suppose $N \in \mathcal{L}(V)$ is nilpotent. Then there exists vectors $v_1, \ldots, v_n \in V$ and nonnegative integers m_1, \ldots, m_n such that $N^{m_1}v_1, \ldots, Nv_1, v_1, \ldots, N^{m_n}v_n, \ldots, Nv_n, v_n$ is a basis of V; $N^{m_1+1}v_1 = \ldots = N^{m_n+1}v_n = 0$.

Prop'n:

Suppose $N \in \mathcal{L}(V)$ is nilpotent. Then there exists vectors $v_1, \ldots, v_n \in V$ and nonnegative integers m_1, \ldots, m_n such that $N^{m_1}v_1, \ldots, Nv_1, v_1, \ldots, N^{m_n}v_n, \ldots, Nv_n, v_n$ is a basis of V; $N^{m_1+1}v_1 = \ldots = N^{m_n+1}v_n = 0$.

Proof.

Prop'n:

Suppose $N \in \mathcal{L}(V)$ is nilpotent. Then there exists vectors $v_1, \ldots, v_n \in V$ and nonnegative integers m_1, \ldots, m_n such that $N^{m_1}v_1, \ldots, Nv_1, v_1, \ldots, N^{m_n}v_n, \ldots, Nv_n, v_n$ is a basis of V; $N^{m_1+1}v_1 = \ldots = N^{m_n+1}v_n = 0$.

Proof. We will use induction on dim *V*.

Prop'n:

Suppose $N \in \mathcal{L}(V)$ is nilpotent. Then there exists vectors $v_1, \ldots, v_n \in V$ and nonnegative integers m_1, \ldots, m_n such that $N^{m_1}v_1, \ldots, Nv_1, v_1, \ldots, N^{m_n}v_n, \ldots, Nv_n, v_n$ is a basis of V; $N^{m_1+1}v_1 = \ldots = N^{m_n+1}v_n = 0$.

Proof. We will use induction on dim *V*.

Base case: dim V = 1, the only nilpotent operator is 0. Take v_1 to be any non-zero vector and $m_1 = 0$.

Prop'n:

Suppose $N \in \mathcal{L}(V)$ is nilpotent. Then there exists vectors $v_1, \ldots, v_n \in V$ and nonnegative integers m_1, \ldots, m_n such that $N^{m_1}v_1, \ldots, Nv_1, v_1, \ldots, N^{m_n}v_n, \ldots, Nv_n, v_n$ is a basis of V; $N^{m_1+1}v_1 = \ldots = N^{m_n+1}v_n = 0$.

Proof. We will use induction on dim *V*.

Base case: dim V = 1, the only nilpotent operator is 0. Take v_1 to be any non-zero vector and $m_1 = 0$.

Now assume true for dim V < n.

Prop'n:

Suppose $N \in \mathcal{L}(V)$ is nilpotent. Then there exists vectors $v_1, \ldots, v_n \in V$ and nonnegative integers m_1, \ldots, m_n such that $N^{m_1}v_1, \ldots, Nv_1, v_1, \ldots, N^{m_n}v_n, \ldots, Nv_n, v_n$ is a basis of V; $N^{m_1+1}v_1 = \ldots = N^{m_n+1}v_n = 0$.

Proof. We will use induction on dim *V*.

Base case: dim V = 1, the only nilpotent operator is 0. Take v_1 to be any non-zero vector and $m_1 = 0$.

Now assume true for dim V < n.

N is nilpotent and so not injective nor surjective.

Prop'n:

Suppose $N \in \mathcal{L}(V)$ is nilpotent. Then there exists vectors $v_1, \ldots, v_n \in V$ and nonnegative integers m_1, \ldots, m_n such that $N^{m_1}v_1, \ldots, Nv_1, v_1, \ldots, N^{m_n}v_n, \ldots, Nv_n, v_n$ is a basis of V; $N^{m_1+1}v_1 = \ldots = N^{m_n+1}v_n = 0$.

Proof. We will use induction on dim *V*.

Base case: dim V = 1, the only nilpotent operator is 0. Take v_1 to be any non-zero vector and $m_1 = 0$.

Now assume true for dim V < n.

N is nilpotent and so not injective nor surjective.

```
Consider N|_{range N} \in \mathcal{L}(range N).
```

Prop'n:

Suppose $N \in \mathcal{L}(V)$ is nilpotent. Then there exists vectors $v_1, \ldots, v_n \in V$ and nonnegative integers m_1, \ldots, m_n such that $N^{m_1}v_1, \ldots, Nv_1, v_1, \ldots, N^{m_n}v_n, \ldots, Nv_n, v_n$ is a basis of V; $N^{m_1+1}v_1 = \ldots = N^{m_n+1}v_n = 0$.

Proof. We will use induction on dim *V*.

Base case: dim V = 1, the only nilpotent operator is 0. Take v_1 to be any non-zero vector and $m_1 = 0$.

Now assume true for dim V < n.

N is nilpotent and so not injective nor surjective.

Consider $N|_{range N} \in \mathcal{L}(range N)$. (Why can we ignore range $N = \{0\}$?)

Proof (cont'd). Consider $N|_{range N} \in \mathcal{L}(range N)$...

Proof (cont'd). Consider $N|_{range N} \in \mathcal{L}(range N)$... Using our induction hypothesis,

 $N^{m_1}v_1,\ldots,Nv_1,v_1,\ldots,N^{m_n}v_n,\ldots,Nv_n,v_n$

is a basis of range $N \subset V$ with $N^{m_1+1}v_1 = \ldots = N^{m_n+1}v_n = 0$.

Proof (cont'd). Consider $N|_{range N} \in \mathcal{L}(range N)$... Using our induction hypothesis,

 $N^{m_1}v_1,\ldots,Nv_1,v_1,\ldots,N^{m_n}v_n,\ldots,Nv_n,v_n$

is a basis of range $N \subset V$ with $N^{m_1+1}v_1 = \ldots = N^{m_n+1}v_n = 0$. Since each $v_i \in$ range N, there is a u_i such that $v_i = Nu_i$.

Proof (cont'd). Consider $N|_{range N} \in \mathcal{L}(range N)$... Using our induction hypothesis,

 $N^{m_1}v_1,\ldots,Nv_1,v_1,\ldots,N^{m_n}v_n,\ldots,Nv_n,v_n$

is a basis of range $N \subset V$ with $N^{m_1+1}v_1 = \ldots = N^{m_n+1}v_n = 0$. Since each $v_i \in$ range N, there is a u_i such that $v_i = Nu_i$.

$$N^{m_1+1}u_1,\ldots,Nu_1,u_1,\ldots,N^{m_n+1}u_n,\ldots,Nu_n,u_n$$

Proof (cont'd). Consider $N|_{range N} \in \mathcal{L}(range N)$... Using our induction hypothesis,

 $N^{m_1}v_1,\ldots,Nv_1,v_1,\ldots,N^{m_n}v_n,\ldots,Nv_n,v_n$

is a basis of range $N \subset V$ with $N^{m_1+1}v_1 = \ldots = N^{m_n+1}v_n = 0$. Since each $v_i \in$ range N, there is a u_i such that $v_i = Nu_i$.

$$N^{m_1+1}u_1,\ldots,Nu_1,u_1,\ldots,N^{m_n+1}u_n,\ldots,Nu_n,u_n$$

We claim this list is linearly independent in V.

Proof (cont'd). Consider $N|_{range N} \in \mathcal{L}(range N)$... Using our induction hypothesis,

 $N^{m_1}v_1,\ldots,Nv_1,v_1,\ldots,N^{m_n}v_n,\ldots,Nv_n,v_n$

is a basis of range $N \subset V$ with $N^{m_1+1}v_1 = \ldots = N^{m_n+1}v_n = 0$. Since each $v_i \in$ range N, there is a u_i such that $v_i = Nu_i$.

$$N^{m_1+1}u_1,\ldots,Nu_1,u_1,\ldots,N^{m_n+1}u_n,\ldots,Nu_n,u_n$$

We claim this list is linearly independent in V.

Write out a linear combo equaling 0.

Proof (cont'd). Consider $N|_{range N} \in \mathcal{L}(range N)$... Using our induction hypothesis,

 $N^{m_1}v_1,\ldots,Nv_1,v_1,\ldots,N^{m_n}v_n,\ldots,Nv_n,v_n$

is a basis of range $N \subset V$ with $N^{m_1+1}v_1 = \ldots = N^{m_n+1}v_n = 0$. Since each $v_i \in$ range N, there is a u_i such that $v_i = Nu_i$.

$$N^{m_1+1}u_1,\ldots,Nu_1,u_1,\ldots,N^{m_n+1}u_n,\ldots,Nu_n,u_n$$

We claim this list is linearly independent in V.

Write out a linear combo equaling 0.

Apply N.

Proof (cont'd). Consider $N|_{range N} \in \mathcal{L}(range N)$... Using our induction hypothesis,

$$N^{m_1}v_1,\ldots,Nv_1,v_1,\ldots,N^{m_n}v_n,\ldots,Nv_n,v_n$$

is a basis of range $N \subset V$ with $N^{m_1+1}v_1 = \ldots = N^{m_n+1}v_n = 0$. Since each $v_i \in$ range N, there is a u_i such that $v_i = Nu_i$.

$$N^{m_1+1}u_1, \ldots, Nu_1, u_1, \ldots, N^{m_n+1}u_n, \ldots, Nu_n, u_n$$

We claim this list is linearly independent in V.

- Write out a linear combo equaling 0.
- Apply N.
- All coefficients except possibly those in front of $N^{m_i+1}u'_is$ are 0.

Proof (cont'd). Consider $N|_{range N} \in \mathcal{L}(range N)$... Using our induction hypothesis,

$$N^{m_1}v_1,\ldots,Nv_1,v_1,\ldots,N^{m_n}v_n,\ldots,Nv_n,v_n$$

is a basis of range $N \subset V$ with $N^{m_1+1}v_1 = \ldots = N^{m_n+1}v_n = 0$. Since each $v_i \in$ range N, there is a u_i such that $v_i = Nu_i$.

$$N^{m_1+1}u_1,\ldots,Nu_1,u_1,\ldots,N^{m_n+1}u_n,\ldots,Nu_n,u_n$$

We claim this list is linearly independent in V.

- Write out a linear combo equaling 0.
- Apply N.
- All coefficients except possibly those in front of $N^{m_i+1}u'_is$ are 0.
- The $N^{m_i+1}u'_i s = N^{m_i}v_i$ are linearly independent.

So we have

$$N^{m_1+1}u_1,\ldots,Nu_1,u_1,\ldots,N^{m_n+1}u_n,\ldots,Nu_n,u_n$$

So we have

$$N^{m_1+1}u_1,\ldots,Nu_1,u_1,\ldots,N^{m_n+1}u_n,\ldots,Nu_n,u_n$$

Extend to a basis of V:

$$N^{m_1+1}u_1, \ldots, Nu_1, u_1, \ldots, N^{m_n+1}u_n, \ldots, Nu_n, u_n, w_1, \ldots, w_p$$

So we have

$$N^{m_1+1}u_1,\ldots,Nu_1,u_1,\ldots,N^{m_n+1}u_n,\ldots,Nu_n,u_n$$

Extend to a basis of V:

 $N^{m_1+1}u_1, \dots, Nu_1, u_1, \dots, N^{m_n+1}u_n, \dots, Nu_n, u_n, w_1, \dots, w_p$ $Nw_i \in range N,$

So we have

$$N^{m_1+1}u_1,\ldots,Nu_1,u_1,\ldots,N^{m_n+1}u_n,\ldots,Nu_n,u_n$$

Extend to a basis of V:

$$N^{m_1+1}u_1, \ldots, Nu_1, u_1, \ldots, N^{m_n+1}u_n, \ldots, Nu_n, u_n, w_1, \ldots, w_p$$

 $Nw_j \in \text{range } N$, so there is some $x_j \in \text{the span of the vectors in the previous list such that <math>Nw_j = Nx_j$.

So we have

$$N^{m_1+1}u_1,\ldots,Nu_1,u_1,\ldots,N^{m_n+1}u_n,\ldots,Nu_n,u_n$$

Extend to a basis of V:

$$N^{m_1+1}u_1, \ldots, Nu_1, u_1, \ldots, N^{m_n+1}u_n, \ldots, Nu_n, u_n, w_1, \ldots, w_p$$

 $Nw_j \in \text{range } N$, so there is some $x_j \in \text{the span of the vectors in the previous list such that <math>Nw_j = Nx_j$.

$$u_{n+j}=w_j-x_j$$

So we have

$$N^{m_1+1}u_1,\ldots,Nu_1,u_1,\ldots,N^{m_n+1}u_n,\ldots,Nu_n,u_n$$

Extend to a basis of V:

$$N^{m_1+1}u_1, \ldots, Nu_1, u_1, \ldots, N^{m_n+1}u_n, \ldots, Nu_n, u_n, w_1, \ldots, w_p$$

 $Nw_j \in \text{range } N$, so there is some $x_j \in \text{the span of the vectors in the previous list such that <math>Nw_j = Nx_j$.

$$u_{n+j}=w_j-x_j$$

Then

1. $Nu_{n+j} = 0$

So we have

$$N^{m_1+1}u_1,\ldots,Nu_1,u_1,\ldots,N^{m_n+1}u_n,\ldots,Nu_n,u_n$$

Extend to a basis of V:

$$N^{m_1+1}u_1, \ldots, Nu_1, u_1, \ldots, N^{m_n+1}u_n, \ldots, Nu_n, u_n, w_1, \ldots, w_p$$

 $Nw_j \in \text{range } N$, so there is some $x_j \in \text{the span of the vectors in the previous list such that <math>Nw_j = Nx_j$.

$$u_{n+j}=w_j-x_j$$

Then

1.
$$Nu_{n+j} = 0$$

2. $N^{m_1+1}u_1, \dots, Nu_1, u_1, \dots, N^{m_n+1}u_n, \dots, Nu_n, u_n, u_{n+1}, \dots, u_{n+p}$
spans V

So we have

$$N^{m_1+1}u_1,\ldots,Nu_1,u_1,\ldots,N^{m_n+1}u_n,\ldots,Nu_n,u_n$$

Extend to a basis of V:

$$N^{m_1+1}u_1, \ldots, Nu_1, u_1, \ldots, N^{m_n+1}u_n, \ldots, Nu_n, u_n, w_1, \ldots, w_p$$

 $Nw_j \in \text{range } N$, so there is some $x_j \in \text{the span of the vectors in the previous list such that <math>Nw_j = Nx_j$.

$$u_{n+j}=w_j-x_j$$

Then

1. $Nu_{n+j} = 0$ 2. $N^{m_1+1}u_1, \ldots, Nu_1, u_1, \ldots, N^{m_n+1}u_n, \ldots, Nu_n, u_n, u_{n+1}, \ldots, u_{n+p}$ spans V (because span contains x_j and u_{n+j} so contains w_j).

So we have

$$N^{m_1+1}u_1,\ldots,Nu_1,u_1,\ldots,N^{m_n+1}u_n,\ldots,Nu_n,u_n$$

Extend to a basis of V:

$$N^{m_1+1}u_1, \ldots, Nu_1, u_1, \ldots, N^{m_n+1}u_n, \ldots, Nu_n, u_n, w_1, \ldots, w_p$$

 $Nw_j \in \text{range } N$, so there is some $x_j \in \text{the span of the vectors in the previous list such that <math>Nw_j = Nx_j$.

$$u_{n+j}=w_j-x_j$$

Then

Nu_{n+j} = 0
 N^{m₁+1}u₁,...,Nu₁, u₁,...,N^{m_n+1}u_n,...,Nu_n, u_n, u_{n+1},..., u_{n+p} spans V (because span contains x_j and u_{n+j} so contains w_j). Thus, we have a basis of the desired form. □.

Suppose V is a complex vector space. If $T \in \mathcal{L}(V)$, then there is a basis of V that is a Jordan basis for T.

Suppose V is a complex vector space. If $T \in \mathcal{L}(V)$, then there is a basis of V that is a Jordan basis for T.

Proof.

Suppose V is a complex vector space. If $T \in \mathcal{L}(V)$, then there is a basis of V that is a Jordan basis for T.

Proof. If the operator is nilpotent, the previous result gives us a basis.

Prop'n:

Suppose V is a complex vector space. If $T \in \mathcal{L}(V)$, then there is a basis of V that is a Jordan basis for T.

Proof. If the operator is nilpotent, the previous result gives us a basis.

The matrix with respect to this basis is Jordan block's with zeros on the diagonal.

Prop'n:

Suppose V is a complex vector space. If $T \in \mathcal{L}(V)$, then there is a basis of V that is a Jordan basis for T.

Proof. If the operator is nilpotent, the previous result gives us a basis.

The matrix with respect to this basis is Jordan block's with zeros on the diagonal.

Now for *T* not nilpotent, we have $V = G(\lambda_1, T) \oplus \ldots \oplus G(\lambda_m, T)$ where $(T - \lambda_j I)|_{G(\lambda_j, T)}$ are nilpotent.

Prop'n:

Suppose V is a complex vector space. If $T \in \mathcal{L}(V)$, then there is a basis of V that is a Jordan basis for T.

Proof. If the operator is nilpotent, the previous result gives us a basis.

The matrix with respect to this basis is Jordan block's with zeros on the diagonal.

Now for *T* not nilpotent, we have $V = G(\lambda_1, T) \oplus \ldots \oplus G(\lambda_m, T)$ where $(T - \lambda_j I)|_{G(\lambda_j, T)}$ are nilpotent.

Add the $\lambda'_i s$ along the diagonal. Done. \Box .

Example

Before we saw

$$\left(\begin{array}{cccc} (4) & 0 & 0 & 0 & 0 \\ 0 & \left(\begin{array}{ccc} 2 & -3 \\ 0 & 2 \end{array}\right) & 0 & 0 \\ 0 & 0 & 0 & \left(\begin{array}{ccc} 1 & 7 \\ 0 & 1 \end{array}\right) \end{array}\right)$$

Example

Before we saw

$$\left(\begin{array}{cccc} (4) & 0 & 0 & 0 & 0 \\ 0 & \left(\begin{array}{ccc} 2 & -3 \\ 0 & 2 \end{array}\right) & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \left(\begin{array}{ccc} 1 & 7 \\ 0 & 1 \end{array}\right) \end{array}\right)$$

Its Jordan form is

$$\left(\begin{array}{cccc} (4) & 0 & 0 & 0 & 0 \\ 0 & \left(\begin{array}{ccc} 2 & 1 \\ 0 & 2 \end{array}\right) & 0 & 0 \\ 0 & 0 & 0 & \left(\begin{array}{ccc} 1 & 1 \\ 0 & 1 \end{array}\right) \end{array}\right)$$

We can actually say a bit more about what the Jordan form looks like:

Each Jordan block has basis $(T - \lambda_j I)^{m_j} v_j, \dots, (T - \lambda_j I) v_j, v_j$ where m_j is such that $(T - \lambda_j I)^{m_j+1} v_j = 0$.

We can actually say a bit more about what the Jordan form looks like:

- Each Jordan block has basis $(T \lambda_j I)^{m_j} v_j, \dots, (T \lambda_j I) v_j, v_j$ where m_j is such that $(T - \lambda_j I)^{m_j+1} v_j = 0$.
- So $(T \lambda_j I)^{m_j} v_j$ is an eigenvector with eigenvalue λ_j .

We can actually say a bit more about what the Jordan form looks like:

- Each Jordan block has basis $(T \lambda_j I)^{m_j} v_j, \dots, (T \lambda_j I) v_j, v_j$ where m_j is such that $(T - \lambda_j I)^{m_j+1} v_j = 0$.
- So $(T \lambda_j I)^{m_j} v_j$ is an eigenvector with eigenvalue λ_j .
- Thus, the dimension of the eigenspace gives us the number of Jordan blocks associated to λ_j.

We can actually say a bit more about what the Jordan form looks like:

- Each Jordan block has basis $(T \lambda_j I)^{m_j} v_j, \dots, (T \lambda_j I) v_j, v_j$ where m_j is such that $(T - \lambda_j I)^{m_j+1} v_j = 0$.
- So $(T \lambda_j I)^{m_j} v_j$ is an eigenvector with eigenvalue λ_j .
- Thus, the dimension of the eigenspace gives us the number of Jordan blocks associated to λ_j.

We can actually say a bit more about what the Jordan form looks like:

- Each Jordan block has basis $(T \lambda_j I)^{m_j} v_j, \dots, (T \lambda_j I) v_j, v_j$ where m_j is such that $(T - \lambda_j I)^{m_j+1} v_j = 0$.
- So $(T \lambda_j I)^{m_j} v_j$ is an eigenvector with eigenvalue λ_j .
- Thus, the dimension of the eigenspace gives us the number of Jordan blocks associated to λ_j .

- There are as many λ_j as the *algebraic multiplicity* or the dim G(λ_j, T).
- The number of Jordan blocks is given by the eigenspace dimension or *geometric multiplicity*.

We can actually say a bit more about what the Jordan form looks like:

- Each Jordan block has basis $(T \lambda_j I)^{m_j} v_j, \dots, (T \lambda_j I) v_j, v_j$ where m_j is such that $(T - \lambda_j I)^{m_j+1} v_j = 0$.
- So $(T \lambda_j I)^{m_j} v_j$ is an eigenvector with eigenvalue λ_j .
- Thus, the dimension of the eigenspace gives us the number of Jordan blocks associated to λ_j .

- There are as many λ_j as the *algebraic multiplicity* or the dim G(λ_j, T).
- The number of Jordan blocks is given by the eigenspace dimension or *geometric multiplicity*.
- The size of the largest Jordan block is given by the power of $(z \lambda_j)$ in the minimal polynomial.

We can actually say a bit more about what the Jordan form looks like:

- Each Jordan block has basis $(T \lambda_j I)^{m_j} v_j, \dots, (T \lambda_j I) v_j, v_j$ where m_j is such that $(T - \lambda_j I)^{m_j+1} v_j = 0$.
- So $(T \lambda_j I)^{m_j} v_j$ is an eigenvector with eigenvalue λ_j .
- Thus, the dimension of the eigenspace gives us the number of Jordan blocks associated to λ_j .

- There are as many λ_j as the *algebraic multiplicity* or the dim G(λ_j, T).
- The number of Jordan blocks is given by the eigenspace dimension or *geometric multiplicity*.
- The size of the largest Jordan block is given by the power of $(z \lambda_j)$ in the minimal polynomial.
 - $p(J_j) = 0 \Leftrightarrow (z \lambda_j)^d | p(z)$ where *d* is the size of the Jordan block J_j .

Example

Given the characteristic polynomial is $(z - 5)^2(z - 3)(z - 1)^3$ and the minimal polynomial is (z - 5)(z - 3)(z - 1). What is the Jordan form?

Example

Given the characteristic polynomial is $(z - 5)^2(z - 3)(z - 1)^3$ and the minimal polynomial is (z - 5)(z - 3)(z - 1). What is the Jordan form?

What if the minimal polynomial was instead $(z - 5)^2(z - 3)(z - 1)^2$?

Discussion Questions

- 1. Suppose V is a complex vector space, $N \in \mathcal{L}(V)$ and 0 is the only eigenvalue of N. Prove that N is nilpotent.
- 2. Give an example of an operator *T* on a finite-dimensional *real* vector space such that 0 is the only eigenvalue of *T* but *T* is not nilpotent.
- 3. Suppose $T \in \mathcal{L}(\mathbb{C}^4)$ is such that the eigenvalues of T are 3, 4, 5. Prove that $(T - 3I)^2(T - 5I)^2(T - 4I)^2 = 0$.
- 4. Find examples of operators on \mathbb{C}^4 such that
 - 4.1 The char poly is $(z-1)(z-5)^3$ and the min poly is $(z-1)(z-5)^2$.
 - 4.2 Both polys are $z(z 1)^2(z 3)$

Discussion Questions

- 5. Suppose $T \in \mathcal{L}(V)$. Prove that T is invertible if and only if the constant term in the minimal polynomial is nonzero.
- 6. Suppose $T \in \mathcal{L}(V)$ has minimal polynomial $4 + 5z 6z^2 7z^3 + 2z^4 + z^5$. Find the minimal polynomial of T^{-1} .
- 7. Suppose *V* is an inner product space and $T \in \mathcal{L}(V)$. Suppose $a_0 + a_1z + \ldots + a_{m-1}z^{m-1} + a_mz^m$ is the minimal polynomial of *T*. Prove that $\bar{a_0} + \bar{a_1}z + \ldots + \bar{a_{m-1}}z^{m-1} + \bar{a_m}z^m$ is the minimal polynomial of T^* .
- 8. What is the Jordan form for the operator on \mathbb{C}^3 given by T(x, y, z) = (3x + 4y + 7z, 3y + 7z, 2z)?

Discussion Question Hints/Solutions

- 1. Our description of operators on complex vector spaces says that $V = G(0, T) = \text{null } (T 0I)^{\dim V} = \text{null } T^{\dim V}$. Thus, T is nilpotent.
- 2. T(x, y, z) = (-y, x, 0) works.
- 3. The multiplicity of the eigenvalues must sum to 4. Characteristic polynomial is $(z 3)^a(z 4)^b(z 5)^c$ where a + b + c = 4. This polynomial will divide the given polynomial. By Cayley-Hamilton, we have result.
- 4. Consider $T(z_1, z_2, z_3, z_4) = (z_1, 5z_2 + z_4, 5z_3, 5z_4)$ for the first one and $T(z_1, z_2, z_3, z_4) = (0, z_2 + z_3, z_3, 3z_4)$ for the second.

Discussion Question Hints/Solutions

- 5. *T* is invertible if and only if 0 is not an eigenvalue. Notice that this is equivalent to the constant term being nonzero in the minimal polynomial because its roots are the eigenvalues.
- 6. Multiply both sides by T^{-5} and divide by 4 to get $z^5 + 5/4z^4 3/2z^3 7/2z^2 + 1/4z + 1/4$.
- 7. Take the adjoint of both sides of the equation with *T* plugged in. If there were another polynomial of lower degree, we could do the same process and contradict our choice of minimal polynomial for *T*.

$$8. \ \left(\begin{array}{rrr} 2 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{array}\right)$$

[Axl14] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.