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Announcements

Quiz today! 15 minutes after lecture
Homework 2 - problem 5 W should be a V
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Notation

F will be R or
V will be an F-vector space

A list of vectors will be written v1, v2, . . . , vn
By list of vectors we mean a finite collection of vectors
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Linear Combinations

Def’n:
A linear combination of the vectors v1, . . . , vn is a vector

a1v1 + · · ·+ anvn

for ai ∈ F.

Example:
(3, 4, 5) = (3, 0, 2) + 2(0, 2, 1) + 1

2(0, 0, 2)
Is (3, 4, 5) a linear combination of (3, 0, 2), (0, 2, 1)?
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Span

Def’n:
The set of all linear combinations of the vectors v1, . . . , vn is called
the span of v1, . . . , vn.
The empty set has span {0}.

Example:
(3, 4, 5) is in the span of (3, 0, 2), (0, 2, 1), (0, 0, 2) but not of
(3, 0, 2), (0, 2, 1)

Fact ([Axl14] 2.7):
The span of a list of vectors in V is the smallest subspace of V that
contains all the vectors in the list.
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Spans

Def’n:
We say that v1, . . . , vn spans V if span(v1, . . . , vn) = V .

Claim:
The vectors (1, 0, . . . , 0), (0, 1, . . . , 0), . . . (0, 0, . . . , 1) span Fn.

How would I prove this?
Show vector (x1, . . . , xn) ∈ Fn can be written as a linear
combination of these vectors.
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Finite dimensional vector spaces

Def’n:
A vector space V is finite-dimensional if a finite list of vectors spans V .

Example: Pn(R)

Non-Example: P(R)

P(R) is an infinite-dimensional vector space.

Def’n:
A vector space V is infinite-dimensional if it is not finite-dimensional.
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Linear Independence

We wrote

(3, 4, 5) = (3, 0, 2) + 2(0, 2, 1) +
1
2
(0, 0, 2).

Is this the only set of coefficients that would work to write (3, 4, 5) as
a linear combination of this list?
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Linear Independence

S’pose we have a list of vectors v1, v2, . . . , vn in an F-vector space V .

S’pose ai ∈ F such that v = a1v1 + . . .+ anvn.

S’pose bi ∈ F such that v = b1v1 + . . .+ bnvn.

Then subtracting

0 = (a1 − b1)v1 + . . .+ (an − bn)vn.

If the only way to write 0 as a linear combination of the vi is where
all the coefficients are 0, then we have uniqueness of every set of
coefficients.
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Linear Independence

Def’n
A list of vectors v1, . . . , vn is said to be linearly independent if the
only choice of ai ∈ F that makes a1v1 + · · ·+ anvn = 0 is
a1 = · · · = an = 0.
Otherwise, we say the vectors are linearly dependent.
The empty set is linearly independent.
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Examples

(3, 0, 2), (0, 2, 1), (0, 0, 2)?
A single vector v?

Two vectors?
1, x, x2, x3, . . . in P(R)? Independent.
A list of vectors containing the zero vector? Always dependent.
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Linear Dependence Lemma

Prop’n 2.21 [Axl14]:
S’pose v1, . . . , vn is a linearly dependent list in V . Then there exists
j ∈ [n] such that the following hold:

vj ∈ span(v1, . . . , vj−1)
span(v1, . . . , vj−1, vj+1, . . . , vn) = span(v1, . . . , vn)

Example:
(1, 2, 3), (2, 3, 4), (3, 4, 5), (1, 1, 1) is linearly dependent.
(1, 1, 1) ∈ span((1, 2, 3), (2, 3, 4))
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Length of linearly independent and spanning lists

Prop’n 2.23:
In finite dimensional vector spaces, the length of a linear
independent list is ≤ the length of a spanning list.

Proof. S’pose v1, . . . , vm are lin ind and u1, . . . , un span. WTS: m ≤ n.
Adding any vector to our spanning list makes it linearly dependent:

u1, . . . , un, v1

is lin dep.
By (2.21), we can remove some ui such that

u1, . . . , ûi, . . . , un, v1

spans.
And we repeat...
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Length of linearly independent and spanning lists

Prop’n 2.23:
In finite dimensional vector spaces, the length of a linear
independent list is ≤ the length of a spanning list.

Proof cont’d. So at the jth step, we have

n-j of the u′s, v1, v2, . . . , vj

which spans.

We know that we can choose one of the u′s to replace at each step
because the v′s are lin ind.

# of v’s ≤ # of u’s

m ≤ n
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Length of linearly independent and spanning lists

Prop’n 2.23:
In finite dimensional vector spaces, the length of a linear
independent list is ≤ the length of a spanning list.

Example:

We know (1, 2, 3), (2, 3, 4), (3, 4, 5), (1, 1, 1) is linearly dependent in
R3 because (1, 0, 0), (0, 1, 0), (0, 0, 1) spans R3.
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Finite-dimensional subspaces

Prop’n 2.26 [Axl14]:
Every subspace of a finite-dimensional vector space is
finite-dimensional.
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