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Terms

Eigenvalue
Eigenvector
Polynomials of operators
Upper triangular matrix, diagonal matrix
Inner product, properties
Euclidean inner product
Norm, basic properties
Orthogonal
Orthonormal
Orthogonal complement, basic properties
Orthogonal projection, basic properties
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Terms

Adjoint
Self-adjoint operator
Normal operator
Positive operator
Square root
Isometries
Nilpotent operator
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Terms

Generalized eigenvector, generalized eigenspace
Algebraic multiplicity
Geometric multiplicity
Block diagonal matrix
Characteristic polynomial
Minimal polynomial
Jordan basis
Trace, basic properties
Determinant, basic properties
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Results/Tools

Equivalent conditions to be an eigenvector (Axler 5.6)
Linear independence of eigenvectors
Every operator on a complex vector space has an eigenvalue
Conditions for an upper triangular matrix
Over C, every matrix has an upper-triangular form with respect
to some basis
What does upper-triangular form tell us about invertibility,
eigenvalues?
Conditions for diagonalizability
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Conditions for an upper triangular matrix
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Conditions for diagonalizability
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Results/Tools
Pythagorean theorem
Orthogonal decomposition:

Set c =
⟨u, v⟩
||v||2

and w = u− cv. Then ⟨w, v⟩ = 0 and u = cv + w.

Cauchy-Schwarz
Triangle-Inequality
Norm of a linear combination (Axler 6.25)
Writing a vector as a linear combination of an orthonormal basis
(Axler 6.30)
Gram-Schmidt
Existence of orthonormal basis
Schur’s theorem
Riesz Representation Theorem
V = U ⊕ U⊥
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Results/Tools

Matrix of T∗ with respect to an orthonormal basis
Eigenvalues of self-adjoint operators are real
Normal if and only if ||Tv|| = ||T∗v||
Complex and real spectral theorems
Characterizing positive operators
Characterizing isometries
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Characterizing positive operators
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Characterizing isometries
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Results/Tools

Increasing sequence of null spaces and termination (Axler
8.2-8.4)
V = null Tdim V ⊕ range Tdim V

G(λ, T) = null (T − λI)dim V

Matrix of a nilpotent operator
Description of operators on complex vector spaces
Over C, invertible operators have square roots
Cayley-Hamilton
Eigenvalues are zeros of minimal polynomial
Jordan Form exists for any T ∈ L(V) where V is complex
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Description of operators on complex vector spaces
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Practice Questions

1. Prove that the orthogonal projection map is self-adjoint.

Let v,w ∈ V . Write v = u1 + u′1 and w = u2 + u′2 such that u1, u2 ∈ U
and u′1, u

′
2 ∈ U⊥. Then

⟨PU(v),w⟩ = ⟨u1,w⟩
= ⟨u1, u2 + u′2⟩
= ⟨u1, u2⟩+ ⟨u1, u′2⟩
= ⟨u1, u2⟩
= ⟨u1, u2⟩+ ⟨u′1, u2⟩
= ⟨u1 + u′1, u2⟩
= ⟨v, PU(w)⟩
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Practice Questions

2. Fix a positive integer n. In the inner product space of continuous
real-valued functions on [−π, π] with inner product

⟨f , g⟩ =
∫ π

−π
f (x)g(x)dx,

let V = span(1, cos x, cos 2x, . . . , cos nx, sin x, sin 2x, . . . , sin nx).
2.1 Define D ∈ L(V) by Df = f ′. Show D∗ = −D. Conclude that D is

normal but not self-adjoint.

Integration by parts and the fact that f (π) = f (−π) for all vectors in
the vector space gives that

⟨Df , g⟩ = −
∫ π

−π
g′(x)f (x) = −⟨f ,Dg⟩.
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Practice Questions
3. Suppose T is the operator corresponding to the following matrix. 3 −1 −2

0 2 −3
0 0 2


3.1 Find the eigenvalues of T . 3,2
3.2 Find the characteristic and minimal polynomials of T .

char poly: (z − 3)(z − 2)2 min poly: also (z − 3)(z − 2)2
3.3 Find a basis of generalized eigenvectors.

from G(3, T) = E(3, T) get (1, 0, 0), from G(2, T) ̸= E(2, T) get
(−1, 1, 0), (1, 0, 1)

3.4 Find the Jordan Form of T . (3) (
2 1
0 2

) 
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Practice Questions
4. Suppose T is the operator corresponding to the following matrix. 1 0 5

0 1 5
0 0 3


4.1 Find the eigenvalues of T . 1,3
4.2 Find the characteristic and minimal polynomials of T . char poly:

(z − 1)2(z − 3), min poly: (z − 1)(z − 3)
4.3 Find a basis of generalized eigenvectors.

from G(1, T) = E(1, T) get (1, 0, 0) and (0, 1, 0) from
G(3, T) = E(3, T) get (5/2, 5/2, 1)

4.4 Find the Jordan Form of T . 1 0 0
0 1 0
0 0 3


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Practice Questions

5. Give an example of a matrix A ∈ C7,7 such that the following all
hold:

A is not surjective
A5(A+ 3I)4(A− 4I)4 = 0
The minimal and characteristic polynomials are equal.
The trace is -1.

(
0 1
0 0

)
 −3 1 0

0 −3 1
0 0 −3


(

−4 1
0 −4

)


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Practice Questions

6. Let T be an operator on a finite-dimensional inner product space.
Show that if T∗T + TT∗ = 0, then T = 0.

0 = ⟨(T∗T + TT∗)v, v⟩
= ⟨T∗Tv, v⟩+ ⟨TT∗v, v⟩
= ⟨Tv, Tv⟩+ ⟨T∗v, T∗v⟩

=⇒ Tv = 0
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Practice Questions

7. Let T be an operator on a finite-dimensional inner product space.

7.1 Suppose that ⟨Tv, v⟩ > 0 for all nonzero v ∈ V . Show that every
eigenvalue of T2 is a positive real number.

Let λ ∈ F such that T2v = λv for some v ∈ V . Then

0 < ⟨T2v, Tv⟩ (1)
= ⟨λv, Tv⟩ (2)
= λ⟨v, Tv⟩ (3)
= λ⟨Tv, v⟩ (4)

which implies λ must be positive and real.

FD · MATH 110 · August 8-9, 2023 20 / 23



Practice Questions

8. Prove that the linear operator on C3 defined by the matrix 1 0 0
0 0 −1
0 1 0

 is an isometry.

This operator is the one that sends (x, y, z) ∈ C3 to (x,−z, y) ∈ C3.
The Eucliedean inner product gives

||(x, y, z)||2 = x · x+ y · y+ z · z = x · x+−z ·−z+ y · y = ||(x,−z, y)||2.
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Practice Questions

9. What are some things that are special about orthonormal bases?

v = ⟨v, e1⟩e1 + . . . ⟨v, en⟩en
for any v ∈ V and

||v||2 = |⟨v, e1⟩|2 + . . . |⟨v, en⟩|2
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