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Today

We have...
S’pose V is complex vector space and T ∈ L(V). Let λ1, . . . , λm be the
distinct eigenvalues of T , with multiplicities d1, . . . , dm. Then there is
a basis of V with respect to which T has a block diagonal matrix of
the form  A1 0

. . .
0 Am


where each Aj is a dj × dj upper triangular matrix of the form

Aj =

 λj ∗
. . .

0 λj

 .

But we can do even better!
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Jordan Basis

Def’n:
Suppose T ∈ L(V). A basis is called a Jordan basis for T if with
respect to this basis T has a block diagonal matrix of the form A1 0

. . .
0 Ap


where each Aj is an upper triangular matrix of the form

Aj =


λj 1 0

. . . . . .
. . . 1

0 λj

 .
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Jordan Form

Prop’n:
Suppose V is a complex vector space. If T ∈ L(V), then there is a
basis of V that is a Jordan basis for T .

How do we prove this? Start with nilpotent operators again!
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Bases for Nilpotent Operators

Example 1:

Let N ∈ L(F4) be the nilpotent operator
N(z1, z2, z3, z4) = (0, z1, z2, z3).

Let v = (1, 0, 0, 0). Then N3v,N2v,Nv, v is a basis of F4.

The matrix is 
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


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Bases for Nilpotent Operators
Example 2:

Let N ∈ L(F6) be the nilpotent operator
N(z1, z2, z3, z4, z5, z6) = (0, z1, z2, 0, z4, 0).

There is no v such that N5v,N4v,N3v,N2v,Nv, v forms a basis...

However for
v1 = (1, 0, 0, 0, 0, 0), v2 = (0, 0, 0, 1, 0, 0), v1 = (0, 0, 0, 0, 0, 1), then
N2v1,Nv1, v1,Nv2, v2, v3 is a basis for F6.

The matrix is 

 0 1 0
0 0 1
0 0 0

 0 0
0 0
0 0

0
0
0

0 0 0
0 0 0

(
0 1
0 0

)
0
0

0 0 0 0 0 (0)


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Bases for Nilpotent Operators

Prop’n:
Suppose N ∈ L(V) is nilpotent. Then there exists vectors
v1, . . . , vn ∈ V and nonnegative integers m1, . . . ,mn such that

Nm1v1, . . . ,Nv1, v1, . . . ,Nmnvn, . . . ,Nvn, vn is a basis of V ;
Nm1+1v1 = . . . = Nmn+1vn = 0.

Proof. We will use induction on dim V .

Base case: dim V = 1, the only nilpotent operator is 0. Take v1 to be
any non-zero vector and m1 = 0.

Now assume true for dim V < n.

N is nilpotent and so not injective nor surjective.

Consider N|range N ∈ L(range N). (Why can we ignore range N = {0}?)
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Bases for Nilpotent Operators
Proof (cont’d). Consider N|range N ∈ L(range N). . .

Using our induction hypothesis,

Nm1v1, . . . ,Nv1, v1, . . . ,Nmnvn, . . . ,Nvn, vn

is a basis of range N ⊂ V with Nm1+1v1 = . . . = Nmn+1vn = 0.

Since each vi ∈ range N, there is a ui such that vi = Nui .

Nm1+1u1, . . . ,Nu1, u1, . . . ,Nmn+1un, . . . ,Nun, un

We claim this list is linearly independent in V .
Write out a linear combo equaling 0.
Apply N.
All coefficients except possibly those in front of Nmi+1u′is are 0.
The Nmi+1u′is = N

mivi are linearly independent.
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Bases for Nilpotent Operators
So we have

Nm1+1u1, . . . ,Nu1, u1, . . . ,Nmn+1un, . . . ,Nun, un

Extend to a basis of V :

Nm1+1u1, . . . ,Nu1, u1, . . . ,Nmn+1un, . . . ,Nun, un,w1, . . . ,wp

Nwj ∈ range N, so there is some xj ∈ the span of the vectors in the
previous list such that Nwj = Nxj.

un+j = wj − xj

Then
1. Nun+j = 0
2. Nm1+1u1, . . . ,Nu1, u1, . . . ,Nmn+1un, . . . ,Nun, un, un+1, . . . , un+p
spans V (because span contains xj and un+j so contains wj).

Thus, we have a basis of the desired form. □.
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Jordan Form

Prop’n:
Suppose V is a complex vector space. If T ∈ L(V), then there is a
basis of V that is a Jordan basis for T .

Proof. If the operator is nilpotent, the previous result gives us a basis.

The matrix with respect to this basis is Jordan block’s with zeros on
the diagonal.

Now for T not nilpotent, we have V = G(λ1, T)⊕ . . .⊕ G(λm, T)
where (T − λjI)|G(λj,T) are nilpotent.

Add the λ′
js along the diagonal. Done. □.
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Example

Before we saw 
(4) 0 0 0 0
0
0

(
2 −3
0 2

)
0 0
0 0

0
0

0 0
0 0

(
1 7
0 1

)


Its Jordan form is
(4) 0 0 0 0
0
0

(
2 1
0 2

)
0 0
0 0

0
0

0 0
0 0

(
1 1
0 1

)

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Jordan Form
We can actually say a bit more about what the Jordan form looks like:

Each Jordan block has basis (T − λjI)mjvj, . . . , (T − λjI)vj, vj
where mj is such that (T − λjI)mj+1vj = 0.

So (T − λjI)mjvj is an eigenvector with eigenvalue λj.
Thus, the dimension of the eigenspace gives us the number of
Jordan blocks associated to λj.

Summary:
There are as many λj as the algebraic multiplicity or the
dimG(λj, T).
The number of Jordan blocks is given by the eigenspace
dimension or geometric multiplicity .
The size of the largest Jordan block is given by the power of
(z − λj) in the minimal polynomial.

p(Jj) = 0⇔ (z−λj)
d|p(z) where d is the size of the Jordan block Jj .
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Example

Given the characteristic polynomial is (z− 5)2(z− 3)(z− 1)3 and the
minimal polynomial is (z− 5)(z− 3)(z− 1). What is the Jordan form?

What if the minimal polynomial was instead (z − 5)2(z − 3)(z − 1)2?

FD · MATH 110 · August 3, 2023 13 / 19



Example

Given the characteristic polynomial is (z− 5)2(z− 3)(z− 1)3 and the
minimal polynomial is (z− 5)(z− 3)(z− 1). What is the Jordan form?

What if the minimal polynomial was instead (z − 5)2(z − 3)(z − 1)2?

FD · MATH 110 · August 3, 2023 13 / 19



Break
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Discussion Questions

1. Suppose V is a complex vector space, N ∈ L(V) and 0 is the only
eigenvalue of N. Prove that N is nilpotent.

2. Give an example of an operator T on a finite-dimensional real
vector space such that 0 is the only eigenvalue of T but T is not
nilpotent.

3. Suppose T ∈ L(C4) is such that the eigenvalues of T are 3, 4, 5.
Prove that (T − 3I)2(T − 5I)2(T − 4I)2 = 0.

4. Find examples of operators on C4 such that
4.1 The char poly is (z−1)(z−5)3 and the min poly is (z−1)(z−5)2.
4.2 Both polys are z(z − 1)2(z − 3)
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Discussion Questions

5. Suppose T ∈ L(V). Prove that T is invertible if and only if the
constant term in the minimal polynomial is nonzero.

6. Suppose T ∈ L(V) has minimal polynomial
4+ 5z − 6z2 − 7z3 + 2z4 + z5. Find the minimal polynomial of
T−1.

7. Suppose V is an inner product space and T ∈ L(V). Suppose
a0 + a1z + . . .+ am−1zm−1 + amzm is the minimal polynomial of
T . Prove that ā0 + ā1z + . . .+ ¯am−1zm−1 + āmzm is the minimal
polynomial of T∗.

8. What is the Jordan form for the operator on C3 given by
T(x, y, z) = (3x + 4y + 7z, 3y + 7z, 2z)?
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Discussion Question Hints/Solutions

1. Our description of operators on complex vector spaces says that
V = G(0, T) = null (T − 0I)dim V = null Tdim V . Thus, T is
nilpotent.

2. T(x, y, z) = (−y, x, 0) works.
3. The multiplicity of the eigenvalues must sum to 4. Characteristic
polynomial is (z − 3)a(z − 4)b(z − 5)c where a+ b+ c = 4. This
polynomial will divide the given polynomial. By
Cayley-Hamilton, we have result.

4. Consider T(z1, z2, z3, z4) = (z1, 5z2 + z4, 5z3, 5z4) for the first one
and T(z1, z2, z3, z4) = (0, z2 + z3, z3, 3z4) for the second.
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Discussion Question Hints/Solutions

5. T is invertible if and only if 0 is not an eigenvalue. Notice that
this is equivalent to the constant term being nonzero in the
minimal polynomial because its roots are the eigenvalues.

6. Multiply both sides by T−5 and divide by 4 to get
z5 + 5/4z4 − 3/2z3 − 7/2z2 + 1/4z + 1/4.

7. Take the adjoint of both sides of the equation with T plugged in.
If there were another polynomial of lower degree, we could do
the same process and contradict our choice of minimal
polynomial for T .

8.

 2 0 0
0 3 1
0 0 3


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