Lecture 27: Review

MATH 110-3

Franny Dean

August 8-9, 2023

Terms

■ Eigenvalue
■ Eigenvector

- Polynomials of operators

■ Upper triangular matrix, diagonal matrix
■ Inner product, properties
■ Euclidean inner product
■ Norm, basic properties
■ Orthogonal
■ Orthonormal
■ Orthogonal complement, basic properties
■ Orthogonal projection, basic properties

Terms

■ Adjoint
■ Self-adjoint operator
■ Normal operator
■ Positive operator
■ Square root
■ Isometries
■ Nilpotent operator

Terms

■ Generalized eigenvector, generalized eigenspace
■ Algebraic multiplicity
■ Geometric multiplicity
■ Block diagonal matrix
■ Characteristic polynomial
■ Minimal polynomial
■ Jordan basis
■ Trace, basic properties
■ Determinant, basic properties

Results/Tools

■ Equivalent conditions to be an eigenvector (Axler 5.6)
■ Linear independence of eigenvectors
■ Every operator on a complex vector space has an eigenvalue

- Conditions for an upper triangular matrix

■ Over \mathbb{C}, every matrix has an upper-triangular form with respect to some basis

■ What does upper-triangular form tell us about invertibility, eigenvalues?
■ Conditions for diagonalizability

Conditions for an upper triangular matrix

5.26 Conditions for upper-triangular matrix

Suppose $T \in \mathcal{L}(V)$ and v_{1}, \ldots, v_{n} is a basis of V. Then the following are equivalent:
(a) the matrix of T with respect to v_{1}, \ldots, v_{n} is upper triangular;
(b) $T v_{j} \in \operatorname{span}\left(v_{1}, \ldots, v_{j}\right)$ for each $j=1, \ldots, n$;
(c) $\quad \operatorname{span}\left(v_{1}, \ldots, v_{j}\right)$ is invariant under T for each $j=1, \ldots, n$.

Conditions for diagonalizability

5.41 Conditions equivalent to diagonalizability

Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Let $\lambda_{1}, \ldots, \lambda_{m}$ denote the distinct eigenvalues of T. Then the following are equivalent:
(a) T is diagonalizable;
(b) $\quad V$ has a basis consisting of eigenvectors of T;
(c) there exist 1-dimensional subspaces U_{1}, \ldots, U_{n} of V, each invariant under T, such that

$$
V=U_{1} \oplus \cdots \oplus U_{n}
$$

(d) $\quad V=E\left(\lambda_{1}, T\right) \oplus \cdots \oplus E\left(\lambda_{m}, T\right)$;
(e) $\quad \operatorname{dim} V=\operatorname{dim} E\left(\lambda_{1}, T\right)+\cdots+\operatorname{dim} E\left(\lambda_{m}, T\right)$.

Results/Tools

■ Pythagorean theorem
■ Orthogonal decomposition:
Set $c=\frac{\langle u, v\rangle}{\|v\|^{2}}$ and $w=u-c v$. Then $\langle w, v\rangle=0$ and $u=c v+w$.
■ Cauchy-Schwarz
■ Triangle-Inequality

- Norm of a linear combination (Axler 6.25)

■ Writing a vector as a linear combination of an orthonormal basis (Axler 6.30)
■ Gram-Schmidt
■ Existence of orthonormal basis
■ Schur's theorem
■ Riesz Representation Theorem
■ $V=U \oplus U^{\perp}$

Results/Tools

■ Matrix of T^{*} with respect to an orthonormal basis
■ Eigenvalues of self-adjoint operators are real
■ Normal if and only if $\|T v\|=\left\|T^{*} v\right\|$

- Complex and real spectral theorems

■ Characterizing positive operators
■ Characterizing isometries

Characterizing positive operators

7.35 Characterization of positive operators

Let $T \in \mathcal{L}(V)$. Then the following are equivalent:
(a) T is positive;
(b) $\quad T$ is self-adjoint and all the eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists an operator $R \in \mathcal{L}(V)$ such that $T=R^{*} R$.

Characterizing isometries

7.42 Characterization of isometries

Suppose $S \in \mathcal{L}(V)$. Then the following are equivalent:
(a) S is an isometry;
(b) $\langle S u, S v\rangle=\langle u, v\rangle$ for all $u, v \in V$;
(c) $S e_{1}, \ldots, S e_{n}$ is orthonormal for every orthonormal list of vectors e_{1}, \ldots, e_{n} in V;
(d) there exists an orthonormal basis e_{1}, \ldots, e_{n} of V such that $S e_{1}, \ldots, S e_{n}$ is orthonormal;
(e) $\quad S^{*} S=I$;
(f) $\quad S S^{*}=I$;
(g) $\quad S^{*}$ is an isometry;
(h) $\quad S$ is invertible and $S^{-1}=S^{*}$.

Results/Tools

■ Increasing sequence of null spaces and termination (Axler 8.2-8.4)

■ $V=$ null $T^{\operatorname{dim} V} \oplus$ range $T^{\operatorname{dim} V}$
■ $G(\lambda, T)=\operatorname{null}(T-\lambda /)^{\operatorname{dim} V}$
■ Matrix of a nilpotent operator
■ Description of operators on complex vector spaces
■ Over \mathbb{C}, invertible operators have square roots

- Cayley-Hamilton

■ Eigenvalues are zeros of minimal polynomial
■ Jordan Form exists for any $T \in \mathcal{L}(V)$ where V is complex

Description of operators on complex vector spaces

8.21 Description of operators on complex vector spaces

Suppose V is a complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_{1}, \ldots, \lambda_{m}$ be the distinct eigenvalues of T. Then
(a) $\quad V=G\left(\lambda_{1}, T\right) \oplus \cdots \oplus G\left(\lambda_{m}, T\right)$;
(b) each $G\left(\lambda_{j}, T\right)$ is invariant under T;
(c) each $\left.\left(T-\lambda_{j} I\right)\right|_{G\left(\lambda_{j}, T\right)}$ is nilpotent.

Practice Questions

1. Prove that the orthogonal projection map is self-adjoint.

Let $v, w \in V$. Write $v=u_{1}+u_{1}^{\prime}$ and $w=u_{2}+u_{2}^{\prime}$ such that $u_{1}, u_{2} \in U$ and $u_{1}^{\prime}, u_{2}^{\prime} \in U^{\perp}$. Then

$$
\begin{aligned}
\left\langle P_{u}(v), w\right\rangle & =\left\langle u_{1}, w\right\rangle \\
& =\left\langle u_{1}, u_{2}+u_{2}^{\prime}\right\rangle \\
& =\left\langle u_{1}, u_{2}\right\rangle+\left\langle u_{1}, u_{2}^{\prime}\right\rangle \\
& =\left\langle u_{1}, u_{2}\right\rangle \\
& =\left\langle u_{1}, u_{2}\right\rangle+\left\langle u_{1}^{\prime}, u_{2}\right\rangle \\
& =\left\langle u_{1}+u_{1}^{\prime}, u_{2}\right\rangle \\
& =\left\langle v, P_{u}(w)\right\rangle
\end{aligned}
$$

Practice Questions

2. Fix a positive integer n. In the inner product space of continuous real-valued functions on $[-\pi, \pi]$ with inner product

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x
$$

let $V=\operatorname{span}(1, \cos x, \cos 2 x, \ldots, \cos n x, \sin x, \sin 2 x, \ldots, \sin n x)$.
2.1 Define $D \in \mathcal{L}(V)$ by $D f=f^{\prime}$. Show $D^{*}=-D$. Conclude that D is normal but not self-adjoint.
Integration by parts and the fact that $f(\pi)=f(-\pi)$ for all vectors in the vector space gives that

$$
\langle D f, g\rangle=-\int_{-\pi}^{\pi} g^{\prime}(x) f(x)=-\langle f, D g\rangle
$$

Practice Questions

3. Suppose T is the operator corresponding to the following matrix.

$$
\left(\begin{array}{ccc}
3 & -1 & -2 \\
0 & 2 & -3 \\
0 & 0 & 2
\end{array}\right)
$$

3.1 Find the eigenvalues of T. 3,2
3.2 Find the characteristic and minimal polynomials of T. char poly: $(z-3)(z-2)^{2}$ min poly: also $(z-3)(z-2)^{2}$
3.3 Find a basis of generalized eigenvectors.
from $G(3, T)=E(3, T)$ get $(1,0,0)$, from $G(2, T) \neq E(2, T)$ get $(-1,1,0),(1,0,1)$
3.4 Find the Jordan Form of T.

$$
\left(\begin{array}{ll}
(3) & \\
& \left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right)
\end{array}\right)
$$

Practice Questions

4. Suppose T is the operator corresponding to the following matrix.

$$
\left(\begin{array}{lll}
1 & 0 & 5 \\
0 & 1 & 5 \\
0 & 0 & 3
\end{array}\right)
$$

4.1 Find the eigenvalues of T. 1,3
4.2 Find the characteristic and minimal polynomials of T. char poly: $(z-1)^{2}(z-3)$, min poly: $(z-1)(z-3)$
4.3 Find a basis of generalized eigenvectors.

$$
\begin{aligned}
& \text { from } G(1, T)=E(1, T) \text { get }(1,0,0) \text { and }(0,1,0) \text { from } \\
& G(3, T)=E(3, T) \text { get }(5 / 2,5 / 2,1)
\end{aligned}
$$

4.4 Find the Jordan Form of T.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

Practice Questions

5. Give an example of a matrix $A \in \mathbb{C}^{7,7}$ such that the following all hold:

- A is not surjective
- $A^{5}(A+3 /)^{4}(A-4 /)^{4}=0$
- The minimal and characteristic polynomials are equal.
- The trace is -1 .

$$
\left(\begin{array}{ll}
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) & \\
& \left(\begin{array}{ccc}
-3 & 1 & 0 \\
0 & -3 & 1 \\
0 & 0 & -3
\end{array}\right)
\end{array}\right.
$$

Practice Questions

6. Let T be an operator on a finite-dimensional inner product space. Show that if $T^{*} T+T T^{*}=0$, then $T=0$.

$$
\begin{aligned}
0 & =\left\langle\left(T^{*} T+T T^{*}\right) v, v\right\rangle \\
& =\left\langle T^{*} T v, v\right\rangle+\left\langle T T^{*} v, v\right\rangle \\
& =\langle T v, T v\rangle+\left\langle T^{*} v, T^{*} v\right\rangle \\
\Longrightarrow T v & =0
\end{aligned}
$$

Practice Questions

7. Let T be an operator on a finite-dimensional inner product space.
7.1 Suppose that $\langle T v, v\rangle>0$ for all nonzero $v \in V$. Show that every eigenvalue of T^{2} is a positive real number.
Let $\lambda \in \mathbb{F}$ such that $T^{2} v=\lambda v$ for some $v \in V$. Then

$$
\begin{align*}
0 & <\left\langle T^{2} v, T v\right\rangle \tag{1}\\
& =\langle\lambda v, T v\rangle \tag{2}\\
& =\lambda\langle v, T v\rangle \tag{3}\\
& =\lambda\langle T v, v\rangle \tag{4}
\end{align*}
$$

which implies λ must be positive and real.

Practice Questions

8. Prove that the linear operator on \mathbb{C}^{3} defined by the matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \text { is an isometry. }
$$

This operator is the one that sends $(x, y, z) \in \mathbb{C}^{3}$ to $(x,-z, y) \in \mathbb{C}^{3}$. The Eucliedean inner product gives
$\|(x, y, z)\|^{2}=x \cdot \bar{x}+y \cdot \bar{y}+z \cdot \bar{z}=x \cdot \bar{x}+-z \cdot \overline{-z}+y \cdot \bar{y}=\|(x,-z, y)\|^{2}$.

Practice Questions

9. What are some things that are special about orthonormal bases?

$$
v=\left\langle v, e_{1}\right\rangle e_{1}+\ldots\left\langle v, e_{n}\right\rangle e_{n}
$$

for any $v \in V$ and

$$
\|v\|^{2}=\left|\left\langle v, e_{1}\right\rangle\right|^{2}+\ldots\left|\left\langle v, e_{n}\right\rangle\right|^{2}
$$

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

