

Lecture 3: Span and Linear Independence

MATH 110-3

Franny Dean

June 22, 2023

Announcements

- Quiz today! 15 minutes after lecture
- Homework 2 problem 5 W should be a V

Notation

- $\blacksquare \ \mathbb{F}$ will be \mathbb{R} or
- *V* will be an **F**-vector space

Notation

- $\blacksquare \mathbb{F}$ will be \mathbb{R} or
- *V* will be an **F**-vector space
- A list of vectors will be written v_1, v_2, \ldots, v_n

Notation

- $\blacksquare \mathbb{F}$ will be \mathbb{R} or
- *V* will be an **F**-vector space
- A list of vectors will be written v_1, v_2, \ldots, v_n
- By *list* of vectors we mean a finite collection of vectors

Linear Combinations

Def'n:

A **linear combination** of the vectors v_1, \ldots, v_n is a vector

$$a_1v_1+\cdots+a_nv_n$$

for $a_i \in \mathbb{F}$.

Linear Combinations

Def'n:

A linear combination of the vectors v_1, \ldots, v_n is a vector

 $a_1v_1 + \cdots + a_nv_n$

for $a_i \in \mathbb{F}$.

Example:

$$(3,4,5) = (3,0,2) + 2(0,2,1) + \frac{1}{2}(0,0,2)$$

Linear Combinations

Def'n:

A linear combination of the vectors v_1, \ldots, v_n is a vector

 $a_1v_1+\cdots+a_nv_n$

for $a_i \in \mathbb{F}$.

Example:

- $(3,4,5) = (3,0,2) + 2(0,2,1) + \frac{1}{2}(0,0,2)$
- Is (3, 4, 5) a linear combination of (3, 0, 2), (0, 2, 1)?

The set of all linear combinations of the vectors v_1, \ldots, v_n is called the span of v_1, \ldots, v_n . The empty set has span $\{0\}$.

The set of all linear combinations of the vectors v_1, \ldots, v_n is called the span of v_1, \ldots, v_n . The empty set has span $\{0\}$.

Example:

(3,4,5) is in the span of (3,0,2), (0,2,1), (0,0,2) but not of (3,0,2), (0,2,1)

The set of all linear combinations of the vectors v_1, \ldots, v_n is called the span of v_1, \ldots, v_n . The empty set has span $\{0\}$.

Example:

(3,4,5) is in the span of (3,0,2), (0,2,1), (0,0,2) but not of (3,0,2), (0,2,1)

Fact ([Axl14] 2.7):

The span of a list of vectors in V is the smallest subspace of V that contains all the vectors in the list.

We say that v_1, \ldots, v_n spans V if span $(v_1, \ldots, v_n) = V$.

We say that v_1, \ldots, v_n spans V if span $(v_1, \ldots, v_n) = V$.

Claim:

The vectors (1, 0, ..., 0), (0, 1, ..., 0), ... (0, 0, ..., 1) span \mathbb{F}^n .

How would I prove this?

We say that v_1, \ldots, v_n spans V if span $(v_1, \ldots, v_n) = V$.

Claim:

The vectors (1, 0, ..., 0), (0, 1, ..., 0), ... (0, 0, ..., 1) span \mathbb{F}^n .

How would I prove this?

Show vector $(x_1, ..., x_n) \in \mathbb{F}^n$ can be written as a linear combination of these vectors.

Def'n:

A vector space V is **finite-dimensional** if a finite list of vectors spans V.

Def'n:

A vector space V is **finite-dimensional** if a finite list of vectors spans V.

Example: $\mathcal{P}_n(\mathbb{R})$

Def'n:

A vector space V is **finite-dimensional** if a finite list of vectors spans V.

Example: $\mathcal{P}_n(\mathbb{R})$

Non-Example: $\mathcal{P}(\mathbb{R})$

Def'n:

A vector space V is **finite-dimensional** if a finite list of vectors spans V.

Example: $\mathcal{P}_n(\mathbb{R})$

Non-Example: $\mathcal{P}(\mathbb{R})$

 $\mathcal{P}(\mathbb{R})$ is an **infinite-dimensional** vector space.

Def'n:

A vector space V is **finite-dimensional** if a finite list of vectors spans V.

Example: $\mathcal{P}_n(\mathbb{R})$

Non-Example: $\mathcal{P}(\mathbb{R})$

 $\mathcal{P}(\mathbb{R})$ is an **infinite-dimensional** vector space.

Def'n:

A vector space V is **infinite-dimensional** if it is not finite-dimensional.

We wrote

$$(3,4,5) = (3,0,2) + 2(0,2,1) + \frac{1}{2}(0,0,2).$$

We wrote

$$(3,4,5) = (3,0,2) + 2(0,2,1) + \frac{1}{2}(0,0,2).$$

Is this the only set of coefficients that would work to write (3, 4, 5) as a linear combination of this list?

S'pose we have a list of vectors v_1, v_2, \ldots, v_n in an \mathbb{F} -vector space V.

S'pose we have a list of vectors v_1, v_2, \ldots, v_n in an \mathbb{F} -vector space V.

S'pose $a_i \in \mathbb{F}$ such that $v = a_1v_1 + \ldots + a_nv_n$.

S'pose we have a list of vectors v_1, v_2, \ldots, v_n in an \mathbb{F} -vector space V.

Spose $a_i \in \mathbb{F}$ such that $v = a_1v_1 + \ldots + a_nv_n$.

S'pose $b_i \in \mathbb{F}$ such that $v = b_1 v_1 + \ldots + b_n v_n$.

S'pose we have a list of vectors v_1, v_2, \ldots, v_n in an \mathbb{F} -vector space V.

Spose $a_i \in \mathbb{F}$ such that $v = a_1v_1 + \ldots + a_nv_n$.

S'pose $b_i \in \mathbb{F}$ such that $v = b_1 v_1 + \ldots + b_n v_n$.

Then subtracting

$$0 = (a_1 - b_1)v_1 + \ldots + (a_n - b_n)v_n.$$

S'pose we have a list of vectors v_1, v_2, \ldots, v_n in an \mathbb{F} -vector space V.

Spose $a_i \in \mathbb{F}$ such that $v = a_1v_1 + \ldots + a_nv_n$.

S'pose $b_i \in \mathbb{F}$ such that $v = b_1 v_1 + \ldots + b_n v_n$.

Then subtracting

$$0 = (a_1 - b_1)v_1 + \ldots + (a_n - b_n)v_n.$$

If the only way to write 0 as a linear combination of the v_i is where all the coefficients are 0, then we have uniqueness of *every* set of coefficients.

Def'n

A list of vectors v_1, \ldots, v_n is said to be **linearly independent** if the only choice of $a_i \in \mathbb{F}$ that makes $a_1v_1 + \cdots + a_nv_n = 0$ is $a_1 = \cdots = a_n = 0$. Otherwise, we say the vectors are **linearly dependent**. The empty set is linearly independent.

- $\bullet (3,0,2), (0,2,1), (0,0,2)?$
- A single vector v?

- **(**3,0,2),(0,2,1),(0,0,2)?
- A single vector v?
- Two vectors?

- **(**3,0,2),(0,2,1),(0,0,2)?
- A single vector v?
- Two vectors?
- 1, x, x^2 , x^3 , ... in $\mathcal{P}(\mathbb{R})$?

- **(**3,0,2),(0,2,1),(0,0,2)?
- A single vector v?
- Two vectors?
- 1, x, x^2 , x^3 , ... in $\mathcal{P}(\mathbb{R})$? Independent.
- A list of vectors containing the zero vector?

- **(**3,0,2),(0,2,1),(0,0,2)?
- A single vector v?
- Two vectors?
- 1, x, x^2 , x^3 , ... in $\mathcal{P}(\mathbb{R})$? Independent.
- A list of vectors containing the zero vector? Always dependent.

Prop'n 2.21 [Axl14]:

S'pose v_1, \ldots, v_n is a linearly dependent list in *V*. Then there exists $j \in [n]$ such that the following hold:

•
$$v_j \in \operatorname{span}(v_1, \ldots, v_{j-1})$$

span
$$(v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_n) = \operatorname{span}(v_1, \ldots, v_n)$$

Prop'n 2.21 [Axl14]:

S'pose v_1, \ldots, v_n is a linearly dependent list in *V*. Then there exists $j \in [n]$ such that the following hold:

•
$$v_j \in \operatorname{span}(v_1, \ldots, v_{j-1})$$

span
$$(v_1,\ldots,v_{j-1},v_{j+1},\ldots,v_n) = \operatorname{span}(v_1,\ldots,v_n)$$

Example:

Prop'n 2.21 [Axl14]:

S'pose v_1, \ldots, v_n is a linearly dependent list in *V*. Then there exists $j \in [n]$ such that the following hold:

•
$$v_j \in \operatorname{span}(v_1, \ldots, v_{j-1})$$

span
$$(v_1,\ldots,v_{j-1},v_{j+1},\ldots,v_n) = \operatorname{span}(v_1,\ldots,v_n)$$

Example:

(1, 2, 3), (2, 3, 4), (3, 4, 5), (1, 1, 1) is linearly dependent.

Prop'n 2.21 [Axl14]:

S'pose v_1, \ldots, v_n is a linearly dependent list in *V*. Then there exists $j \in [n]$ such that the following hold:

•
$$v_j \in \operatorname{span}(v_1, \ldots, v_{j-1})$$

span
$$(v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_n) = \operatorname{span}(v_1, \ldots, v_n)$$

Example:

(1,2,3),(2,3,4),(3,4,5),(1,1,1) is linearly dependent. $(1,1,1)\in {\sf span}((1,2,3),(2,3,4))$

Linear Dependence Lemma

Prop'n 2.21 [Axl14]:

S'pose v_1, \ldots, v_n is a linearly dependent list in *V*. Then there exists $j \in [n]$ such that the following hold:

•
$$v_j \in \operatorname{span}(v_1, \ldots, v_{j-1})$$

span
$$(v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_n) = \operatorname{span}(v_1, \ldots, v_n)$$

Example:

(1,2,3),(2,3,4),(3,4,5),(1,1,1) is linearly dependent. $(1,1,1)\in {\sf span}((1,2,3),(2,3,4))$

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Proof.

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Proof. S'pose v_1, \ldots, v_m are lin ind and u_1, \ldots, u_n span. WTS: $m \le n$.

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Proof. S'pose v_1, \ldots, v_m are lin ind and u_1, \ldots, u_n span. WTS: $m \le n$. Adding any vector to our spanning list makes it linearly dependent:

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Proof. S'pose v_1, \ldots, v_m are lin ind and u_1, \ldots, u_n span. WTS: $m \le n$. Adding any vector to our spanning list makes it linearly dependent:

 u_1, \ldots, u_n, v_1

is lin dep.

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Proof. S'pose v_1, \ldots, v_m are lin ind and u_1, \ldots, u_n span. WTS: $m \le n$. Adding any vector to our spanning list makes it linearly dependent:

 u_1,\ldots,u_n,v_1

is lin dep. By (2.21), we can remove some u_i such that

$$u_1,\ldots,\hat{u_i},\ldots,u_n,v_1$$

spans.

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Proof. S'pose v_1, \ldots, v_m are lin ind and u_1, \ldots, u_n span. WTS: $m \le n$. Adding any vector to our spanning list makes it linearly dependent:

 u_1,\ldots,u_n,v_1

is lin dep. By (2.21), we can remove some u_i such that

$$u_1,\ldots,\hat{u}_i,\ldots,u_n,v_1$$

spans. And we repeat...

FD • MATH 110 • June 22, 2023

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Proof cont'd. So at the j^{th} step, we have

n-j of the $u's, v_1, v_2, ..., v_j$

which spans.

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Proof cont'd. So at the *j*th step, we have

```
n-j of the u's, v_1, v_2, ..., v_j
```

which spans.

We know that we can choose one of the u's to replace at each step because the v's are lin ind.

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Proof cont'd. So at the *j*th step, we have

n-j of the $u's, v_1, v_2, ..., v_j$

which spans.

We know that we can choose one of the u's to replace at each step because the v's are lin ind.

of v's
$$\leq$$
 # of u's
 $m \leq n$

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Example:

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Example:

We know (1, 2, 3), (2, 3, 4), (3, 4, 5), (1, 1, 1) is linearly dependent in \mathbb{R}^3 because (1, 0, 0), (0, 1, 0), (0, 0, 1) spans \mathbb{R}^3 .

Finite-dimensional subspaces

Prop'n 2.26 [Axl14]:

Every subspace of a finite-dimensional vector space is finite-dimensional.

[Ax114] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.