

Lecture 27: Review

MATH 110-3

Franny Dean

August 8-9, 2023

Terms

- Eigenvalue
- Eigenvector
- Polynomials of operators
- Upper triangular matrix, diagonal matrix
- Inner product, properties
- Euclidean inner product
- Norm, basic properties
- Orthogonal
- Orthonormal
- Orthogonal complement, basic properties
- Orthogonal projection, basic properties

Terms

- Adjoint
- Self-adjoint operator
- Normal operator
- Positive operator
- Square root
- Isometries
- Nilpotent operator

Terms

- Generalized eigenvector, generalized eigenspace
- Algebraic multiplicity
- Geometric multiplicity
- Block diagonal matrix
- Characteristic polynomial
- Minimal polynomial
- Jordan basis
- Trace, basic properties
- Determinant, basic properties

Results/Tools

- Equivalent conditions to be an eigenvector (Axler 5.6)
- Linear independence of eigenvectors
- Every operator on a complex vector space has an eigenvalue
- Conditions for an upper triangular matrix
- Over C, every matrix has an upper-triangular form with respect to some basis
- What does upper-triangular form tell us about invertibility, eigenvalues?
- Conditions for diagonalizability

Conditions for an upper triangular matrix

5.26 Conditions for upper-triangular matrix

Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V. Then the following are equivalent:

- (a) the matrix of T with respect to v_1, \ldots, v_n is upper triangular;
- (b) $Tv_j \in \operatorname{span}(v_1, \ldots, v_j)$ for each $j = 1, \ldots, n$;
- (c) span (v_1, \ldots, v_j) is invariant under T for each $j = 1, \ldots, n$.

Conditions for diagonalizability

5.41 Conditions equivalent to diagonalizability

Suppose *V* is finite-dimensional and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ denote the distinct eigenvalues of *T*. Then the following are equivalent:

- (a) T is diagonalizable;
- (b) V has a basis consisting of eigenvectors of T;
- (c) there exist 1-dimensional subspaces U_1, \ldots, U_n of V, each invariant under T, such that

$$V = U_1 \oplus \cdots \oplus U_n;$$

(d)
$$V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T);$$

(e) $\dim V = \dim E(\lambda_1, T) + \dots + \dim E(\lambda_m, T).$

FD • MATH 110 • August 8-9, 2023

Results/Tools

- Pythagorean theorem
- Orthogonal decomposition:

Set $c = \frac{\langle u, v \rangle}{||v||^2}$ and w = u - cv. Then $\langle w, v \rangle = 0$ and u = cv + w.

- Cauchy-Schwarz
- Triangle-Inequality
- Norm of a linear combination (Axler 6.25)
- Writing a vector as a linear combination of an orthonormal basis (Axler 6.30)
- Gram-Schmidt
- Existence of orthonormal basis
- Schur's theorem
- Riesz Representation Theorem
- \lor $V = U \oplus U^{\perp}$

Results/Tools

- Matrix of T* with respect to an orthonormal basis
- Eigenvalues of self-adjoint operators are real
- Normal if and only if $||Tv|| = ||T^*v||$
- Complex and real spectral theorems
- Characterizing positive operators
- Characterizing isometries

Characterizing positive operators

7.35 Characterization of positive operators

Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

- (a) T is positive;
- (b) T is self-adjoint and all the eigenvalues of T are nonnegative;
- (c) T has a positive square root;
- (d) T has a self-adjoint square root;
- (e) there exists an operator $R \in \mathcal{L}(V)$ such that $T = R^*R$.

Characterizing isometries

7.42 Characterization of isometries

Suppose $S \in \mathcal{L}(V)$. Then the following are equivalent:

(a) S is an isometry;

(b)
$$\langle Su, Sv \rangle = \langle u, v \rangle$$
 for all $u, v \in V$;

- (c) Se_1, \ldots, Se_n is orthonormal for every orthonormal list of vectors e_1, \ldots, e_n in V;
- (d) there exists an orthonormal basis e_1, \ldots, e_n of V such that Se_1, \ldots, Se_n is orthonormal;
- (e) $S^*S = I;$
- (f) $SS^* = I;$
- (g) S^* is an isometry;
- (h) S is invertible and $S^{-1} = S^*$.

FD • MATH 110 • August 8-9, 2023

Results/Tools

- Increasing sequence of null spaces and termination (Axler 8.2-8.4)
- $V = \text{null } T^{\dim V} \oplus \text{range } T^{\dim V}$
- $G(\lambda, T) = \text{null} (T \lambda I)^{\dim V}$
- Matrix of a nilpotent operator
- Description of operators on complex vector spaces
- Over \mathbb{C} , invertible operators have square roots
- Cayley-Hamilton
- Eigenvalues are zeros of minimal polynomial
- Jordan Form exists for any $T \in \mathcal{L}(V)$ where V is complex

Description of operators on complex vector spaces

8.21 Description of operators on complex vector spaces

Suppose *V* is a complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of *T*. Then

(a)
$$V = G(\lambda_1, T) \oplus \cdots \oplus G(\lambda_m, T);$$

(b) each
$$G(\lambda_j, T)$$
 is invariant under T;

(c) each
$$(T - \lambda_j I)|_{G(\lambda_j, T)}$$
 is nilpotent.

1. Prove that the orthogonal projection map is self-adjoint.

Let $v, w \in V$. Write $v = u_1 + u'_1$ and $w = u_2 + u'_2$ such that $u_1, u_2 \in U$ and $u'_1, u'_2 \in U^{\perp}$. Then

2. Fix a positive integer *n*. In the inner product space of continuous real-valued functions on $[-\pi, \pi]$ with inner product

$$\langle f,g\rangle = \int_{-\pi}^{\pi} f(x)g(x)dx,$$

- let $V = \operatorname{span}(1, \cos x, \cos 2x, \dots, \cos nx, \sin x, \sin 2x, \dots, \sin nx)$.
 - 2.1 Define $D \in \mathcal{L}(V)$ by Df = f'. Show $D^* = -D$. Conclude that D is normal but not self-adjoint.

Integration by parts and the fact that $f(\pi) = f(-\pi)$ for all vectors in the vector space gives that

$$\langle Df,g
angle = -\int_{-\pi}^{\pi}g'(x)f(x) = -\langle f,Dg
angle.$$

3. Suppose *T* is the operator corresponding to the following matrix.

$$\left(\begin{array}{ccc} 3 & -1 & -2 \\ 0 & 2 & -3 \\ 0 & 0 & 2 \end{array} \right)$$

3.1 Find the eigenvalues of *T*. 3,2

3.2 Find the characteristic and minimal polynomials of *T*.

char poly: $(z - 3)(z - 2)^2$ min poly: also $(z - 3)(z - 2)^2$

3.3 Find a basis of generalized eigenvectors.

from G(3,T) = E(3,T) get (1,0,0), from $G(2,T) \neq E(2,T)$ get (-1,1,0), (1,0,1)

3.4 Find the Jordan Form of *T*.

$$\left(\begin{array}{cc} (3) \\ & \left(\begin{array}{c} 2 & 1 \\ 0 & 2 \end{array}\right) \end{array}\right)$$

4. Suppose *T* is the operator corresponding to the following matrix.

$$\left(\begin{array}{rrrr}1 & 0 & 5\\0 & 1 & 5\\0 & 0 & 3\end{array}\right)$$

- **4.1** Find the eigenvalues of *T*. 1,3
- 4.2 Find the characteristic and minimal polynomials of *T*. char poly: $(z-1)^2(z-3)$, min poly: (z-1)(z-3)
- 4.3 Find a basis of generalized eigenvectors.

from G(1, T) = E(1, T) get (1, 0, 0) and (0, 1, 0) from G(3, T) = E(3, T) get (5/2, 5/2, 1)

4.4 Find the Jordan Form of *T*.

$$\left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{array}\right)$$

- 5. Give an example of a matrix $A \in \mathbb{C}^{7,7}$ such that the following all hold:
 - A is not surjective

•
$$A^{5}(A+3I)^{4}(A-4I)^{4}=0$$

- The minimal and characteristic polynomials are equal.
- The trace is -1.

$$\left(\begin{array}{cccc} \left(\begin{array}{c} 0 & 1 \\ 0 & 0 \end{array}\right) & & & & \\ & & \left(\begin{array}{c} -3 & 1 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -3 \end{array}\right) & & \\ & & & & \left(\begin{array}{c} -4 & 1 \\ 0 & -4 \end{array}\right) \end{array}\right)$$

6. Let *T* be an operator on a finite-dimensional inner product space. Show that if $T^*T + TT^* = 0$, then T = 0.

$$0 = \langle (T^*T + TT^*)v, v \rangle$$

= $\langle T^*Tv, v \rangle + \langle TT^*v, v \rangle$
= $\langle Tv, Tv \rangle + \langle T^*v, T^*v \rangle$
 $\implies Tv = 0$

7. Let *T* be an operator on a finite-dimensional inner product space.

7.1 Suppose that $\langle Tv, v \rangle > 0$ for all nonzero $v \in V$. Show that every eigenvalue of T^2 is a positive real number.

Let $\lambda \in \mathbb{F}$ such that $T^2 v = \lambda v$ for some $v \in V$. Then

$$0 < \langle T^2 v, T v \rangle \tag{1}$$

$$= \langle \lambda \mathbf{v}, T \mathbf{v} \rangle \tag{2}$$

$$=\lambda\langle \mathbf{v},\mathbf{T}\mathbf{v}
angle$$
 (3)

$$=\lambda\langle T\boldsymbol{\nu},\boldsymbol{\nu}\rangle \tag{4}$$

which implies λ must be positive and real.

8. Prove that the linear operator on \mathbb{C}^3 defined by the matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$ is an isometry.

This operator is the one that sends $(x, y, z) \in \mathbb{C}^3$ to $(x, -z, y) \in \mathbb{C}^3$. The Eucliedean inner product gives

$$||(x,y,z)||^2 = x \cdot \overline{x} + y \cdot \overline{y} + z \cdot \overline{z} = x \cdot \overline{x} + -z \cdot \overline{-z} + y \cdot \overline{y} = ||(x,-z,y)||^2.$$

9. What are some things that are special about orthonormal bases?

$$v = \langle v, e_1 \rangle e_1 + \ldots \langle v, e_n \rangle e_n$$

for any $v \in V$ and

$$||\mathbf{v}||^2 = |\langle \mathbf{v}, \mathbf{e}_1 \rangle|^2 + \dots |\langle \mathbf{v}, \mathbf{e}_n \rangle|^2$$

[Axl14] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.