Lecture 3: Span and Linear Independence

MATH 110-3

Franny Dean

June 22, 2023

Announcements

■ Quiz today! 15 minutes after lecture
■ Homework 2 - problem 5 W should be a V

Notation

■ \mathbb{F} will be \mathbb{R} or
■ V will be an \mathbb{F}-vector space

Notation

■ \mathbb{F} will be \mathbb{R} or

- V will be an \mathbb{F}-vector space
- A list of vectors will be written $v_{1}, v_{2}, \ldots, v_{n}$

Notation

■ \mathbb{F} will be \mathbb{R} or

- V will be an \mathbb{F}-vector space

■ A list of vectors will be written $v_{1}, v_{2}, \ldots, v_{n}$
■ By list of vectors we mean a finite collection of vectors

Linear Combinations

Def'n:

A linear combination of the vectors v_{1}, \ldots, v_{n} is a vector

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

for $a_{i} \in \mathbb{F}$.

Linear Combinations

Def'n:

A linear combination of the vectors v_{1}, \ldots, v_{n} is a vector

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

for $a_{i} \in \mathbb{F}$.

Example:

$\square(3,4,5)=(3,0,2)+2(0,2,1)+\frac{1}{2}(0,0,2)$

Linear Combinations

Def'n:

A linear combination of the vectors v_{1}, \ldots, v_{n} is a vector

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

for $a_{i} \in \mathbb{F}$.

Example:

■ $(3,4,5)=(3,0,2)+2(0,2,1)+\frac{1}{2}(0,0,2)$
■ Is $(3,4,5)$ a linear combination of $(3,0,2),(0,2,1)$?

Span

Def'n:

The set of all linear combinations of the vectors v_{1}, \ldots, v_{n} is called the span of v_{1}, \ldots, v_{n}.
The empty set has span $\{0\}$.

Span

Def'n:

The set of all linear combinations of the vectors v_{1}, \ldots, v_{n} is called the span of v_{1}, \ldots, v_{n}.
The empty set has span $\{0\}$.

Example:

■ ($3,4,5$) is in the span of $(3,0,2),(0,2,1),(0,0,2)$ but not of $(3,0,2),(0,2,1)$

Span

Def'n:

The set of all linear combinations of the vectors v_{1}, \ldots, v_{n} is called the span of v_{1}, \ldots, v_{n}.
The empty set has span $\{0\}$.

Example:

$\square(3,4,5)$ is in the span of $(3,0,2),(0,2,1),(0,0,2)$ but not of $(3,0,2),(0,2,1)$

Fact ([Ax[14] 2.7):

The span of a list of vectors in V is the smallest subspace of V that contains all the vectors in the list.

Spans

Def'n:

We say that v_{1}, \ldots, v_{n} spans V if $\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)=V$.

Spans

Def'n:

We say that v_{1}, \ldots, v_{n} spans V if $\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)=V$.

Claim:

The vectors $(1,0, \ldots, 0),(0,1, \ldots, 0), \ldots(0,0, \ldots, 1)$ span \mathbb{F}^{n}.

How would I prove this?

Spans

Def'n:

We say that v_{1}, \ldots, v_{n} spans V if $\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)=V$.

Claim:
The vectors $(1,0, \ldots, 0),(0,1, \ldots, 0), \ldots(0,0, \ldots, 1)$ span \mathbb{F}^{n}.

How would I prove this?
■ Show vector $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$ can be written as a linear combination of these vectors.

Finite dimensional vector spaces

Def'n:

A vector space V is finite-dimensional if a finite list of vectors spans V.

Finite dimensional vector spaces

Def'n:

A vector space V is finite-dimensional if a finite list of vectors spans V.

Example: $\mathcal{P}_{n}(\mathbb{R})$

Finite dimensional vector spaces

Def'n:

A vector space V is finite-dimensional if a finite list of vectors spans V.

Example: $\mathcal{P}_{n}(\mathbb{R})$
Non-Example: $\mathcal{P}(\mathbb{R})$

Finite dimensional vector spaces

Def'n:

A vector space V is finite-dimensional if a finite list of vectors spans V.

Example: $\mathcal{P}_{n}(\mathbb{R})$
Non-Example: $\mathcal{P}(\mathbb{R})$
$\mathcal{P}(\mathbb{R})$ is an infinite-dimensional vector space.

Finite dimensional vector spaces

Def'n:

A vector space V is finite-dimensional if a finite list of vectors spans V.

Example: $\mathcal{P}_{n}(\mathbb{R})$
Non-Example: $\mathcal{P}(\mathbb{R})$
$\mathcal{P}(\mathbb{R})$ is an infinite-dimensional vector space.
Def'n:
A vector space V is infinite-dimensional if it is not finite-dimensional.

Linear Independence

We wrote

$$
(3,4,5)=(3,0,2)+2(0,2,1)+\frac{1}{2}(0,0,2)
$$

Linear Independence

We wrote

$$
(3,4,5)=(3,0,2)+2(0,2,1)+\frac{1}{2}(0,0,2)
$$

Is this the only set of coefficients that would work to write $(3,4,5)$ as a linear combination of this list?

Linear Independence

S'pose we have a list of vectors $v_{1}, v_{2}, \ldots, v_{n}$ in an \mathbb{F}-vector space V.

Linear Independence

S'pose we have a list of vectors $v_{1}, v_{2}, \ldots, v_{n}$ in an \mathbb{F}-vector space V. S'pose $a_{i} \in \mathbb{F}$ such that $v=a_{1} v_{1}+\ldots+a_{n} v_{n}$.

Linear Independence

S'pose we have a list of vectors $v_{1}, v_{2}, \ldots, v_{n}$ in an \mathbb{F}-vector space V.
S'pose $a_{i} \in \mathbb{F}$ such that $v=a_{1} v_{1}+\ldots+a_{n} v_{n}$.
S'pose $b_{i} \in \mathbb{F}$ such that $v=b_{1} v_{1}+\ldots+b_{n} v_{n}$.

Linear Independence

S'pose we have a list of vectors $v_{1}, v_{2}, \ldots, v_{n}$ in an \mathbb{F}-vector space V.
S'pose $a_{i} \in \mathbb{F}$ such that $v=a_{1} v_{1}+\ldots+a_{n} v_{n}$.
S'pose $b_{i} \in \mathbb{F}$ such that $v=b_{1} v_{1}+\ldots+b_{n} v_{n}$.
Then subtracting

$$
0=\left(a_{1}-b_{1}\right) v_{1}+\ldots+\left(a_{n}-b_{n}\right) v_{n} .
$$

Linear Independence

S'pose we have a list of vectors $v_{1}, v_{2}, \ldots, v_{n}$ in an \mathbb{F}-vector space V.
S'pose $a_{i} \in \mathbb{F}$ such that $v=a_{1} v_{1}+\ldots+a_{n} v_{n}$.
S'pose $b_{i} \in \mathbb{F}$ such that $v=b_{1} v_{1}+\ldots+b_{n} v_{n}$.
Then subtracting

$$
0=\left(a_{1}-b_{1}\right) v_{1}+\ldots+\left(a_{n}-b_{n}\right) v_{n} .
$$

If the only way to write 0 as a linear combination of the v_{i} is where all the coefficients are 0 , then we have uniqueness of every set of coefficients.

Linear Independence

Def'n

A list of vectors v_{1}, \ldots, v_{n} is said to be linearly independent if the only choice of $a_{i} \in \mathbb{F}$ that makes $a_{1} v_{1}+\cdots+a_{n} v_{n}=0$ is $a_{1}=\cdots=a_{n}=0$.
Otherwise, we say the vectors are linearly dependent.
The empty set is linearly independent.

Examples

■ (3, 0, 2), (0, 2, 1), (0, 0, 2)?
■ A single vector v ?

Examples

■ (3, 0, 2), (0, 2, 1), (0, 0, 2)?
■ A single vector v ?
■ Two vectors?

Examples

■ (3, 0, 2), (0, 2, 1), (0, 0, 2)?
■ A single vector v ?

- Two vectors?

■ $1, x, x^{2}, x^{3}, \ldots$ in $\mathcal{P}(\mathbb{R})$?

Examples

■ (3, 0, 2), (0, 2, 1), (0, 0, 2)?
■ A single vector v ?
■ Two vectors?
■ $1, x, x^{2}, x^{3}, \ldots$ in $\mathcal{P}(\mathbb{R})$? Independent.
■ A list of vectors containing the zero vector?

Examples

■ (3, 0, 2), (0, 2, 1), (0, 0, 2)?
■ A single vector v ?
■ Two vectors?
■ $1, x, x^{2}, x^{3}, \ldots$ in $\mathcal{P}(\mathbb{R})$? Independent.
■ A list of vectors containing the zero vector? Always dependent.

Linear Dependence Lemma

Prop'n 2.21 [Axl14]:

S'pose v_{1}, \ldots, v_{n} is a linearly dependent list in V. Then there exists $j \in[n]$ such that the following hold:

- $v_{j} \in \operatorname{span}\left(v_{1}, \ldots, v_{j-1}\right)$
$\square \operatorname{span}\left(v_{1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{n}\right)=\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)$

Linear Dependence Lemma

Prop'n 2.21 [Axl14]:

S'pose v_{1}, \ldots, v_{n} is a linearly dependent list in V. Then there exists $j \in[n]$ such that the following hold:

- $v_{j} \in \operatorname{span}\left(v_{1}, \ldots, v_{j-1}\right)$
$\square \operatorname{span}\left(v_{1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{n}\right)=\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)$

Example:

Linear Dependence Lemma

Prop'n 2.21 [Axl14]:

S'pose v_{1}, \ldots, v_{n} is a linearly dependent list in V. Then there exists $j \in[n]$ such that the following hold:

- $v_{j} \in \operatorname{span}\left(v_{1}, \ldots, v_{j-1}\right)$
$\square \operatorname{span}\left(v_{1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{n}\right)=\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)$

Example:

$(1,2,3),(2,3,4),(3,4,5),(1,1,1)$ is linearly dependent.

Linear Dependence Lemma

Prop'n 2.21 [Axl14]:

S'pose v_{1}, \ldots, v_{n} is a linearly dependent list in V. Then there exists $j \in[n]$ such that the following hold:

■ $v_{j} \in \operatorname{span}\left(v_{1}, \ldots, v_{j-1}\right)$
$\square \operatorname{span}\left(v_{1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{n}\right)=\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)$

Example:

$(1,2,3),(2,3,4),(3,4,5),(1,1,1)$ is linearly dependent.
$(1,1,1) \in \operatorname{span}((1,2,3),(2,3,4))$

Linear Dependence Lemma

Prop'n 2.21 [Axl14]:

S'pose v_{1}, \ldots, v_{n} is a linearly dependent list in V. Then there exists $j \in[n]$ such that the following hold:

■ $v_{j} \in \operatorname{span}\left(v_{1}, \ldots, v_{j-1}\right)$
$\square \operatorname{span}\left(v_{1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{n}\right)=\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)$

Example:

$(1,2,3),(2,3,4),(3,4,5),(1,1,1)$ is linearly dependent.
$(1,1,1) \in \operatorname{span}((1,2,3),(2,3,4))$

Length of linearly independent and spanning lists

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Length of linearly independent and spanning lists

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Proof.

Length of linearly independent and spanning lists

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Proof. S'pose v_{1}, \ldots, v_{m} are lin ind and u_{1}, \ldots, u_{n} span. WTS: $m \leq n$.

Length of linearly independent and spanning lists

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Proof. S'pose v_{1}, \ldots, v_{m} are lin ind and u_{1}, \ldots, u_{n} span. WTS: $m \leq n$. Adding any vector to our spanning list makes it linearly dependent:

Length of linearly independent and spanning lists

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Proof. S'pose v_{1}, \ldots, v_{m} are lin ind and u_{1}, \ldots, u_{n} span. WTS: $m \leq n$. Adding any vector to our spanning list makes it linearly dependent:

$$
u_{1}, \ldots, u_{n}, v_{1}
$$

is lin dep.

Length of linearly independent and spanning lists

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Proof. S'pose v_{1}, \ldots, v_{m} are lin ind and u_{1}, \ldots, u_{n} span. WTS: $m \leq n$. Adding any vector to our spanning list makes it linearly dependent:

$$
u_{1}, \ldots, u_{n}, v_{1}
$$

is lin dep.
By (2.21), we can remove some u_{i} such that

$$
u_{1}, \ldots, \hat{u}_{i}, \ldots, u_{n}, v_{1}
$$

spans.

Length of linearly independent and spanning lists

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Proof. S'pose v_{1}, \ldots, v_{m} are lin ind and u_{1}, \ldots, u_{n} span. WTS: $m \leq n$. Adding any vector to our spanning list makes it linearly dependent:

$$
u_{1}, \ldots, u_{n}, v_{1}
$$

is lin dep.
By (2.21), we can remove some u_{i} such that

$$
u_{1}, \ldots, \hat{u}_{i}, \ldots, u_{n}, v_{1}
$$

spans.
And we repeat...

Length of linearly independent and spanning lists

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Proof cont'd. So at the $j^{\text {th }}$ step, we have

$$
\mathrm{n} \text {-j of the } u^{\prime} s, v_{1}, v_{2}, \ldots, v_{j}
$$

which spans.

Length of linearly independent and spanning lists

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Proof cont'd. So at the $j^{\text {th }}$ step, we have

$$
\mathrm{n} \text {-j of the } u^{\prime} s, v_{1}, v_{2}, \ldots, v_{j}
$$

which spans.
We know that we can choose one of the u 's to replace at each step because the $v^{\prime} s$ are lin ind.

Length of linearly independent and spanning lists

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Proof cont'd. So at the $j^{\text {th }}$ step, we have

$$
\mathrm{n} \text {-j of the } u^{\prime} s, v_{1}, v_{2}, \ldots, v_{j}
$$

which spans.
We know that we can choose one of the u 's to replace at each step because the $v^{\prime} s$ are lin ind.

$$
\begin{gathered}
\# \text { of v's } \leq \# \text { of u's } \\
m \leq n
\end{gathered}
$$

Length of linearly independent and spanning lists

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Example:

Length of linearly independent and spanning lists

Prop'n 2.23:

In finite dimensional vector spaces, the length of a linear independent list is \leq the length of a spanning list.

Example:

We know (1, 2, 3), (2, 3, 4), (3, 4, 5), ($1,1,1$) is linearly dependent in \mathbb{R}^{3} because $(1,0,0),(0,1,0),(0,0,1)$ spans \mathbb{R}^{3}.

Finite-dimensional subspaces

Prop'n 2.26 [Axl14]:

Every subspace of a finite-dimensional vector space is finite-dimensional.

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

