Lecture 2: Subspaces

MATH 110-3

Franny Dean

June 21, 2023

Logistical Notes

■ Homework 1 due right now or ASAP.

Logistical Notes

■ Homework 1 due right now or ASAP.
■ Will upload and email out homework 2 after class today

Logistical Notes

■ Homework 1 due right now or ASAP.
■ Will upload and email out homework 2 after class today
■ Quiz will be worth one point - no exceptions/make ups. Earn one discussion point per week - can earn on Monday or Wednesday. Homework will be worth 20 points each; one is dropped.

Logistical Notes

■ Homework 1 due right now or ASAP.
■ Will upload and email out homework 2 after class today
■ Quiz will be worth one point - no exceptions/make ups. Earn one discussion point per week - can earn on Monday or Wednesday. Homework will be worth 20 points each; one is dropped.
■ You can earn a 90% for H,D,Q but never taking a quiz or showing up for a discussion.

Last Time...

Last class:

■ Fields \mathbb{F}, such as \mathbb{R}, \mathbb{C}
■ \mathbb{F}-Vector Spaces, such as $\mathbb{F}^{n}, \mathbb{F}^{\infty}, \mathbb{F}^{S}$

Subspaces

Def'n:

A subset U of a vector space V is called a subspace if it is also a vector space under the same operations as V.

Subspaces

Def'n:

A subset U of a vector space V is called a subspace if it is also a vector space under the same operations as V.

Let $U=\left\{\left(v_{1}, 0, v_{3}\right): v_{1}, v_{3} \in \mathbb{R}\right\}$.

Subspaces

Def'n:

A subset U of a vector space V is called a subspace if it is also a vector space under the same operations as V.

Let $U=\left\{\left(v_{1}, 0, v_{3}\right): v_{1}, v_{3} \in \mathbb{R}\right\}$.

1.19 Definition vector space

A vector space is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold:

```
commutativity
    u+v=v+u for all }u,v\inV
```

associativity
$(u+v)+w=u+(v+w)$ and $(a b) v=a(b v)$ for all $u, v, w \in V$
and all $a, b \in \mathbf{F}$;
additive identity
there exists an element $0 \in V$ such that $v+0=v$ for all $v \in V$;
additive inverse
for every $v \in V$, there exists $w \in V$ such that $v+w=0$;
multiplicative identity
$l v=v$ for all $v \in V ;$

distributive properties

$a(u+v)=a u+a v$ and $(a+b) v=a v+b v$ for all $a, b \in \mathbf{F}$ and all $u, v \in V$.

Subspace Criteria

Prop'n:
$U \subseteq V$ is a subspace if and only if U satisfies each of the following:

1. additive identity: $0 \in U$
2. closed under addition: $u, w \in U$ implies $u+w \in U$
3. closed under scaling: $u \in U, \lambda \in \mathbb{F}$ implies $\lambda u \in U$

Proof

Lemmas:
Let V be a vector space and $v \in V$.
a) $0 v=0$
b) $-v=(-1) v$

Proof

Lemmas:
Let V be a vector space and $v \in V$.
a) $0 v=0$
b) $-v=(-1) v$

Proof of a.

Proof

Lemmas:

Let V be a vector space and $v \in V$.
a) $0 v=0$
b) $-v=(-1) v$

Proof of a.
Ov

Proof

Lemmas:

Let V be a vector space and $v \in V$.
a) $0 v=0$
b) $-v=(-1) v$

Proof of a.

$$
0 v=(0+0) v
$$

Proof

Lemmas:

Let V be a vector space and $v \in V$.
a) $0 v=0$
b) $-v=(-1) v$

Proof of a.

$$
0 v=(0+0) v=0 v+0 v
$$

Proof

Lemmas:

Let V be a vector space and $v \in V$.
a) $0 v=0$
b) $-v=(-1) v$

Proof of a.

$$
\begin{gathered}
0 v=(0+0) v=0 v+0 v \\
0=0 v
\end{gathered}
$$

Proof

Lemmas:
Let V be a vector space and $v \in V$.
a) $0 v=0$
b) $-v=(-1) v$

Proof of a.

$$
\begin{gathered}
0 v=(0+0) v=0 v+0 v \\
0=0 v
\end{gathered}
$$

Proof of b.

Proof

Lemmas:

Let V be a vector space and $v \in V$.
a) $0 v=0$
b) $-v=(-1) v$

Proof of a.

$$
\begin{gathered}
0 v=(0+0) v=0 v+0 v \\
0=0 v
\end{gathered}
$$

Proof of b.

$$
v+(-1) v
$$

Proof

Lemmas:

Let V be a vector space and $v \in V$.
a) $0 v=0$
b) $-v=(-1) v$

Proof of a.

$$
\begin{gathered}
0 v=(0+0) v=0 v+0 v \\
0=0 v
\end{gathered}
$$

Proof of b.

$$
v+(-1) v=(1-1) v
$$

Proof

Lemmas:

Let V be a vector space and $v \in V$.
a) $0 v=0$
b) $-v=(-1) v$

Proof of a.

$$
\begin{gathered}
0 v=(0+0) v=0 v+0 v \\
0=0 v
\end{gathered}
$$

Proof of b.

$$
v+(-1) v=(1-1) v=0 v=0
$$

Proof

S'pose $U \subseteq V$ is a subspace...

S'pose $U \subseteq V$ satisfies the three conditions...

Examples

1. $y=x^{2}$ in \mathbb{R}^{2}
2. $y=3 x$ in \mathbb{R}^{2}
3. $y=3 x \bigcup y=-2 x$ in \mathbb{R}^{2}

Operations on Subspaces

Def'n:
S'pose U_{1}, \ldots, U_{n} are subsets of V.

$$
U_{1}+\cdots+U_{n}:=\left\{u_{1}+\cdots+u_{n}: u_{i} \in U_{i}\right\}
$$

Operations on Subspaces

Def'n:

S'pose U_{1}, \ldots, U_{n} are subsets of V.

$$
U_{1}+\cdots+U_{n}:=\left\{u_{1}+\cdots+u_{n}: u_{i} \in U_{i}\right\}
$$

$U_{1}=\{(x, 0,0): x \in \mathbb{R}\}, U_{2}=\{(0, y, 0): y \in \mathbb{R}\}$, and $U_{3}=\{(0,0, z): z \in \mathbb{R}\}$
As a set, $U_{1}+U_{2}+U_{3}=\mathbb{R}^{3}$.

Operations on Subspaces

Def'n:

S'pose U_{1}, \ldots, U_{n} are subsets of V.

$$
U_{1}+\cdots+U_{n}:=\left\{u_{1}+\cdots+u_{n}: u_{i} \in U_{i}\right\}
$$

$U_{1}=\{(x, 0,0): x \in \mathbb{R}\}, U_{2}=\{(0, y, 0): y \in \mathbb{R}\}$, and $U_{3}=\{(0,0, z): z \in \mathbb{R}\}$
As a set, $U_{1}+U_{2}+U_{3}=\mathbb{R}^{3}$.

Prop'n:

S'pose U_{1}, \ldots, U_{n} are subsets of $V . U_{1}+\cdots+U_{n}$ is the smallest subspace of V containing each of the U_{i}.

Proof

To do:

1. Check that $U_{1}+\cdots+U_{n}$ is a subspace.
2. Show that no smaller subspace contains each U_{i}.

Proof

To do:

1. Check that $U_{1}+\cdots+U_{n}$ is a subspace.
2. Show that no smaller subspace contains each U_{i}.

For (1), check subspace criteria.

Proof

To do:

1. Check that $U_{1}+\cdots+U_{n}$ is a subspace.
2. Show that no smaller subspace contains each U_{i}.

For (1), check subspace criteria.
For (2), show $U_{i} \in U_{1}+\cdots+U_{n}$ by setting all but u_{i} equal to zero.

Proof

To do:

1. Check that $U_{1}+\cdots+U_{n}$ is a subspace.
2. Show that no smaller subspace contains each U_{i}.

For (1), check subspace criteria.
For (2), show $U_{i} \in U_{1}+\cdots+U_{n}$ by setting all but u_{i} equal to zero. Then because subspaces must contain all finite sums of their elements any subspace containing each of the U_{i} 's contains $U_{1}+\cdots+U_{n}$.

Direct Sums

Def'n:

The vector subspace $U_{1}+\cdots+U_{n}$ is called a direct sum and denoted $U_{1} \oplus \cdots \oplus U_{n}$ when each element of $U_{1}+\cdots+U_{n}$ can be written in a unique way as $u_{1}+\cdots+u_{n}$ for $u_{i} \in U_{i}$.

Direct Sums

Def'n:

The vector subspace $U_{1}+\cdots+U_{n}$ is called a direct sum and denoted $U_{1} \oplus \cdots \oplus U_{n}$ when each element of $U_{1}+\cdots+U_{n}$ can be written in a unique way as $u_{1}+\cdots+u_{n}$ for $u_{i} \in U_{i}$.

Example: $U_{1}=\{(x, 0,0): x \in \mathbb{R}\}, U_{2}=\{(0, y, 0): y \in \mathbb{R}\}$, and $U_{3}=\{(0,0, z): z \in \mathbb{R}\}$
As a set, $U_{1}+U_{2}+U_{3}=U_{1} \oplus U_{2} \oplus U_{3}=\mathbb{R}^{3}$.

Direct Sums

Def'n:

The vector subspace $U_{1}+\cdots+U_{n}$ is called a direct sum and denoted $U_{1} \oplus \cdots \oplus U_{n}$ when each element of $U_{1}+\cdots+U_{n}$ can be written in a unique way as $u_{1}+\cdots+u_{n}$ for $u_{i} \in U_{i}$.

Example: $U_{1}=\{(x, 0,0): x \in \mathbb{R}\}, U_{2}=\{(0, y, 0): y \in \mathbb{R}\}$, and $U_{3}=\{(0,0, z): z \in \mathbb{R}\}$
As a set, $U_{1}+U_{2}+U_{3}=U_{1} \oplus U_{2} \oplus U_{3}=\mathbb{R}^{3}$.
Non-example: $U_{1}=\{(x, y, 0): x, y \in \mathbb{R}\}, U_{2}=\{(0, w, z): w, z \in \mathbb{R}\}$
$\mathbb{R}^{3}=U_{1}+U_{2} \neq U_{1} \oplus U_{2}$.

Conditions for Direct Sum

Prop'n:

S'pose U_{1}, \ldots, U_{n} are subspaces of V. Then $U_{1}+\cdots+U_{n}$ is a direct sum if and only if the only way to write 0 as a sum $u_{1}+\cdots+u_{n}$ is where each $u_{i}=0 \in U_{i}$.

Conditions for Direct Sum

Prop'n:

S'pose U_{1}, \ldots, U_{n} are subspaces of V. Then $U_{1}+\cdots+U_{n}$ is a direct sum if and only if the only way to write 0 as a sum $u_{1}+\cdots+u_{n}$ is where each $u_{i}=0 \in U_{i}$.

Direct Sum of Two Subspaces

S'pose U and W are subspaces of V. Then $U+W$ is a direct sum if and only if $U \cap W=\{0\}$.

Example

S'pose $U=\left\{(x, x, y, y) \in \mathbb{F}^{4}: x, y \in \mathbb{F}\right\}$. Find a subspace of \mathbb{F}^{4} such
that $\mathbb{F}^{4}=U \oplus W$.

Example

S'pose $U=\left\{(x, x, y, y) \in \mathbb{F}^{4}: x, y \in \mathbb{F}\right\}$. Find a subspace of \mathbb{F}^{4} such that $\mathbb{F}^{4}=U \oplus W$.

Claim: $W=\left\{(z, 0, w, 0): z, w \in \mathbb{F}^{4}\right\}$ works.

Example

S'pose $U=\left\{(x, x, y, y) \in \mathbb{F}^{4}: x, y \in \mathbb{F}\right\}$. Find a subspace of \mathbb{F}^{4} such that $\mathbb{F}^{4}=U \oplus W$.

Claim: $W=\left\{(z, 0, w, 0): z, w \in \mathbb{F}^{4}\right\}$ works.

Break

Discussion Questions

1. Suppose $v, w \in V$. Prove there exists a unique $x \in V$ such that $v+3 x=w$. (Axler 1.B.3)
2. Define addition and multiplication on $\mathbb{R} \cup\{\infty\} \cup\{-\infty\}$ as:

$$
\begin{aligned}
& t \infty=\left\{\begin{array}{ll}
-\infty & t<0 \\
0 & t=0 \\
\infty & t>0
\end{array} \quad t \cdot-\infty= \begin{cases}\infty & t<0 \\
0 & t=0 \\
-\infty & t>0\end{cases} \right. \\
& t+\infty=\infty+t=\infty \quad t+(-\infty)=(-\infty)+t=-\infty \\
& \infty+\infty=\infty-\infty+-\infty=-\infty \quad \infty+-\infty=0
\end{aligned}
$$

Show which \mathbb{R}-vector space properties are satisfies or not.

Discussion Questions (Cont'd)

3. Prove the following:
(a) The set of continuous real-valued functions on the interval $[0,1]$ is a subspace of $\mathbb{R}^{[0,1]}$.
(b) If $b \in \mathbb{F}$, then $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{3}=5 x_{4}+b\right\}$ is a subspace of \mathbb{R}^{4} if and only if $b=0$.
4. Suppose $U=\left\{(x, y, x+y, x-y, 2 x) \in \mathbb{F}^{5}: x, y \in \mathbb{F}\right\}$. Find a subspace of \mathbb{F}^{5} such that $\mathbb{F}^{5}=U \oplus W$. (Axler 1.C.21)

Discussion Solutions

1. Using additive inverse of v and scaling by $\frac{1}{3}$, we have $x=\frac{1}{3}(w-v)$ which shows this element to be unique.
2. A property which fails is associativity, for example,

$$
\begin{gathered}
(t+\infty)+-\infty=\infty+-\infty=0 \\
t+(\infty+-\infty)=t+0=t
\end{gathered}
$$

3. (a) The zero function is continuous. The sum of continuous functions is continuous. Scaling a continuous function by a real number is still continuous.
(b) Subspace criteria hold if $b=0$, if $b \neq 0$ both additive closure and closed under scalar multiplication fail.
4. $W=\{(0,0, a, b, c): a, b, c \in \mathbb{F}\}$ works. We verify this by seeing the $U \cap W=\{0\}$.

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

