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Today

S’pose V' is complex vector space and T € L(V). Let \q,..., Ay be the
distinct eigenvalues of T, with multiplicities dq, ..., dy. Then there is
a basis of V with respect to which T has a block diagonal matrix of

the form
Aq 0

0 Am

where each A; is a d; x d; upper triangular matrix of the form

But we can do even better!
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Jordan Basis

Suppose T € L(V). A basis is called a Jordan basis for T if with
respect to this basis T has a block diagonal matrix of the form

At 0
0 A,

where each A; is an upper triangular matrix of the form

N 1 0
A = .
0 A
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Jordan Form

Suppose V is a complex vector space. If T € £L(V), then there is a
basis of V that is a Jordan basis for T.
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Jordan Form

Suppose V is a complex vector space. If T € £L(V), then there is a
basis of V that is a Jordan basis for T.

How do we prove this?
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Jordan Form

Suppose V is a complex vector space. If T € £L(V), then there is a
basis of V that is a Jordan basis for T.

How do we prove this? Start with nilpotent operators again!
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Bases for Nilpotent Operators

Example 1:
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Bases for Nilpotent Operators

Example 1: Let N € £(F*) be the nilpotent operator
N(21,22723,24) = (0721722’23)'

FD - MATH 110 - August 3, 2023 5/19



Bases for Nilpotent Operators

Example 1: Let N € £(F*) be the nilpotent operator
N(Z]_,ZZ,ZZ”Z;;) = (0721722’23)'

Let v = (1,0,0,0).
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Bases for Nilpotent Operators

Example 1: Let N € £(F*) be the nilpotent operator
N(Z]_,Zz,Zg,Z;;) = (0721722’23)'

Let v = (1,0,0,0). Then N3v, N2v, Nv, v is a basis of F*.
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Bases for Nilpotent Operators

Example 1: Let N € £(F*) be the nilpotent operator
N(21722,23,24) = (0721722723)'

Let v = (1,0,0,0). Then N3v, N2v, Nv, v is a basis of F*.

The matrix is

[eNeNeNe
[N oo
[eNeN e
o OO

FD - MATH 110 - August 3, 2023 5/19



Bases for Nilpotent Operators

Example 2:
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Bases for Nilpotent Operators

Example 2: Let N € £(F®) be the nilpotent operator
N(21,22723,24,25726) = (0’2172270724a 0)
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Bases for Nilpotent Operators

Example 2: Let N € £(F®) be the nilpotent operator
N(21,22,23,24,25,26) = (0)217227072‘% 0)

There is no v such that N°v, N*v, N3v, N2v, Nv, v forms a basis...
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Bases for Nilpotent Operators

Example 2: Let N € £(F®) be the nilpotent operator
N(21,22,23,24,25,26) = (0)217227072‘% 0)

There is no v such that N°v, N*v, N3v, N2v, Nv, v forms a basis...

However for
vi =(1,0,0,0,0,0),v, = (0,0,0,1,0,0),v; = (0,0,0,0,0,1),
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Bases for Nilpotent Operators

Example 2: Let N € £(F®) be the nilpotent operator
N(21,22,23,24,25,26) = (0)217227012‘% 0)

There is no v such that N°v, N*v, N3v, N2v, Nv, v forms a basis...

However for
vi = (1,0,0,0,0,0),v, = (0,0,0,1,0,0),v; = (0,0,0,0,0, 1), then
N2vy, Nv1,v1, Nva, vy, vs is a basis for F°.
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Bases for Nilpotent Operators

Example 2: Let N € £(F®) be the nilpotent operator
N(Zl,22,23,24,25,26) = (0,21,22,0,24, 0)

There is no v such that N°v, N*v, N3v, N2v, Nv, v forms a basis...

However for
vi = (1,0,0,0,0,0),v, = (0,0,0,1,0,0),v; = (0,0,0,0,0, 1), then
N2vy, Nv1,v1, Nva, vy, vs is a basis for F°.

The matrix is

010 00 ©
00 1 00 O
000 00 ©
000 01) 0
000 (oo)o
000 00 (0
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Bases for Nilpotent Operators

Suppose N € L(V) is nilpotent. Then there exists vectors

vi,...,Vp € V and nonnegative integers myq, ..., my such that
BNy, Nvg, v, Ny, Nvp, vy s a basis of V;
m NMtly, = = Nmtly, = 0.

FD - MATH 110 - August 3, 2023 7/19



Bases for Nilpotent Operators

Suppose N € L(V) is nilpotent. Then there exists vectors

vi,...,Vp € V and nonnegative integers myq, ..., my such that
BNy, Nvg, v, Ny, Nvp, vy s a basis of V;
m NMtly, = = Nmtly, = 0.

Proof.
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Bases for Nilpotent Operators

Suppose N € L(V) is nilpotent. Then there exists vectors

vi,...,Vp € V and nonnegative integers myq, ..., my such that
BNy, Nvg, v, Ny, Nvp, vy s a basis of V;
m NMtly, = = Nmtly, = 0.

Proof. We will use induction on dim V.
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Bases for Nilpotent Operators

Suppose N € L(V) is nilpotent. Then there exists vectors

vi,...,Vp € V and nonnegative integers myq, ..., my such that
BNy, Nvg, v, Ny, Nvp, vy s a basis of V;
m NMtly, = = Nmtly, = 0.

Proof. We will use induction on dim V.

Base case: dim V = 1, the only nilpotent operator is 0. Take v to be
any non-zero vector and my = 0.
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Bases for Nilpotent Operators

Suppose N € L(V) is nilpotent. Then there exists vectors

vi,...,Vp € V and nonnegative integers myq, ..., my such that
BNy, Nvg, v, Ny, Nvp, vy s a basis of V;
m NMtly, = = Nmtly, = 0.

Proof. We will use induction on dim V.

Base case: dim V = 1, the only nilpotent operator is 0. Take v to be
any non-zero vector and my = 0.

Now assume true for dimV < n.
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Bases for Nilpotent Operators

Suppose N € L(V) is nilpotent. Then there exists vectors

vi,...,Vp € V and nonnegative integers myq, ..., my such that
BNy, Nvg, v, Ny, Nvp, vy s a basis of V;
m NMtly, = = Nmtly, = 0.

Proof. We will use induction on dim V.

Base case: dim V = 1, the only nilpotent operator is 0. Take v to be
any non-zero vector and my = 0.

Now assume true for dimV < n.

N is nilpotent and so not injective nor surjective.
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Bases for Nilpotent Operators

Suppose N € L(V) is nilpotent. Then there exists vectors

vi,...,Vp € V and nonnegative integers myq, ..., my such that
BNy, Nvg, v, Ny, Nvp, vy s a basis of V;
m NMtly, = = Nmtly, = 0.

Proof. We will use induction on dim V.

Base case: dim V = 1, the only nilpotent operator is 0. Take v to be
any non-zero vector and my = 0.

Now assume true for dimV < n.
N is nilpotent and so not injective nor surjective.

Consider N|range v € L(range N).
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Bases for Nilpotent Operators

Suppose N € L(V) is nilpotent. Then there exists vectors

vi,...,Vp € V and nonnegative integers myq, ..., my such that
BNy, Nvg, v, Ny, Nvp, vy s a basis of V;
m NMtly, = = Nmtly, = 0.

Proof. We will use induction on dim V.

Base case: dim V = 1, the only nilpotent operator is 0. Take v to be
any non-zero vector and my = 0.

Now assume true for dimV < n.
N is nilpotent and so not injective nor surjective.

Consider N|range v € L(range N). (Why can we ignore range N = {0}?)

FD - MATH 110 - August 3, 2023 7/19



Bases for Nilpotent Operators
Proof (contd). Consider N|range v € £(range N)...
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Bases for Nilpotent Operators
Proof (contd). Consider N|range v € £(range N)...

Using our induction hypothesis,
Ny Ny v, N Y NV, v,

is a basis of range N C V with N™1+1y, = . = N™Fly, — 0.
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Bases for Nilpotent Operators
Proof (contd). Consider N|range v € £(range N)...

Using our induction hypothesis,
Ny Ny v, N Y NV, v,

is a basis of range N C V with N™1+1y, = . = N™Fly, — 0.

Since each v; € range N, there is a u; such that v; = Nu;.
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Bases for Nilpotent Operators
Proof (contd). Consider N|range v € £(range N)...

Using our induction hypothesis,
Ny Ny v, N Y NV, v,

is a basis of range N C V with N™1+1y, = . = N™Fly, — 0.

Since each v; € range N, there is a u; such that v; = Nu;.

1 mp+1
Ny Nug,ug, . N™ T, Nup, un
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Bases for Nilpotent Operators
Proof (contd). Consider N|range v € £(range N)...

Using our induction hypothesis,
Ny Ny v, N Y NV, v,

is a basis of range N C V with N™1+1y, = . = N™Fly, — 0.

Since each v; € range N, there is a u; such that v; = Nu;.
my+1 mnp+1
Ny Nug,ug, . N™ T, Nup, un

We claim this list is linearly independent in V.
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Bases for Nilpotent Operators
Proof (contd). Consider N|range v € £(range N)...

Using our induction hypothesis,
Ny Ny v, N Y NV, v,

is a basis of range N C V with N™1+1y, = . = N™Fly, — 0.

Since each v; € range N, there is a u; such that v; = Nu;.
my+1 mnp+1
Ny Nug,ug, . N™ T, Nup, un

We claim this list is linearly independent in V.
m Write out a linear combo equaling 0.
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Bases for Nilpotent Operators
Proof (contd). Consider N|range v € £(range N)...

Using our induction hypothesis,
Ny Ny v, N Y NV, v,

is a basis of range N C V with N™1+1y, = . = N™Fly, — 0.

Since each v; € range N, there is a u; such that v; = Nu;.
my+1 mnp+1
Ny Nug,ug, . N™ T, Nup, un

We claim this list is linearly independent in V.
m Write out a linear combo equaling 0.
m Apply N.
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Bases for Nilpotent Operators
Proof (contd). Consider N|range v € £(range N)...

Using our induction hypothesis,
Ny Ny v, N Y NV, v,

is a basis of range N C V with N™1+1y, = . = N™Fly, — 0.

Since each v; € range N, there is a u; such that v; = Nu;.
my+1 mnp+1
Ny Nug,ug, . N™ T, Nup, un

We claim this list is linearly independent in V.
m Write out a linear combo equaling 0.
m Apply N.
m All coefficients except possibly those in front of N’"f+1u§s are 0.
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Bases for Nilpotent Operators
Proof (cont'd). Consider N|range v € £(range N)...

Using our induction hypothesis,
Ny Ny v, N Y NV, v,
is a basis of range N C V with N™1+1y, = . = N™Fly, — 0.
Since each v; € range N, there is a u; such that v; = Nu;.
Ny oo Nug,ug, . N Nup, U

We claim this list is linearly independent in V.
m Write out a linear combo equaling 0.
m Apply N.
m All coefficients except possibly those in front of N’”i+1u§s are 0.
m The Nmf“u;s = NMiy; are linearly independent.
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Bases for Nilpotent Operators

So we have

my+1 mp+1
N™H Ly oo Nug,ug, . N™ o Nup, ug
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Bases for Nilpotent Operators

So we have
1 1
N™H Ly oo Nug,ug, . N™ o Nup, ug
Extend to a basis of V:

my+1 mp+1
N uq, oo Nug U, N up, o N, Uy W, . Wy
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Bases for Nilpotent Operators

So we have
Ny Nug,ug, . N Nup, U
Extend to a basis of V:
N™F Ly Nug,ug, e NP N, Us, W, W

Nw; € range N,
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Bases for Nilpotent Operators

So we have
Ny Nug,ug, . N Nup, U
Extend to a basis of V:
N™F Ly Nug,ug, e NP N, Us, W, W

Nw; € range N, so there is some x; € the span of the vectors in the
previous list such that Nw; = Nx;.
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Bases for Nilpotent Operators

So we have
Ny Nug,ug, . N Nup, U
Extend to a basis of V:
N™F Ly Nug,ug, e NP N, Us, W, W

Nw; € range N, so there is some x; € the span of the vectors in the
previous list such that Nw; = Nx;.

Untj = Wj = Xj
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Bases for Nilpotent Operators

So we have
Ny Nug,ug, . N Nup, U
Extend to a basis of V:
N™F Ly Nug,ug, e NP N, Us, W, W

Nw; € range N, so there is some x; € the span of the vectors in the
previous list such that Nw; = Nx;.

Untj = Wj = Xj

Then
1. Nun+j = O
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Bases for Nilpotent Operators

So we have
Ny Nug,ug, . N Nup, U
Extend to a basis of V:
N™F Ly Nug,ug, e NP N, Us, W, W

Nw; € range N, so there is some x; € the span of the vectors in the
previous list such that Nw; = Nx;.

Untj = Wj = Xj

Then
1. Nun+j = O
2. Nm1+1U1, e ,NU1, U1, ceey Nmn+1u“, ceey Nu,'h Un, u”+17 ceey Un+p
spans V
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Bases for Nilpotent Operators

So we have
Ny Nug,ug, . N Nup, U
Extend to a basis of V:
N™F Ly Nug,ug, e NP N, Us, W, W

Nw; € range N, so there is some x; € the span of the vectors in the
previous list such that Nw; = Nx;.

Untj = Wj = Xj

Then
1. Nun+j — O
2. Nm1+1U1, o« e ,NU1, U1, ceey Nmn+1u“, ceey Nu,'h Un7 u”+17 ceey Un+p
spans V (because span contains x; and u,; SO contains w;).
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Bases for Nilpotent Operators
So we have
Ny Nug,ug, . N Nup, U
Extend to a basis of V:
N™F Ly Nug,ug, e NP N, Us, W, W

Nw; € range N, so there is some x; € the span of the vectors in the
previous list such that Nw; = Nx;.

Unij = Wj — X;
Then
1. Nun+j — O
2. Nm1+1U1, o« e ,NU1, U1, ceey Nmn+1u“, ceey Nu,'h Un7 u”+17 ceey Un+p
spans V (because span contains x; and u,; SO contains w;).
Thus, we have a basis of the desired form. [.
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Jordan Form

Suppose V is a complex vector space. If T € L(V), then there is a
basis of V that is a Jordan basis for T.
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Jordan Form

Suppose V is a complex vector space. If T € L(V), then there is a
basis of V that is a Jordan basis for T.

Proof.
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Jordan Form

Suppose V is a complex vector space. If T € L(V), then there is a
basis of V that is a Jordan basis for T.

Proof. If the operator is nilpotent, the previous result gives us a basis.
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Jordan Form

Suppose V is a complex vector space. If T € L(V), then there is a
basis of V that is a Jordan basis for T.

Proof. If the operator is nilpotent, the previous result gives us a basis.

The matrix with respect to this basis is Jordan block’s with zeros on
the diagonal.
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Jordan Form

Suppose V is a complex vector space. If T € L(V), then there is a
basis of V that is a Jordan basis for T.

Proof. If the operator is nilpotent, the previous result gives us a basis.

The matrix with respect to this basis is Jordan block’s with zeros on
the diagonal.

Now for T not nilpotent, we have V = G(A, T) & ... ® G(Apm, T)
where (T — Ajl)|g(,, ) are nilpotent.
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Jordan Form

Suppose V is a complex vector space. If T € L(V), then there is a
basis of V that is a Jordan basis for T.

Proof. If the operator is nilpotent, the previous result gives us a basis.

The matrix with respect to this basis is Jordan block’s with zeros on
the diagonal.

Now for T not nilpotent, we have V = G(A, T) & ... ® G(Apm, T)
where (T — Ajl)|g(,, ) are nilpotent.

Add the \s along the diagonal. Done. L.
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Example

Before we saw

R NO OO
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Example

Before we saw

O O OO M
, NO OO

Its Jordan form is

~—

OO OO M
7N
OO O NO
R =, O 0O
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Jordan Form
We can actually say a bit more about what the Jordan form looks like:
m Each Jordan block has basis (T — \)"v;, ..., (T — Nl)v;, v;
where m; is such that (T — )\jl)mf+1\/j =0.
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Jordan Form
We can actually say a bit more about what the Jordan form looks like:
m Each Jordan block has basis (T — \)"v;, ..., (T — Nl)v;, v;
where m; is such that (T — )\jl)’”ﬂrlvj =0.
m So (T — \j/)™v; is an eigenvector with eigenvalue ;.

FD - MATH 110 - August 3, 2023 12/19



Jordan Form
We can actually say a bit more about what the Jordan form looks like:
m Each Jordan block has basis (T — \)"v;, ..., (T — Nl)v;, v;
where m; is such that (T — \;/)™+1y; = 0.
m So (T — \j/)™v; is an eigenvector with eigenvalue ;.
m Thus, the dimension of the eigenspace gives us the number of
Jordan blocks associated to \;.
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Jordan Form
We can actually say a bit more about what the Jordan form looks like:
m Each Jordan block has basis (T — \)"v;, ..., (T — Nl)v;, v;
where m; is such that (T — \;/)™+1y; = 0.
m So (T — \j/)™v; is an eigenvector with eigenvalue ;.
m Thus, the dimension of the eigenspace gives us the number of
Jordan blocks associated to \;.

Summary:
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Jordan Form
We can actually say a bit more about what the Jordan form looks like:
m Each Jordan block has basis (T — \)"v;, ..., (T — Nl)v;, v;
where m; is such that (T — \;/)™+1y; = 0.
m So (T — \j/)™v; is an eigenvector with eigenvalue ;.
m Thus, the dimension of the eigenspace gives us the number of
Jordan blocks associated to \;.

Summary:

m There are as many ), as the algebraic multiplicity or the
dimG(\;, 7).

m The number of Jordan blocks is given by the eigenspace
dimension or geometric multiplicity.
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Jordan Form
We can actually say a bit more about what the Jordan form looks like:
m Each Jordan block has basis (T — \)"v;, ..., (T — Nl)v;, v;
where m; is such that (T — \;/)™+1y; = 0.
m So (T — \j/)™v; is an eigenvector with eigenvalue ;.
m Thus, the dimension of the eigenspace gives us the number of
Jordan blocks associated to \;.

Summary:
m There are as many ), as the algebraic multiplicity or the
dimG(\;, 7).
m The number of Jordan blocks is given by the eigenspace
dimension or geometric multiplicity.

m The size of the largest Jordan block is given by the power of
(z — Aj) in the minimal polynomial.
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Jordan Form
We can actually say a bit more about what the Jordan form looks like:
m Each Jordan block has basis (T — \)"v;, ..., (T — Nl)v;, v;
where m; is such that (T — \;/)™+1y; = 0.
m So (T — \j/)™v; is an eigenvector with eigenvalue ;.
m Thus, the dimension of the eigenspace gives us the number of
Jordan blocks associated to \;.

Summary:

m There are as many ), as the algebraic multiplicity or the
dimG(\;, 7).

m The number of Jordan blocks is given by the eigenspace
dimension or geometric multiplicity .

m The size of the largest Jordan block is given by the power of
(z — Aj) in the minimal polynomial.

m p(J;) = 0 < (z— N))?|p(z) where d is the size of the Jordan block Jj.
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Example

Given the characteristic polynomial is (z — 5)%(z — 3)(z — 1)® and the
minimal polynomial is (z — 5)(z — 3)(z — 1). What is the Jordan form?
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Example

Given the characteristic polynomial is (z — 5)%(z — 3)(z — 1)® and the
minimal polynomial is (z — 5)(z — 3)(z — 1). What is the Jordan form?

What if the minimal polynomial was instead (z — 5)?(z — 3)(z — 1)??
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Break

TEN MINUTES LATER




Discussion Questions

1. Suppose V is a complex vector space, N € £(V) and 0 is the only
eigenvalue of N. Prove that N is nilpotent.

2. Give an example of an operator T on a finite-dimensional real
vector space such that O is the only eigenvalue of T but T is not
nilpotent.

3. Suppose T € £(C*) is such that the eigenvalues of T are 3,4, 5.
Prove that (T — 3/)%(T — 5/)%(T — 4/)?> = 0.

4. Find examples of operators on C* such that
4.1 The char poly is (z— 1)(z—5)* and the min poly is (z—1)(z — 5).
4.2 Both polys are z(z — 1)%(z — 3)
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Discussion Questions

5. Suppose T € L(V). Prove that T is invertible if and only if the
constant term in the minimal polynomial is nonzero.

6. Suppose T € L(V) has minimal polynomial
4457 — 62> —72° + 27* + 7°. Find the minimal polynomial of
T

7. Suppose V is an inner product space and T € L(V). Suppose
ap+ a1z + ...+ ap_12""1 + apz™ is the minimal polynomial of
T. Prove that dy + 1z + ... + ap_12""1 + 2™ is the minimal
polynomial of T*.

8. What is the Jordan form for the operator on C> given by
T(x,y,z) = (3x +4y + 72,3y +72,2z)?
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Discussion Question Hints/Solutions

1. Our description of operators on complex vector spaces says that
V =G(0,T) = null (T — 0/)4™V = null T9™V Thus, T is
nilpotent.

2. T(x,y,z) = (—y,x,0) works.

3. The multiplicity of the eigenvalues must sum to 4. Characteristic
polynomial is (z — 3)%(z — 4)%(z — 5)¢ where a + b + ¢ = 4. This
polynomial will divide the given polynomial. By
Cayley-Hamilton, we have result.

4. Consider T(z1,23,23,24) = (21,52 + 24, 523, 524) for the first one
and T(z1,23,23,24) = (0,2, + z3, 23, 324) for the second.
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Discussion Question Hints/Solutions

5. Tis invertible if and only if O is not an eigenvalue. Notice that
this is equivalent to the constant term being nonzero in the
minimal polynomial because its roots are the eigenvalues.

6. Multiply both sides by T—> and divide by 4 to get
2 +5/4z% —3/22% —7)22* + 1/4z 4+ 1/4.

7. Take the adjoint of both sides of the equation with T plugged in.
If there were another polynomial of lower degree, we could do
the same process and contradict our choice of minimal
polynomial for T.

2 00

8. 0 31

0 0 3
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