

Lecture 2: Subspaces

MATH 110-3

Franny Dean

June 21, 2023

Homework 1 due right now or ASAP.

- Homework 1 due right now or ASAP.
- Will upload and email out homework 2 after class today

- Homework 1 due right now or ASAP.
- Will upload and email out homework 2 after class today
- Quiz will be worth one point no exceptions/make ups. Earn one discussion point per week - can earn on Monday or Wednesday. Homework will be worth 20 points each; one is dropped.

- Homework 1 due right now or ASAP.
- Will upload and email out homework 2 after class today
- Quiz will be worth one point no exceptions/make ups. Earn one discussion point per week - can earn on Monday or Wednesday. Homework will be worth 20 points each; one is dropped.
- You can earn a 90% for H,D,Q but never taking a quiz or showing up for a discussion.

Last class:

- Fields \mathbb{F} , such as \mathbb{R}, \mathbb{C}
- \mathbb{F} -Vector Spaces, such as $\mathbb{F}^n, \mathbb{F}^{\infty}, \mathbb{F}^{S}$

Def'n:

A subset U of a vector space V is called a **subspace** if it is also a vector space under the same operations as V.

Subspaces

Def'n:

A subset U of a vector space V is called a **subspace** if it is also a vector space under the same operations as V.

Let $U = \{(v_1, 0, v_3) : v_1, v_3 \in \mathbb{R}\}.$

Subspaces

Def'n:

A subset U of a vector space V is called a **subspace** if it is also a vector space under the same operations as V.

Let
$$U = \{(v_1, 0, v_3) : v_1, v_3 \in \mathbb{R}\}.$$

1.19 Definition vector space

A vector space is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold:

commutativity

u + v = v + u for all $u, v \in V$;

associativity

(u + v) + w = u + (v + w) and (ab)v = a(bv) for all $u, v, w \in V$ and all $a, b \in \mathbf{F}$;

additive identity

there exists an element $0 \in V$ such that v + 0 = v for all $v \in V$;

additive inverse

for every $v \in V$, there exists $w \in V$ such that v + w = 0;

multiplicative identity

1v = v for all $v \in V$;

distributive properties

a(u + v) = au + av and (a + b)v = av + bv for all $a, b \in \mathbf{F}$ and all $u, v \in V$.

Subspace Criteria

Prop'n:

 $U \subseteq V$ is a subspace **if and only if** U satisfies each of the following:

- 1. additive identity: $0 \in U$
- 2. closed under addition: $u, w \in U$ implies $u + w \in U$
- **3**. **closed under scaling:** $u \in U$, $\lambda \in \mathbb{F}$ implies $\lambda u \in U$

Lemmas:

Let *V* be a vector space and $v \in V$.

a)
$$0v = 0$$

b)
$$-v = (-1)v$$

Lemmas:

Let V be a vector space and $v \in V$. a) 0v = 0

b) -v = (-1)v

Lemmas:

Let *V* be a vector space and $v \in V$. a) 0v = 0

b) -v = (-1)v

Proof of a.

0*v*

Lemmas:

Let V be a vector space and $v \in V$. a) 0v = 0b) -v = (-1)v

$$0v = (0+0)v$$

Lemmas:

Let *V* be a vector space and *v* ∈ *V*.
a) 0v = 0
b) -v = (-1)v

$$0v = (0+0)v = 0v + 0v$$

Lemmas:

Let *V* be a vector space and *v* ∈ *V*.
a) 0v = 0
b) -v = (-1)v

$$0v = (0+0)v = 0v + 0v$$

 $0 = 0v$

Lemmas:

Let *V* be a vector space and *v* ∈ *V*.
a) 0v = 0
b) -v = (-1)v

Proof of a.

$$0v = (0+0)v = 0v + 0v$$

 $0 = 0v$

Lemmas:

Let *V* be a vector space and *v* ∈ *V*.
a) 0v = 0
b) -v = (-1)v

Proof of a.

$$0v = (0+0)v = 0v + 0v$$

 $0 = 0v$

$$v + (-1)v$$

Lemmas:

Let *V* be a vector space and *v* ∈ *V*.
a) 0v = 0
b) -v = (-1)v

Proof of a.

$$0v = (0+0)v = 0v + 0v$$

 $0 = 0v$

$$v + (-1)v = (1-1)v$$

Lemmas:

Let *V* be a vector space and *v* ∈ *V*.
a) 0v = 0
b) -v = (-1)v

Proof of a.

$$0v = (0+0)v = 0v + 0v$$

 $0 = 0v$

$$v + (-1)v = (1 - 1)v = 0v = 0$$

S'pose $U \subseteq V$ is a subspace...

S'pose $U \subseteq V$ satisfies the three conditions...

Examples

1.
$$y = x^{2}$$
 in \mathbb{R}^{2}
2. $y = 3x$ in \mathbb{R}^{2}
3. $y = 3x \bigcup y = -2x$ in \mathbb{R}^{2}

Operations on Subspaces

Def'n:

S'pose U_1, \ldots, U_n are subsets of V.

$$U_1 + \cdots + U_n := \{u_1 + \cdots + u_n : u_i \in U_i\}$$

Operations on Subspaces

Def'n:

S'pose U_1, \ldots, U_n are subsets of V.

$$U_1 + \cdots + U_n := \{u_1 + \cdots + u_n : u_j \in U_j\}$$

$$U_1 = \{(x, 0, 0) : x \in \mathbb{R}\}, U_2 = \{(0, y, 0) : y \in \mathbb{R}\}, \text{ and } U_3 = \{(0, 0, z) : z \in \mathbb{R}\}$$

As a set, $U_1 + U_2 + U_3 = \mathbb{R}^3$.

Operations on Subspaces

Def'n:

S'pose U_1, \ldots, U_n are subsets of V.

$$U_1 + \cdots + U_n := \{u_1 + \cdots + u_n : u_i \in U_i\}$$

$$U_1 = \{(x, 0, 0) : x \in \mathbb{R}\}, U_2 = \{(0, y, 0) : y \in \mathbb{R}\}, \text{ and } U_3 = \{(0, 0, z) : z \in \mathbb{R}\}$$

As a set, $U_1 + U_2 + U_3 = \mathbb{R}^3$.

Prop'n:

S'pose U_1, \ldots, U_n are subsets of V. $U_1 + \cdots + U_n$ is the smallest subspace of V containing each of the U_i .

To do:

- 1. Check that $U_1 + \cdots + U_n$ is a subspace.
- 2. Show that no smaller subspace contains each U_i .

To do:

- 1. Check that $U_1 + \cdots + U_n$ is a subspace.
- 2. Show that no smaller subspace contains each U_i .

For (1), check subspace criteria.

To do:

- 1. Check that $U_1 + \cdots + U_n$ is a subspace.
- 2. Show that no smaller subspace contains each U_i .

For (1), check subspace criteria.

For (2), show $U_i \in U_1 + \cdots + U_n$ by setting all but u_i equal to zero.

To do:

- 1. Check that $U_1 + \cdots + U_n$ is a subspace.
- 2. Show that no smaller subspace contains each U_i .

For (1), check subspace criteria.

For (2), show $U_i \in U_1 + \cdots + U_n$ by setting all but u_i equal to zero. Then because subspaces must contain all finite sums of their elements any subspace containing each of the U_i 's contains $U_1 + \cdots + U_n$.

Direct Sums

Def'n:

The vector subspace $U_1 + \cdots + U_n$ is called a **direct sum** and denoted $U_1 \oplus \cdots \oplus U_n$ when each element of $U_1 + \cdots + U_n$ can be written in a unique way as $u_1 + \cdots + u_n$ for $u_i \in U_i$.

Direct Sums

Def'n:

The vector subspace $U_1 + \cdots + U_n$ is called a **direct sum** and denoted $U_1 \oplus \cdots \oplus U_n$ when each element of $U_1 + \cdots + U_n$ can be written in a unique way as $u_1 + \cdots + u_n$ for $u_i \in U_i$.

Example:
$$U_1 = \{(x, 0, 0) : x \in \mathbb{R}\}, U_2 = \{(0, y, 0) : y \in \mathbb{R}\}$$
, and $U_3 = \{(0, 0, z) : z \in \mathbb{R}\}$
As a set, $U_1 + U_2 + U_3 = U_1 \oplus U_2 \oplus U_3 = \mathbb{R}^3$.

Direct Sums

Def'n:

The vector subspace $U_1 + \cdots + U_n$ is called a **direct sum** and denoted $U_1 \oplus \cdots \oplus U_n$ when each element of $U_1 + \cdots + U_n$ can be written in a unique way as $u_1 + \cdots + u_n$ for $u_i \in U_i$.

Example:
$$U_1 = \{(x, 0, 0) : x \in \mathbb{R}\}, U_2 = \{(0, y, 0) : y \in \mathbb{R}\}$$
, and $U_3 = \{(0, 0, z) : z \in \mathbb{R}\}$
As a set, $U_1 + U_2 + U_3 = U_1 \oplus U_2 \oplus U_3 = \mathbb{R}^3$.

Non-example: $U_1 = \{(x, y, 0) : x, y \in \mathbb{R}\}, U_2 = \{(0, w, z) : w, z \in \mathbb{R}\}$ $\mathbb{R}^3 = U_1 + U_2 \neq U_1 \oplus U_2.$

Conditions for Direct Sum

Prop'n:

S'pose U_1, \ldots, U_n are subspaces of V. Then $U_1 + \cdots + U_n$ is a direct sum if and only if the only way to write 0 as a sum $u_1 + \cdots + u_n$ is where each $u_i = 0 \in U_i$.

Conditions for Direct Sum

Prop'n:

S'pose U_1, \ldots, U_n are subspaces of V. Then $U_1 + \cdots + U_n$ is a direct sum if and only if the only way to write 0 as a sum $u_1 + \cdots + u_n$ is where each $u_i = 0 \in U_i$.

Direct Sum of Two Subspaces

S'pose *U* and *W* are subspaces of *V*. Then U + W is a direct sum if and only if $U \cap W = \{0\}$.

Example

S'pose $U = \{(x, x, y, y) \in \mathbb{F}^4 : x, y \in \mathbb{F}\}$. Find a subspace of \mathbb{F}^4 such that $\mathbb{F}^4 = U \oplus W$.

Example

S'pose $U = \{(x, x, y, y) \in \mathbb{F}^4 : x, y \in \mathbb{F}\}$. Find a subspace of \mathbb{F}^4 such that $\mathbb{F}^4 = U \oplus W$.

Claim: $W = \{(z, 0, w, 0) : z, w \in \mathbb{F}^4\}$ works.

Example

S'pose $U = \{(x, x, y, y) \in \mathbb{F}^4 : x, y \in \mathbb{F}\}$. Find a subspace of \mathbb{F}^4 such that $\mathbb{F}^4 = U \oplus W$.

Claim: $W = \{(z, 0, w, 0) : z, w \in \mathbb{F}^4\}$ works.

Discussion Questions

- 1. Suppose $v, w \in V$. Prove there exists a unique $x \in V$ such that v + 3x = w. (Axler 1.B.3)
- 2. Define addition and multiplication on $\mathbb{R} \cup \{\infty\} \cup \{-\infty\}$ as:

$$t\infty = \begin{cases} -\infty & t < 0 \\ 0 & t = 0 \\ \infty & t > 0 \end{cases} \qquad t \cdot -\infty = \begin{cases} \infty & t < 0 \\ 0 & t = 0 \\ -\infty & t > 0 \end{cases}$$

 $t + \infty = \infty + t = \infty$ $t + (-\infty) = (-\infty) + t = -\infty$

 $\infty + \infty = \infty$ $-\infty + -\infty = -\infty$ $\infty + -\infty = 0$

Show which \mathbb{R} -vector space properties are satisfies or not.

Discussion Questions (Cont'd)

- 3. Prove the following:
 - (a) The set of continuous real-valued functions on the interval [0,1] is a subspace of $\mathbb{R}^{[0,1]}$.
 - (b) If $b \in \mathbb{F}$, then $\{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_3 = 5x_4 + b\}$ is a subspace of \mathbb{R}^4 if and only if b = 0.
- 4. Suppose $U = \{(x, y, x + y, x y, 2x) \in \mathbb{F}^5 : x, y \in \mathbb{F}\}$. Find a subspace of \mathbb{F}^5 such that $\mathbb{F}^5 = U \oplus W$. (Axler 1.C.21)

Discussion Solutions

- 1. Using additive inverse of v and scaling by $\frac{1}{3}$, we have $x = \frac{1}{3}(w v)$ which shows this element to be unique.
- 2. A property which fails is associativity, for example,

$$(t+\infty)+-\infty=\infty+-\infty=0$$

 $t + (\infty + -\infty) = t + 0 = t$

- (a) The zero function is continuous. The sum of continuous functions is continuous. Scaling a continuous function by a real number is still continuous.
 - (b) Subspace criteria hold if b = 0, if $b \neq 0$ both additive closure and closed under scalar multiplication fail.
- 4. $W = \{(0, 0, a, b, c) : a, b, c \in \mathbb{F}\}$ works. We verify this by seeing the $U \cap W = \{0\}$.

[Axl14] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.