Lecture 26: Determinant

MATH 110-3

Franny Dean

August 7, 2023

Determinant of an Operator

Def'n:

Suppose $T \in \mathcal{L}(V)$ and V is a \mathbb{C} vector space. The determinant of T, denoted $\operatorname{det} T$, is the product of the eigenvalues of T each repeated according to its algebraic multiplicity.

Determinant of an Operator

Def'n:

Suppose $T \in \mathcal{L}(V)$ and V is a \mathbb{C} vector space. The determinant of T, denoted $\operatorname{det} T$, is the product of the eigenvalues of T each repeated according to its algebraic multiplicity.

Examples: Let $T \in \mathcal{L}\left(\mathbb{C}^{3}\right)$ such that

$$
\mathcal{M}(T)=\left(\begin{array}{ccc}
3 & -1 & -2 \\
3 & 2 & -3 \\
1 & 2 & 0
\end{array}\right) .
$$

Determinant of an Operator

Def'n:

Suppose $T \in \mathcal{L}(V)$ and V is a \mathbb{C} vector space. The determinant of T, denoted det T, is the product of the eigenvalues of T each repeated according to its algebraic multiplicity.

Examples: Let $T \in \mathcal{L}\left(\mathbb{C}^{3}\right)$ such that

$$
\mathcal{M}(T)=\left(\begin{array}{ccc}
3 & -1 & -2 \\
3 & 2 & -3 \\
1 & 2 & 0
\end{array}\right)
$$

Then the eigenvalues are $1,2+3 i, 2-3 i$ and the determinant is $\operatorname{det} T=1 \cdot(2+3 i) \cdot(2-3 i)=13$.

Determinant of an Operator

Def'n:

Suppose $T \in \mathcal{L}(V)$ and V is a \mathbb{C} vector space. The determinant of T, denoted $\operatorname{det} T$, is the product of the eigenvalues of T each repeated according to its algebraic multiplicity.

Examples:

Determinant of an Operator

Def'n:

Suppose $T \in \mathcal{L}(V)$ and V is a \mathbb{C} vector space. The determinant of T, denoted $\operatorname{det} T$, is the product of the eigenvalues of T each repeated according to its algebraic multiplicity.

Examples: Let $T \in \mathcal{L}\left(\mathbb{C}^{3}\right)$ such that

$$
\mathcal{M}(T)=\left(\begin{array}{ccc}
6 & 4 & 2 \\
0 & 2 & -3 \\
0 & 0 & 2
\end{array}\right)
$$

Determinant of an Operator

Def'n:

Suppose $T \in \mathcal{L}(V)$ and V is a \mathbb{C} vector space. The determinant of T, denoted $\operatorname{det} T$, is the product of the eigenvalues of T each repeated according to its algebraic multiplicity.

Examples: Let $T \in \mathcal{L}\left(\mathbb{C}^{3}\right)$ such that

$$
\mathcal{M}(T)=\left(\begin{array}{ccc}
6 & 4 & 2 \\
0 & 2 & -3 \\
0 & 0 & 2
\end{array}\right)
$$

Then the eigenvalues are 6,2 and the determinant is $\operatorname{det} T=6 \cdot 2 \cdot 2=24$.

Determinant and the Characteristic Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$ and $\operatorname{dim} V=n$. Then $\operatorname{det} T$ equals $(-1)^{n}$ times the constant term of the characteristic polynomial of T.

Determinant and the Characteristic Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$ and $\operatorname{dim} V=n$. Then $\operatorname{det} T$ equals $(-1)^{n}$ times the constant term of the characteristic polynomial of T.

Recall: The characteristic polynomial is

$$
\left(z-\lambda_{1}\right) \cdots\left(z-\lambda_{n}\right)
$$

Determinant and the Characteristic Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$ and $\operatorname{dim} V=n$. Then $\operatorname{det} T$ equals $(-1)^{n}$ times the constant term of the characteristic polynomial of T.

Recall: The characteristic polynomial is

$$
\left(z-\lambda_{1}\right) \cdots\left(z-\lambda_{n}\right)
$$

which is

$$
z^{n}-\left(\lambda_{1}+\ldots+\lambda_{n}\right) z^{n-1}+\ldots+(-1)^{n}\left(\lambda_{1} \cdots \lambda_{n}\right)
$$

Determinant and the Characteristic Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$ and $\operatorname{dim} V=n$. Then $\operatorname{det} T$ equals $(-1)^{n}$ times the constant term of the characteristic polynomial of T.

Recall: The characteristic polynomial is

$$
\left(z-\lambda_{1}\right) \cdots\left(z-\lambda_{n}\right)
$$

which is

$$
z^{n}-\left(\lambda_{1}+\ldots+\lambda_{n}\right) z^{n-1}+\ldots+(-1)^{n}\left(\lambda_{1} \cdots \lambda_{n}\right)
$$

or

$$
z^{n}-(\operatorname{trace} T) z^{n-1}+\ldots+(-1)^{n}(\operatorname{det} T)
$$

Determinant and the Characteristic Polynomial

Prop'n:

An operator on V is invertible if and only if its determinant is nonzero.

Determinant and the Characteristic Polynomial

Prop'n:

An operator on V is invertible if and only if its determinant is nonzero.
Proof.

Determinant and the Characteristic Polynomial

Prop'n:

An operator on V is invertible if and only if its determinant is nonzero.
Proof. T is invertible if and only if 0 is not an eigenvalue.

Determinant and the Characteristic Polynomial

Prop'n:

An operator on V is invertible if and only if its determinant is nonzero.
Proof. T is invertible if and only if 0 is not an eigenvalue. Why?

Determinant and the Characteristic Polynomial

Prop'n:

An operator on V is invertible if and only if its determinant is nonzero.
Proof. T is invertible if and only if 0 is not an eigenvalue. Why?
Thus, T is invertible if and only if the determinant is non-zero. \square.

Determinant and the Characteristic Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$. Then the characteristic polynomial of T equals $\operatorname{det}(z l-T)$.

Determinant and the Characteristic Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$. Then the characteristic polynomial of T equals $\operatorname{det}(z l-T)$.

Proof.

Determinant and the Characteristic Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$. Then the characteristic polynomial of T equals $\operatorname{det}(z l-T)$.

Proof. We will show for V a \mathbb{C} vector space.

Determinant and the Characteristic Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$. Then the characteristic polynomial of T equals $\operatorname{det}(z l-T)$.

Proof. We will show for V a \mathbb{C} vector space.
$\lambda, z \in \mathbb{C}$ then λ is an eigenvalue of T if and only if $z-\lambda$ is an eigenvalue of $z l-T$:

Determinant and the Characteristic Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$. Then the characteristic polynomial of T equals $\operatorname{det}(z l-T)$.

Proof. We will show for V a \mathbb{C} vector space.
$\lambda, z \in \mathbb{C}$ then λ is an eigenvalue of T if and only if $z-\lambda$ is an eigenvalue of $z l-T$:

$$
-(T-\lambda I)=(z I-T)-(z-\lambda) /
$$

Determinant and the Characteristic Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$. Then the characteristic polynomial of T equals $\operatorname{det}(z l-T)$.

Proof. We will show for V a \mathbb{C} vector space.
$\lambda, z \in \mathbb{C}$ then λ is an eigenvalue of T if and only if $z-\lambda$ is an eigenvalue of $z l-T$:

$$
-(T-\lambda I)=(z I-T)-(z-\lambda) /
$$

Then

$$
\operatorname{null}(-(T-\lambda /))^{\operatorname{dim} V}=\operatorname{null}((z I-T)-(z-\lambda) /)^{\operatorname{dim} V}
$$

Determinant and the Characteristic Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$. Then the characteristic polynomial of T equals $\operatorname{det}(z l-T)$.

Proof. We will show for V a \mathbb{C} vector space.
$\lambda, z \in \mathbb{C}$ then λ is an eigenvalue of T if and only if $z-\lambda$ is an eigenvalue of $z l-T$:

$$
-(T-\lambda /)=(z I-T)-(z-\lambda) /
$$

Then

$$
\operatorname{null}(-(T-\lambda /))^{\operatorname{dim} V}=\operatorname{null}((z I-T)-(z-\lambda) /)^{\operatorname{dim} V}
$$

and the generalized eigenspace of λ for T is the same dimension as the generalized eigenspace for $z-\lambda$ for $z l-T$.

Determinant and the Characteristic Polynomial

Prop'n:

Suppose $T \in \mathcal{L}(V)$. Then the characteristic polynomial of T equals $\operatorname{det}(z I-T)$.

Proof. We will show for V a \mathbb{C} vector space.
$\lambda, z \in \mathbb{C}$ then λ is an eigenvalue of T if and only if $z-\lambda$ is an eigenvalue of $z l-T$:

$$
-(T-\lambda /)=(z I-T)-(z-\lambda) /
$$

Then

$$
\operatorname{null}(-(T-\lambda /))^{\operatorname{dim} V}=\operatorname{null}((z I-T)-(z-\lambda) /)^{\operatorname{dim} V}
$$

and the generalized eigenspace of λ for T is the same dimension as the generalized eigenspace for $z-\lambda$ for $z l-T$.
Then

Determinant of a Matrix

Goal: Compute the determinant from a matrix, have it be the same with respect to any basis so that $\operatorname{det} T=\operatorname{det} \mathcal{M}(T)$.

Determinant of a Matrix

Goal: Compute the determinant from a matrix, have it be the same with respect to any basis so that $\operatorname{det} T=\operatorname{det} \mathcal{M}(T)$.

Sadly, product of diagonal entries does not work as a definition...

Determinant of a Matrix

Goal: Compute the determinant from a matrix, have it be the same with respect to any basis so that $\operatorname{det} T=\operatorname{det} \mathcal{M}(T)$.

Sadly, product of diagonal entries does not work as a definition...
We need permutations!

Detour: Permutations

Def'n:

- A permutation of $(1,2, \ldots, n)$ is a list $\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ that contains each of the numbers $1,2, \ldots, n$ exactly once.

Detour: Permutations

Def'n:

■ A permutation of $(1,2, \ldots, n)$ is a list $\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ that contains each of the numbers $1,2, \ldots, n$ exactly once.
■ We will denote the set of all permutations of $(1,2, \ldots, n)$ as perm n.

Detour: Permutations

Def'n:

■ A permutation of $(1,2, \ldots, n)$ is a list $\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ that contains each of the numbers $1,2, \ldots, n$ exactly once.
■ We will denote the set of all permutations of $(1,2, \ldots, n)$ as perm n.

Examples:

Detour: Permutations

Def'n:

■ A permutation of $(1,2, \ldots, n)$ is a list $\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ that contains each of the numbers $1,2, \ldots, n$ exactly once.
■ We will denote the set of all permutations of $(1,2, \ldots, n)$ as perm n.

Examples:

■ $(2,3,1,5,6,7,4,9,8)$ is a permutation on $1, \ldots, 9$

Detour: Permutations

Def'n:

■ A permutation of $(1,2, \ldots, n)$ is a list $\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ that contains each of the numbers $1,2, \ldots, n$ exactly once.
■ We will denote the set of all permutations of $(1,2, \ldots, n)$ as perm n.

Examples:

■ $(2,3,1,5,6,7,4,9,8)$ is a permutation on $1, \ldots, 9$
■ $(2,4,6,1,3,5)$ is a permutation on $1, \ldots, 6$

Detour: Permutations

Def'n:

■ A permutation of $(1,2, \ldots, n)$ is a list $\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ that contains each of the numbers $1,2, \ldots, n$ exactly once.
■ We will denote the set of all permutations of $(1,2, \ldots, n)$ as perm n.

Examples:

■ $(2,3,1,5,6,7,4,9,8)$ is a permutation on $1, \ldots, 9$

- $(2,4,6,1,3,5)$ is a permutation on $1, \ldots, 6$

■ Consider as a reordering of n items

Detour: Permutations

Def'n:

■ A permutation of $(1,2, \ldots, n)$ is a list $\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ that contains each of the numbers $1,2, \ldots, n$ exactly once.
■ We will denote the set of all permutations of $(1,2, \ldots, n)$ as perm n.

Examples:

■ $(2,3,1,5,6,7,4,9,8)$ is a permutation on $1, \ldots, 9$

- $(2,4,6,1,3,5)$ is a permutation on $1, \ldots, 6$

■ Consider as a reordering of n items

Detour: Permutations

Def'n:

The sign of a permutation $\left(m_{1}, \ldots, m_{n}\right)$ is defined to be 1 if the number of pairs of integers (j, k) with $j<k$ such that j appears after k is even and -1 if it is odd.

Detour: Permutations

Def'n:

The sign of a permutation $\left(m_{1}, \ldots, m_{n}\right)$ is defined to be 1 if the number of pairs of integers (j, k) with $j<k$ such that j appears after k is even and -1 if it is odd.

Examples:

Detour: Permutations

Def'n:

The sign of a permutation $\left(m_{1}, \ldots, m_{n}\right)$ is defined to be 1 if the number of pairs of integers (j, k) with $j<k$ such that j appears after k is even and -1 if it is odd.

Examples:

- $(2,3,1,5,6,7,4,9,8)$ is sign 1 as there are 6 such pairs

Detour: Permutations

Def'n:

The sign of a permutation $\left(m_{1}, \ldots, m_{n}\right)$ is defined to be 1 if the number of pairs of integers (j, k) with $j<k$ such that j appears after k is even and -1 if it is odd.

Examples:

- $(2,3,1,5,6,7,4,9,8)$ is sign 1 as there are 6 such pairs

■ ($2,4,6,1,3,5)$ is sign 1 as there are 6 such pairs

Determinant of a Matrix

Def'n:

Suppose A is an $n \times n$ matrix $A=\left(A_{i, j}\right)$. The determinant of A, denoted $\operatorname{det} A$, is defined by

$$
\operatorname{det} A=\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm} n}\left(\operatorname{sign}\left(m_{1}, \ldots, m_{n}\right)\right) A_{m_{1}, 1} \cdots A_{m_{n}, n} .
$$

Determinant of a Matrix

Def'n:

Suppose A is an $n \times n$ matrix $A=\left(A_{i, j}\right)$. The determinant of A, denoted $\operatorname{det} A$, is defined by

$$
\operatorname{det} A=\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm} n}\left(\operatorname{sign}\left(m_{1}, \ldots, m_{n}\right)\right) A_{m_{1}, 1} \cdots A_{m_{n}, n} .
$$

- 1×1 matrix: $\operatorname{det} A=A_{1,1}$

Determinant of a Matrix

Def'n:

Suppose A is an $n \times n$ matrix $A=\left(A_{i, j}\right)$. The determinant of A, denoted $\operatorname{det} A$, is defined by

$$
\operatorname{det} A=\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm} n}\left(\operatorname{sign}\left(m_{1}, \ldots, m_{n}\right)\right) A_{m_{1}, 1} \cdots A_{m_{n}, n} .
$$

■ 1×1 matrix: $\operatorname{det} A=A_{1,1}$

- 2×2 matrix: the two elements of perm 2 give

$$
\operatorname{det}\left(\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right)=A_{1,1} A_{2,2}-A_{2,1} A_{1,2}
$$

Determinant of a Matrix

Def'n:

Suppose A is an $n \times n$ matrix $A=\left(A_{i, j}\right)$. The determinant of A, denoted $\operatorname{det} A$, is defined by

$$
\operatorname{det} A=\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm} n}\left(\operatorname{sign}\left(m_{1}, \ldots, m_{n}\right)\right) A_{m_{1}, 1} \cdots A_{m_{n}, n} .
$$

■ 3×3 matrix:

Determinant of a Matrix

Def'n:

Suppose A is an $n \times n$ matrix $A=\left(A_{i, j}\right)$. The determinant of A, denoted $\operatorname{det} A$, is defined by

$$
\operatorname{det} A=\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm} n}\left(\operatorname{sign}\left(m_{1}, \ldots, m_{n}\right)\right) A_{m_{1}, 1} \cdots A_{m_{n}, n} .
$$

■ 3×3 matrix: list elements in perm 3 .

Determinant of a Matrix

Def'n:

Suppose A is an $n \times n$ matrix $A=\left(A_{i, j}\right)$. The determinant of A, denoted $\operatorname{det} A$, is defined by

$$
\operatorname{det} A=\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm} n}\left(\operatorname{sign}\left(m_{1}, \ldots, m_{n}\right)\right) A_{m_{1}, 1} \cdots A_{m_{n}, n} .
$$

■ 3×3 matrix: list elements in perm 3. Calculate sign.

Determinant of a Matrix

Def'n:

Suppose A is an $n \times n$ matrix $A=\left(A_{i, j}\right)$. The determinant of A, denoted $\operatorname{det} A$, is defined by

$$
\operatorname{det} A=\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm} n}\left(\operatorname{sign}\left(m_{1}, \ldots, m_{n}\right)\right) A_{m_{1}, 1} \cdots A_{m_{n}, n} .
$$

■ 3×3 matrix: list elements in perm 3. Calculate sign. Definition matches cofactor expansion.
■ Upper triangular matrix:

Determinant of a Matrix

Def'n:

Suppose A is an $n \times n$ matrix $A=\left(A_{i, j}\right)$. The determinant of A, denoted $\operatorname{det} A$, is defined by

$$
\operatorname{det} A=\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm} n}\left(\operatorname{sign}\left(m_{1}, \ldots, m_{n}\right)\right) A_{m_{1}, 1} \cdots A_{m_{n}, n} .
$$

■ 3×3 matrix: list elements in perm 3. Calculate sign. Definition matches cofactor expansion.
■ Upper triangular matrix: only permutation with no entries below the diagonal is $(1,2, \ldots, n)$ giving the diagonal.

Determinant of a Matrix

Lemma:

Interchanging two entries in a permutation multiplies the sign of the permutation by -1 .

Determinant of a Matrix

Lemma:

Interchanging two entries in a permutation multiplies the sign of the permutation by -1 .

Lemma:

Interchanging two columns changes the sign of the determinant.

Determinant of a Matrix

Lemma:

Interchanging two entries in a permutation multiplies the sign of the permutation by -1 .

Lemma:

Interchanging two columns changes the sign of the determinant.
Why?

Determinant of a Matrix

Lemma:

Interchanging two entries in a permutation multiplies the sign of the permutation by -1 .

Lemma:

Interchanging two columns changes the sign of the determinant.
Why? Same products of entries appear in the determinant of both matrices,

Determinant of a Matrix

Lemma:

Interchanging two entries in a permutation multiplies the sign of the permutation by -1 .

Lemma:

Interchanging two columns changes the sign of the determinant.
Why? Same products of entries appear in the determinant of both matrices, but the permutations corresponding to each will have one entry flipped.

Lemma:

If two columns of a matrix A are equal, then $\operatorname{det} A=0$.

Determinant of a Matrix

Lemma:

Interchanging two entries in a permutation multiplies the sign of the permutation by -1 .

Lemma:

Interchanging two columns changes the sign of the determinant.
Why? Same products of entries appear in the determinant of both matrices, but the permutations corresponding to each will have one entry flipped.

Lemma:

If two columns of a matrix A are equal, then $\operatorname{det} A=0$.
Proof.

Determinant of a Matrix

Lemma:

Interchanging two entries in a permutation multiplies the sign of the permutation by -1 .

Lemma:

Interchanging two columns changes the sign of the determinant.
Why? Same products of entries appear in the determinant of both matrices, but the permutations corresponding to each will have one entry flipped.

Lemma:

If two columns of a matrix A are equal, then $\operatorname{det} A=0$.
Proof. $\operatorname{det} A=-\operatorname{det} A$ implies $\operatorname{det} A=0$.

Permuting the Columns of a Matrix

Recall our notation $A_{\cdot, l}$ for the $l^{\text {th }}$ column of a matrix A.

Permuting the Columns of a Matrix

Recall our notation $A_{, l}$ for the $l^{\text {th }}$ column of a matrix A.

Prop'n:

Let $A=\left(A_{, 1} \cdots A_{, n}\right)$, then

$$
\operatorname{det}\left(A_{,, m_{1}} \cdots A_{., m_{n}}\right)=\operatorname{sign}\left(\left(m_{1}, \ldots, m_{n}\right)\right) \operatorname{det} A .
$$

Permuting the Columns of a Matrix

Recall our notation $A_{, l}$ for the $l^{\text {th }}$ column of a matrix A.

Prop'n:

Let $A=\left(A_{, 1} \cdots A_{, n}\right)$, then

$$
\operatorname{det}\left(A_{\cdot, m_{1}} \cdots A_{\cdot, m_{n}}\right)=\operatorname{sign}\left(\left(m_{1}, \ldots, m_{n}\right)\right) \operatorname{det} A .
$$

Proof.

Permuting the Columns of a Matrix

Recall our notation $A_{, l}$ for the $l^{\text {th }}$ column of a matrix A.

Prop'n:

Let $A=\left(A_{\cdot, 1} \cdots A_{\cdot, n}\right)$, then

$$
\operatorname{det}\left(A_{\cdot, m_{1}} \cdots A_{\cdot, m_{n}}\right)=\operatorname{sign}\left(\left(m_{1}, \ldots, m_{n}\right)\right) \operatorname{det} A
$$

Proof.
We can turn A into $\left(A_{\cdot, m_{1}} \cdots A_{\cdot, m_{n}}\right)$ by re-ordering the columns one by one.

Permuting the Columns of a Matrix

Recall our notation $A_{\text {., }}$ for the $l^{t h}$ column of a matrix A.
Prop'n:
Let $A=\left(A_{\cdot, 1} \cdots A_{\cdot, n}\right)$, then

$$
\operatorname{det}\left(A_{\cdot, m_{1}} \cdots A_{\cdot, m_{n}}\right)=\operatorname{sign}\left(\left(m_{1}, \ldots, m_{n}\right)\right) \operatorname{det} A
$$

Proof.
We can turn A into $\left(A_{\cdot}, m_{1} \cdots A_{\cdot}, m_{n}\right)$ by re-ordering the columns one by one.
Each step changes the sign of the determinant.

Permuting the Columns of a Matrix

Recall our notation A, l for the $l^{t h}$ column of a matrix A.
Prop'n:
Let $A=\left(A_{\cdot, 1} \cdots A_{\cdot, n}\right)$, then

$$
\operatorname{det}\left(A_{\cdot, m_{1}} \cdots A_{\cdot, m_{n}}\right)=\operatorname{sign}\left(\left(m_{1}, \ldots, m_{n}\right)\right) \operatorname{det} A
$$

Proof.
We can turn A into $\left(A_{\cdot, m_{1}} \cdots A_{\cdot, m_{n}}\right)$ by re-ordering the columns one by one.
Each step changes the sign of the determinant.
The number of steps being even corresponds to
sign $\left(\left(m_{1}, \ldots, m_{n}\right)\right)=1$ and the number of steps being odd corresponds to sign $\left(\left(m_{1}, \ldots, m_{n}\right)\right)=-1$.

Determinant is a Linear Function of Each Column

Prop'n:

Fix columns $A_{\cdot, 1}, \ldots, A_{\cdot, n}$ except for some column $A_{\cdot, k}$. Then the function that sends $A_{\cdot, k}$ to $\operatorname{det}(A)$ is linear

Determinant is a Linear Function of Each Column

Prop'n:

Fix columns $A_{\cdot, 1}, \ldots, A_{\cdot, n}$ except for some column $A_{\cdot, k}$. Then the function that sends $A_{\cdot, k}$ to $\operatorname{det}(A)$ is linear (from the vector space of $\mathbb{F}^{n, 1}$ matrices to \mathbb{F}).

Determinant is a Linear Function of Each Column

Prop'n:

Fix columns $A_{\cdot, 1}, \ldots, A_{\cdot, n}$ except for some column $A_{\cdot, k}$. Then the function that sends $A_{,, k}$ to $\operatorname{det}(A)$ is linear (from the vector space of $\mathbb{F}^{n, 1}$ matrices to \mathbb{F}).

Why?

Determinant is a Linear Function of Each Column

Prop'n:

Fix columns $A_{\cdot, 1}, \ldots, A_{\cdot, n}$ except for some column $A_{\cdot, k}$. Then the function that sends $A_{\cdot, k}$ to $\operatorname{det}(A)$ is linear (from the vector space of $\mathbb{F}^{n, 1}$ matrices to \mathbb{F}).

Why?
■ Recall

$$
\operatorname{det} A=\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm} n}\left(\operatorname{sign}\left(m_{1}, \ldots, m_{n}\right)\right) A_{m_{1}, 1} \cdots A_{m_{n}, n} .
$$

Determinant is a Linear Function of Each Column

Prop'n:

Fix columns $A_{\cdot, 1}, \ldots, A_{\cdot, n}$ except for some column $A_{\cdot, k}$. Then the function that sends $A_{\cdot, k}$ to $\operatorname{det}(A)$ is linear (from the vector space of $\mathbb{F}^{n, 1}$ matrices to \mathbb{F}).

Why?
■ Recall

$$
\operatorname{det} A=\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm} n}\left(\operatorname{sign}\left(m_{1}, \ldots, m_{n}\right)\right) A_{m_{1}, 1} \cdots A_{m_{n}, n} .
$$

■ Fixing all columns besides $A_{\cdot, k}$ this is, for some $c_{1}, \ldots, c_{n} \in \mathbb{F}$,

$$
\operatorname{det} A=c_{1} A_{1, k}+\ldots+c_{n} A_{n, k}
$$

Determinant is a Linear Function of Each Column

Prop'n:

Fix columns $A_{, 1,1}, \ldots, A_{,, n}$ except for some column $A_{, k}$. Then the function that sends A, k, to $\operatorname{det}(A)$ is linear (from the vector space of $\mathbb{F}^{n, 1}$ matrices to \mathbb{F}).

Why?
■ Recall

$$
\operatorname{det} A=\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm} n}\left(\operatorname{sign}\left(m_{1}, \ldots, m_{n}\right)\right) A_{m_{1}, 1} \cdots A_{m_{n}, n} .
$$

■ Fixing all columns besides $A_{\cdot, k}$ this is, for some $c_{1}, \ldots, c_{n} \in \mathbb{F}$,

$$
\operatorname{det} A=c_{1} A_{1, k}+\ldots+c_{n} A_{n, k}
$$

■ Where the c_{i} are of the form:

$$
\sum \operatorname{sign} \text { (permutation) } A_{m_{1}, l} \cdots \widehat{A_{m_{k}, k}} \cdots A_{m_{n}, l}
$$

Determinant is Multiplicative

Prop'n:

Suppose A and B are same size square matrices. Then

$$
\operatorname{det}(A B)=\operatorname{det}(B A)=(\operatorname{det} B)(\operatorname{det} A) .
$$

Determinant is Multiplicative

Prop'n:

Suppose A and B are same size square matrices. Then

$$
\operatorname{det}(A B)=\operatorname{det}(B A)=(\operatorname{det} B)(\operatorname{det} A) .
$$

Proof.

Determinant is Multiplicative

Prop'n:

Suppose A and B are same size square matrices. Then

$$
\operatorname{det}(A B)=\operatorname{det}(B A)=(\operatorname{det} B)(\operatorname{det} A) .
$$

Proof. We will show $\operatorname{det}(A B)=(\operatorname{det} B)(\operatorname{det} A)$.

Determinant is Multiplicative

Prop'n:

Suppose A and B are same size square matrices. Then

$$
\operatorname{det}(A B)=\operatorname{det}(B A)=(\operatorname{det} B)(\operatorname{det} A) .
$$

Proof. We will show $\operatorname{det}(A B)=(\operatorname{det} B)(\operatorname{det} A)$.
Notation:
■ Write $A=\left(A_{\cdot, 1} \cdots A_{\cdot, n}\right)$ and $B=\left(B_{\cdot, 1} \cdots B_{\cdot, n}\right)$.

Determinant is Multiplicative

Prop'n:

Suppose A and B are same size square matrices. Then

$$
\operatorname{det}(A B)=\operatorname{det}(B A)=(\operatorname{det} B)(\operatorname{det} A) .
$$

Proof. We will show $\operatorname{det}(A B)=(\operatorname{det} B)(\operatorname{det} A)$.

Notation:

■ Write $A=\left(A_{\cdot, 1} \cdots A_{\cdot, n}\right)$ and $B=\left(B_{\cdot, 1} \cdots B_{\cdot, n}\right)$.
$■$ Let e_{k} denote the $n \times 1$ matrix that equals 1 in the $k^{t h}$ entry and 0 elsewhere (standard basis vectors as matrices).

Determinant is Multiplicative

Prop'n:

Suppose A and B are same size square matrices. Then

$$
\operatorname{det}(A B)=\operatorname{det}(B A)=(\operatorname{det} B)(\operatorname{det} A) .
$$

Proof. We will show $\operatorname{det}(A B)=(\operatorname{det} B)(\operatorname{det} A)$.

Notation:

■ Write $A=\left(A_{\cdot, 1} \cdots A_{\cdot, n}\right)$ and $B=\left(B_{\cdot, 1} \cdots B_{\cdot, n}\right)$.
$■$ Let e_{k} denote the $n \times 1$ matrix that equals 1 in the $k^{\text {th }}$ entry and 0 elsewhere (standard basis vectors as matrices).
\square Then $A e_{k}=A_{\cdot, k}$ and $B e_{k}=B_{\cdot, k}$.

Determinant is Multiplicative

Prop'n:

Suppose A and B are same size square matrices. Then

$$
\operatorname{det}(A B)=\operatorname{det}(B A)=(\operatorname{det} B)(\operatorname{det} A) .
$$

Proof. We will show $\operatorname{det}(A B)=(\operatorname{det} B)(\operatorname{det} A)$.

Notation:

■ Write $A=\left(A_{\cdot, 1} \cdots A_{\cdot, n}\right)$ and $B=\left(B_{\cdot, 1} \cdots B_{\cdot, n}\right)$.
$■$ Let e_{k} denote the $n \times 1$ matrix that equals 1 in the $k^{t h}$ entry and 0 elsewhere (standard basis vectors as matrices).
\square Then $A e_{k}=A_{\cdot, k}$ and $B e_{k}=B_{\cdot, k}$.
■ And $B_{\cdot, k}=\sum_{m=1}^{n} B_{m, k} e_{m}$.

Determinant is Multiplicative

Prop'n:

Suppose A and B are same size square matrices. Then

$$
\operatorname{det}(A B)=\operatorname{det}(B A)=(\operatorname{det} B)(\operatorname{det} A) .
$$

Proof. We will show $\operatorname{det}(A B)=(\operatorname{det} B)(\operatorname{det} A)$.

Notation:

■ Write $A=\left(A_{\cdot, 1} \cdots A_{\cdot, n}\right)$ and $B=\left(B_{\cdot, 1} \cdots B_{\cdot, n}\right)$.
$■$ Let e_{k} denote the $n \times 1$ matrix that equals 1 in the $k^{t h}$ entry and 0 elsewhere (standard basis vectors as matrices).
\square Then $A e_{k}=A_{\cdot, k}$ and $B e_{k}=B_{\cdot, k}$.
■ And $B_{\cdot, k}=\sum_{m=1}^{n} B_{m, k} e_{m}$.
■ And recall $A B=\left(A B_{\cdot, 1} \cdots A B_{\cdot, n}\right)$.

Determinant is Multiplicative

$\square \operatorname{det}(A B)=\operatorname{det}\left(A B_{\cdot, 1} \cdots A B_{\cdot, n}\right)$

Determinant is Multiplicative

$\square \operatorname{det}(A B)=\operatorname{det}\left(A B_{\cdot, 1} \cdots A B_{\cdot, n}\right)$
\square Rewriting $=\operatorname{det}\left(A\left(\sum_{m=1}^{n} B_{m, 1} e_{m}\right) \cdots\left(A \sum_{m=1}^{n} B_{m, n} e_{m}\right)\right)$

Determinant is Multiplicative

$\square \operatorname{det}(A B)=\operatorname{det}\left(A B_{\cdot, 1} \cdots A B_{\cdot, n}\right)$
$■$ Rewriting $=\operatorname{det}\left(A\left(\sum_{m=1}^{n} B_{m, 1} e_{m}\right) \cdots\left(A \sum_{m=1}^{n} B_{m, n} e_{m}\right)\right)$

- Since the $B_{i, j}$ are scalars:

Determinant is Multiplicative

$\square \operatorname{det}(A B)=\operatorname{det}\left(A B_{\cdot, 1} \cdots A B_{\cdot, n}\right)$
$■$ Rewriting $=\operatorname{det}\left(A\left(\sum_{m=1}^{n} B_{m, 1} e_{m}\right) \cdots\left(A \sum_{m=1}^{n} B_{m, n} e_{m}\right)\right)$
■ Since the $B_{i, j}$ are scalars:
$=\operatorname{det}\left(\left(\sum_{m=1}^{n} B_{m, 1} A e_{m}\right) \cdots\left(\sum_{m=1}^{n} B_{m, n} A e_{m}\right)\right)$

Determinant is Multiplicative

$\square \operatorname{det}(A B)=\operatorname{det}\left(A B_{\cdot, 1} \cdots A B_{\cdot, n}\right)$
\square Rewriting $=\operatorname{det}\left(A\left(\sum_{m=1}^{n} B_{m, 1} e_{m}\right) \cdots\left(A \sum_{m=1}^{n} B_{m, n} e_{m}\right)\right)$
$■$ Since the $B_{i, j}$ are scalars:

$$
=\operatorname{det}\left(\left(\sum_{m=1}^{n} B_{m, 1} A e_{m}\right) \cdots\left(\sum_{m=1}^{n} B_{m, n} A e_{m}\right)\right)
$$

■ Because the determinant is linear in each column:

$$
=\sum_{m_{1}=1}^{n} \cdots \sum_{m_{n}=1}^{n} B_{m_{1}, 1} \cdots B_{m_{n}, n} \operatorname{det}\left(A e_{m_{1}} \cdots A e_{m_{n}}\right)
$$

Determinant is Multiplicative

- Because the determinant is linear in each column:

$$
=\sum_{m_{1}=1}^{n} \cdots \sum_{m_{n}=1}^{n} B_{m_{1}, 1} \cdots B_{m_{n}, n} \operatorname{det}\left(A e_{m_{1}} \cdots A e_{m_{n}}\right)
$$

Determinant is Multiplicative

- Because the determinant is linear in each column:

$$
\begin{aligned}
& =\sum_{m_{1}=1}^{n} \cdots \sum_{m_{n}=1}^{n} B_{m_{1}, 1} \cdots B_{m_{n}, n} \operatorname{det}\left(A e_{m_{1}} \cdots A e_{m_{n}}\right) \\
\square & =\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm}_{n}}^{n} B_{m_{1}, 1} \cdots B_{m_{n}, n} \operatorname{det}\left(A e_{m_{1}} \cdots A e_{m_{n}}\right)
\end{aligned}
$$

Determinant is Multiplicative

- Because the determinant is linear in each column:

$$
\begin{aligned}
& =\sum_{m_{1}=1}^{n} \cdots \sum_{m_{n}=1}^{n} B_{m_{1}, 1} \cdots B_{m_{n}, n} \operatorname{det}\left(A e_{m_{1}} \cdots A e_{m_{n}}\right) \\
■ & =\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm}_{n}}^{n} B_{m_{1}, 1} \cdots B_{m_{n}, n} \operatorname{det}\left(A e_{m_{1}} \cdots A e_{m_{n}}\right)
\end{aligned}
$$

■ Using our formula for permuting the columns,

$$
=\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm}_{n}}^{n} B_{m_{1}, 1} \cdots B_{m_{n}, n}\left(\operatorname{sign}\left(m_{1}, \ldots, m_{n}\right)\right) \operatorname{det}(A)
$$

Determinant is Multiplicative

- Because the determinant is linear in each column:

$$
\begin{aligned}
& =\sum_{m_{1}=1}^{n} \cdots \sum_{m_{n}=1}^{n} B_{m_{1}, 1} \cdots B_{m_{n}, n} \operatorname{det}\left(A e_{m_{1}} \cdots A e_{m_{n}}\right) \\
■ & =\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm}_{n}}^{n} B_{m_{1}, 1} \cdots B_{m_{n}, n} \operatorname{det}\left(A e_{m_{1}} \cdots A e_{m_{n}}\right)
\end{aligned}
$$

■ Using our formula for permuting the columns,
$=\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm}_{n}}^{n} B_{m_{1}, 1} \cdots B_{m_{n}, n}\left(\operatorname{sign}\left(m_{1}, \ldots, m_{n}\right)\right) \operatorname{det}(A)$
$\square=\operatorname{det}(A) \cdot \sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm}}^{n} B_{m_{1}, 1} \cdots B_{m_{n}, n}\left(\operatorname{sign}\left(m_{1}, \ldots, m_{n}\right)\right)$

Determinant is Multiplicative

- Because the determinant is linear in each column:

$$
\begin{aligned}
& =\sum_{m_{1}=1}^{n} \cdots \sum_{m_{n}=1}^{n} B_{m_{1}, 1} \cdots B_{m_{n}, n} \operatorname{det}\left(A e_{m_{1}} \cdots A e_{m_{n}}\right) \\
■ & =\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm} n}^{n} B_{m_{1}, 1} \cdots B_{m_{n}, n} \operatorname{det}\left(A e_{m_{1}} \cdots A e_{m_{n}}\right)
\end{aligned}
$$

■ Using our formula for permuting the columns,

$$
=\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm}_{n}}^{n} B_{m_{1}, 1} \cdots B_{m_{n}, n}\left(\operatorname{sign}\left(m_{1}, \ldots, m_{n}\right)\right) \operatorname{det}(A)
$$

$$
\square=\operatorname{det}(A) \cdot \sum_{\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{perm} n}^{n} B_{m_{1}, 1} \cdots B_{m_{n}, n}\left(\operatorname{sign}\left(m_{1}, \ldots, m_{n}\right)\right)
$$

$■=\operatorname{det}(A) \cdot \operatorname{det}(B)$.

Determinant of an Operator is the Determinant of its Matrix

Prop'n:

For $T \in \mathcal{L}(V), u_{1}, \ldots, u_{n}$ and v_{1}, \ldots, v_{n} bases of V. Then $\operatorname{det} \mathcal{M}\left(T,\left(u_{1}, \ldots, u_{n}\right)\right)=\operatorname{det} \mathcal{M}\left(T,\left(v_{1}, \ldots, v_{n}\right)\right)$.

Proof.

Determinant of an Operator is the Determinant of its Matrix

Prop'n:

For $T \in \mathcal{L}(V), u_{1}, \ldots, u_{n}$ and v_{1}, \ldots, v_{n} bases of V. Then $\operatorname{det} \mathcal{M}\left(T,\left(u_{1}, \ldots, u_{n}\right)\right)=\operatorname{det} \mathcal{M}\left(T,\left(v_{1}, \ldots, v_{n}\right)\right)$.

Proof. Use $\operatorname{det}(A B)=\operatorname{det}(B A)$ and the change of basis formula.

Determinant of an Operator is the Determinant of its Matrix

Prop'n:

For $T \in \mathcal{L}(V), u_{1}, \ldots, u_{n}$ and v_{1}, \ldots, v_{n} bases of V. Then $\operatorname{det} \mathcal{M}\left(T,\left(u_{1}, \ldots, u_{n}\right)\right)=\operatorname{det} \mathcal{M}\left(T,\left(v_{1}, \ldots, v_{n}\right)\right)$.

Proof. Use $\operatorname{det}(A B)=\operatorname{det}(B A)$ and the change of basis formula.

Corollary:
For $T \in \mathcal{L}(V)$, then $\operatorname{det} T=\operatorname{det} \mathcal{M}(T)$.

Determinant of an Operator is the Determinant of its Matrix

Prop'n:

For $T \in \mathcal{L}(V), u_{1}, \ldots, u_{n}$ and v_{1}, \ldots, v_{n} bases of V. Then $\operatorname{det} \mathcal{M}\left(T,\left(u_{1}, \ldots, u_{n}\right)\right)=\operatorname{det} \mathcal{M}\left(T,\left(v_{1}, \ldots, v_{n}\right)\right)$.

Proof. Use $\operatorname{det}(A B)=\operatorname{det}(B A)$ and the change of basis formula.

Corollary:

For $T \in \mathcal{L}(V)$, then $\operatorname{det} T=\operatorname{det} \mathcal{M}(T)$.

Corollary:

For $T \in \mathcal{L}(V)$, then $\operatorname{det} S T=\operatorname{det} T S=\operatorname{det} S \operatorname{det} T$.

Determinant and Volume

Prop'n:

Suppose $T \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ is a positive operator and $\Omega \subset \mathbb{R}^{n}$. Then volume $T(\Omega)=(\operatorname{det} T)($ volume $\Omega)$.

Determinant and Volume

Prop'n:

Suppose $T \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ is a positive operator and $\Omega \subset \mathbb{R}^{n}$. Then volume $T(\Omega)=(\operatorname{det} T)$ (volume Ω).

■ By $\Omega \subset \mathbb{R}^{n}$, we mean a collection of points in (subset of) n-space. (A geometric object).

Determinant and Volume

Prop'n:

Suppose $T \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ is a positive operator and $\Omega \subset \mathbb{R}^{n}$. Then volume $T(\Omega)=(\operatorname{det} T)($ volume $\Omega)$.

■ By $\Omega \subset \mathbb{R}^{n}$, we mean a collection of points in (subset of) n-space. (A geometric object).
■ For a function $T, T(\Omega)=\{T x: x \in \Omega\}$.

Determinant and Volume

Prop'n:

Suppose $T \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ is a positive operator and $\Omega \subset \mathbb{R}^{n}$. Then volume $T(\Omega)=(\operatorname{det} T)($ volume $\Omega)$.

■ By $\Omega \subset \mathbb{R}^{n}$, we mean a collection of points in (subset of) n-space. (A geometric object).
■ For a function $T, T(\Omega)=\{T x: x \in \Omega\}$.

Determinant and Volume

Prop'n:

Suppose $T \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ is a positive operator and $\Omega \subset \mathbb{R}^{n}$. Then volume $T(\Omega)=(\operatorname{det} T)($ volume $\Omega)$.

Determinant and Volume

Prop'n:

Suppose $T \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ is a positive operator and $\Omega \subset \mathbb{R}^{n}$. Then volume $T(\Omega)=(\operatorname{det} T)$ (volume Ω).

Intuition of proof (Need some analysis to make fully rigorous).

Determinant and Volume

Prop'n:

Suppose $T \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ is a positive operator and $\Omega \subset \mathbb{R}^{n}$. Then volume $T(\Omega)=(\operatorname{det} T)($ volume $\Omega)$.

Intuition of proof (Need some analysis to make fully rigorous).
■ Using the real spectral theorem, pick an orthonormal basis of eigenvectors of $T: e_{1}, \ldots, e_{n}$.

Determinant and Volume

Prop'n:

Suppose $T \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ is a positive operator and $\Omega \subset \mathbb{R}^{n}$. Then volume $T(\Omega)=(\operatorname{det} T)($ volume $\Omega)$.

Intuition of proof (Need some analysis to make fully rigorous).
■ Using the real spectral theorem, pick an orthonormal basis of eigenvectors of $T: e_{1}, \ldots, e_{n}$.
■ Then $T\left(x_{1}, \ldots, x_{n}\right)=\left(\lambda_{1} x_{1}, \ldots, \lambda_{n} x_{n}\right)$.

Determinant and Volume

Prop'n:

Suppose $T \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ is a positive operator and $\Omega \subset \mathbb{R}^{n}$. Then volume $T(\Omega)=(\operatorname{det} T)($ volume $\Omega)$.

Intuition of proof (Need some analysis to make fully rigorous).
■ Using the real spectral theorem, pick an orthonormal basis of eigenvectors of $T: e_{1}, \ldots, e_{n}$.
■ Then $T\left(x_{1}, \ldots, x_{n}\right)=\left(\lambda_{1} x_{1}, \ldots, \lambda_{n} x_{n}\right)$.

- Consider an n-dimensional box with side lengths r_{1}, \ldots, r_{n}.

Determinant and Volume

Prop'n:

Suppose $T \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ is a positive operator and $\Omega \subset \mathbb{R}^{n}$. Then volume $T(\Omega)=(\operatorname{det} T)($ volume $\Omega)$.

Intuition of proof (Need some analysis to make fully rigorous).
■ Using the real spectral theorem, pick an orthonormal basis of eigenvectors of $T: e_{1}, \ldots, e_{n}$.
■ Then $T\left(x_{1}, \ldots, x_{n}\right)=\left(\lambda_{1} x_{1}, \ldots, \lambda_{n} x_{n}\right)$.

- Consider an n-dimensional box with side lengths r_{1}, \ldots, r_{n}.
- Then the box has volume $r_{1} \cdots r_{n}$ and after applying T it has volume $\lambda_{1} r_{1} \cdots \lambda_{n} r_{n}=(\operatorname{det} T) r_{1} \cdots r_{n}$.

Determinant and Volume

Prop'n:

Suppose $T \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ is a positive operator and $\Omega \subset \mathbb{R}^{n}$. Then volume $T(\Omega)=(\operatorname{det} T)$ (volume Ω).

Intuition of proof (Need some analysis to make fully rigorous).
■ Using the real spectral theorem, pick an orthonormal basis of eigenvectors of $T: e_{1}, \ldots, e_{n}$.
■ Then $T\left(x_{1}, \ldots, x_{n}\right)=\left(\lambda_{1} x_{1}, \ldots, \lambda_{n} x_{n}\right)$.

- Consider an n-dimensional box with side lengths r_{1}, \ldots, r_{n}.
- Then the box has volume $r_{1} \cdots r_{n}$ and after applying T it has volume $\lambda_{1} r_{1} \cdots \lambda_{n} r_{n}=(\operatorname{det} T) r_{1} \cdots r_{n}$.
- Then we use analysis to get the volume of Ω with a bunch of infinitesimally small boxes.

Determinant and Volume

With a bit more work and the polar decomposition,

Determinant and Volume

With a bit more work and the polar decomposition,

Prop'n:

Suppose $T \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ is a any operator and $\Omega \subset \mathbb{R}^{n}$. Then

$$
\text { volume } T(\Omega)=|\operatorname{det} T|(\text { volume } \Omega) \text {. }
$$

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

