

Lecture 4: Bases

MATH 110-3

Franny Dean

June 26, 2023

Announcements

MATH 110: LINEAR ALGEBRA

Summer 2023

Instructor:	Franny Dean	Times:	MW 4:10 – 6 pm
	(she/her/hers)		T 4:10 - 5 pm
			Th $4:10 - 5:20 \text{ pm}$
Email:	frances_dean@berkeley.edu	Place:	Cory 241

Course Page: http://frances-dean.github.io \Rightarrow Teaching \Rightarrow MATH 110

Office Hours: Tuesday 1:30-2:30pm Evans 748; Tuesday 5:00-6:00 pm Cory 241; Wednesday 12:00-1:00pm Evans 732

- Linearly independent lists
- Spanning lists

- Linearly independent lists
- Spanning lists
- length spanning list \geq length of linearly independent list

Def'n:

Def'n:

Def'n:

Def'n:

Def'n:

- (1,0,0), (0,1,0), (0,0,1) is a basis of ℝ³ or ℝ³
- $(1,0,\ldots,0),\ldots,(0,\ldots,0,1)$ is the standard basis of \mathbb{F}^n
- (1, 3), (5, 2), (2, 6) is not a basis of ℝ². Why?
- (1, 3), (2, 6) is not a basis of ℝ². Why?

Def'n:

- (1,0,0), (0,1,0), (0,0,1) is a basis of ℝ³ or ℝ³
- $(1,0,\ldots,0),\ldots,(0,\ldots,0,1)$ is the standard basis of \mathbb{F}^n
- (1, 3), (5, 2), (2, 6) is not a basis of ℝ². Why?
- (1,3), (2,6) is not a basis of ℝ². Why?
- 1, x, x^2 , x^3 , ... is a basis of $\mathcal{P}_n(\mathbb{F})$

Def'n:

- (1,0,0), (0,1,0), (0,0,1) is a basis of ℝ³ or ℝ³
- $(1,0,\ldots,0),\ldots,(0,\ldots,0,1)$ is the standard basis of \mathbb{F}^n
- (1, 3), (5, 2), (2, 6) is not a basis of ℝ². Why?
- (1,3), (2,6) is not a basis of ℝ². Why?
- 1, x, x^2 , x^3 , ... is a basis of $\mathcal{P}_n(\mathbb{F})$
- How would we find a basis for $\{(x, y, z) \in \mathbb{F}^3 : x + y + z = 0\}$?

Def'n:

- (1,0,0), (0,1,0), (0,0,1) is a basis of ℝ³ or ℝ³
- $(1,0,\ldots,0),\ldots,(0,\ldots,0,1)$ is the standard basis of \mathbb{F}^n
- (1, 3), (5, 2), (2, 6) is not a basis of ℝ². Why?
- (1,3), (2,6) is not a basis of ℝ². Why?
- 1, x, x^2 , x^3 , ... is a basis of $\mathcal{P}_n(\mathbb{F})$
- How would we find a basis for $\{(x, y, z) \in \mathbb{F}^3 : x + y + z = 0\}$?

$$x = y - z$$
$$y = y$$
$$z = z$$

Criterion for Bases

Prop'n 2.29 [Axl14]:

A list v_1, \ldots, v_n of vectors in V is a basis if and only if for every $v \in V$ there are unique scalars $a_i \in \mathbb{F}$ such that $v = a_1v_1 + \ldots + a_nv_n$.

Prop'n:

Every spanning list can be reduced to a basis.

Prop'n:

Every spanning list can be reduced to a basis.

Proof.

Prop'n:

Every spanning list can be reduced to a basis.

Proof. Let v_1, \ldots, v_m span V.

Prop'n:

Every spanning list can be reduced to a basis.

Proof. Let v_1, \ldots, v_m span V.

Let $B := \{v_1, ..., v_m\}.$

Prop'n:

Every spanning list can be reduced to a basis.

```
Proof. Let v_1, \ldots, v_m span V.
```

```
Let B := \{v_1, ..., v_m\}.
```

Step 1: If $v_1 = 0$, delete v_1 . Otherwise B = B.

Prop'n:

Every spanning list can be reduced to a basis.

```
Proof. Let v_1, \ldots, v_m span V.
```

```
Let B := \{v_1, ..., v_m\}.
```

Step 1: If $v_1 = 0$, delete v_1 . Otherwise B = B.

Step i: If $v_i \in \text{span}(v_1, \ldots, v_{i-1})$, delete v_i from *B*.

Prop'n:

Every spanning list can be reduced to a basis.

```
Proof. Let v_1, \ldots, v_m span V.
```

```
Let B := \{v_1, ..., v_m\}.
```

Step 1: If $v_1 = 0$, delete v_1 . Otherwise B = B.

Step i: If $v_i \in \text{span}(v_1, \ldots, v_{i-1})$, delete v_i from *B*. Otherwise, B = B.

Prop'n:

Every spanning list can be reduced to a basis.

```
Proof. Let v_1, \ldots, v_m span V.
```

```
Let B := \{v_1, ..., v_m\}.
```

Step 1: If $v_1 = 0$, delete v_1 . Otherwise B = B.

Step i: If $v_i \in \text{span}(v_1, \ldots, v_{i-1})$, delete v_i from *B*. Otherwise, B = B.

After *m* steps, we have a list of vectors *B*.

Prop'n:

Every spanning list can be reduced to a basis.

```
Proof. Let v_1, \ldots, v_m span V.
```

```
Let B := \{v_1, ..., v_m\}.
```

Step 1: If $v_1 = 0$, delete v_1 . Otherwise B = B.

Step i: If $v_i \in \text{span}(v_1, \ldots, v_{i-1})$, delete v_i from *B*. Otherwise, B = B.

After *m* steps, we have a list of vectors *B*. This list **spans** by construction.

Prop'n:

Every spanning list can be reduced to a basis.

```
Proof. Let v_1, \ldots, v_m span V.
```

```
Let B := \{v_1, ..., v_m\}.
```

Step 1: If $v_1 = 0$, delete v_1 . Otherwise B = B.

Step i: If $v_i \in \text{span}(v_1, \ldots, v_{i-1})$, delete v_i from *B*. Otherwise, B = B.

After *m* steps, we have a list of vectors *B*. This list **spans** by construction. The process also ensures lin. ind.

Prop'n:

Every spanning list can be reduced to a basis.

```
Proof. Let v_1, \ldots, v_m span V.
```

```
Let B := \{v_1, ..., v_m\}.
```

Step 1: If $v_1 = 0$, delete v_1 . Otherwise B = B.

Step i: If $v_i \in \text{span}(v_1, \ldots, v_{i-1})$, delete v_i from *B*. Otherwise, B = B.

After *m* steps, we have a list of vectors *B*. This list **spans** by construction. The process also ensures lin. ind.

Hence, *B* is a basis. \Box

Prop'n:

Every finite-dimensional vector space has a basis.

Prop'n:

Every finite-dimensional vector space has a basis.

Proof.

Prop'n:

Every finite-dimensional vector space has a basis.

Proof. By definition every finite-dimensional vector space has a spanning list.

Prop'n:

Every finite-dimensional vector space has a basis.

Proof. By definition every finite-dimensional vector space has a spanning list. Reduce this list to a basis. \Box

Prop'n:

Every linear independent list in V can be extended to a basis.

Prop'n:

Every linear independent list in V can be extended to a basis.

Proof.

Prop'n:

Every linear independent list in V can be extended to a basis.

Proof. Add a basis for V to the list, this spans.

Prop'n:

Every linear independent list in V can be extended to a basis.

Proof. Add a basis for V to the list, this spans. Reduce this list to a basis. \Box

Let $U \subset \mathbb{C}^5$ defined as

$$U = \{(z_1, z_2, z_3, z_4, z_5) \in \mathbb{C}^5 : 6z_1 = z_2 \text{ and } z_3 + 2z_4 + 3z_5 = 0\}.$$

Let $U \subset \mathbb{C}^5$ defined as

 $U = \{(z_1, z_2, z_3, z_4, z_5) \in \mathbb{C}^5 : 6z_1 = z_2 \text{ and } z_3 + 2z_4 + 3z_5 = 0\}.$

Let's find a basis.

Let $U \subset \mathbb{C}^5$ defined as $U = \{(z_1, z_2, z_3, z_4, z_5) \in \mathbb{C}^5 : 6z_1 = z_2 \text{ and } z_3 + 2z_4 + 3z_5 = 0\}.$ Let's find a basis.

$$z_{1} = z_{1}$$

$$z_{2} = 6z_{1}$$

$$z_{3} = -2z_{4} - 3z_{5}$$

$$z_{4} = z_{4}$$

$$z_{5} = z_{5}$$

Let $U \subset \mathbb{C}^5$ defined as $U = \{(z_1, z_2, z_3, z_4, z_5) \in \mathbb{C}^5 : 6z_1 = z_2 \text{ and } z_3 + 2z_4 + 3z_5 = 0\}.$ Let's find a basis.

$$z_1 = z_1$$

$$z_2 = 6z_1$$

$$z_3 = -2z_4 - 3z_5$$

$$z_4 = z_4$$

$$z_5 = z_5$$

So:

 $(z_1, z_2, z_3, z_4, z_5) = z_1(1, 6, 0, 0, 0) + z_4(0, 0, -2, 1, 0) + z_5(0, 0, -3, 0, 1).$

Let $U \subset \mathbb{C}^5$ defined as $U = \{(z_1, z_2, z_3, z_4, z_5) \in \mathbb{C}^5 : 6z_1 = z_2 \text{ and } z_3 + 2z_4 + 3z_5 = 0\}.$ Let's find a basis.

$$z_{1} = z_{1}$$

$$z_{2} = 6z_{1}$$

$$z_{3} = -2z_{4} - 3z_{5}$$

$$z_{4} = z_{4}$$

$$z_{5} = z_{5}$$

So:

 $(z_1, z_2, z_3, z_4, z_5) = z_1(1, 6, 0, 0, 0) + z_4(0, 0, -2, 1, 0) + z_5(0, 0, -3, 0, 1).$ Lin ind?

FD • MATH 110 • June 26, 2023

Let $U \subset \mathbb{C}^5$ defined as $U = \{(z_1, z_2, z_3, z_4, z_5) \in \mathbb{C}^5 : 6z_1 = z_2 \text{ and } z_3 + 2z_4 + 3z_5 = 0\}.$ Let's find a basis.

$$z_1 = z_1$$

$$z_2 = 6z_1$$

$$z_3 = -2z_4 - 3z_5$$

$$z_4 = z_4$$

$$z_5 = z_5$$

So:

 $(z_1, z_2, z_3, z_4, z_5) = z_1(1, 6, 0, 0, 0) + z_4(0, 0, -2, 1, 0) + z_5(0, 0, -3, 0, 1).$ Lin ind? Span?

FD • MATH 110 • June 26, 2023

Let's *extend* this basis to \mathbb{C}^5 :

Let's *extend* this basis to \mathbb{C}^5 :

Add standard basis vectors!

$$\{(1, 6, 0, 0, 0), (0, 0, -2, 1, 0), (0, 0, -3, 0, 1)\}$$

$$\bigcup$$

$$\{(1, 0, 0, 0, 0), (0, 0, 1, 0, 0)\}$$

Let's *extend* this basis to \mathbb{C}^5 :

Add standard basis vectors!

$$\{(1, 6, 0, 0, 0), (0, 0, -2, 1, 0), (0, 0, -3, 0, 1)\}$$

$$\bigcup$$

$$\{(1, 0, 0, 0, 0), (0, 0, 1, 0, 0)\}$$

Vectors that would not have worked: $\{(1, 0, 0, 0, 0), (0, 1, 0, 0, 0)\}$ Why?

Let's *extend* this basis to \mathbb{C}^5 :

Add standard basis vectors!

$$\{(1, 6, 0, 0, 0), (0, 0, -2, 1, 0), (0, 0, -3, 0, 1)\}$$

$$\bigcup$$

$$\{(1, 0, 0, 0, 0), (0, 0, 1, 0, 0)\}$$

Vectors that would not have worked: $\{(1, 0, 0, 0, 0), (0, 1, 0, 0, 0)\}$ Why?

Claim: $\mathbb{C}^5 = U \oplus W$ where W = span((1, 0, 0, 0, 0), (0, 0, 1, 0, 0)).

Let's *extend* this basis to \mathbb{C}^5 :

Add standard basis vectors!

$$\{(1, 6, 0, 0, 0), (0, 0, -2, 1, 0), (0, 0, -3, 0, 1)\}$$

$$\bigcup$$

$$\{(1, 0, 0, 0, 0), (0, 0, 1, 0, 0)\}$$

Vectors that would not have worked: $\{(1, 0, 0, 0, 0), (0, 1, 0, 0, 0)\}$ Why?

Claim: $\mathbb{C}^5 = U \oplus W$ where W = span((1, 0, 0, 0, 0), (0, 0, 1, 0, 0)). Why?

Claim: $\mathbb{C}^5 = U \oplus W$ where W = span((1, 0, 0, 0, 0), (0, 0, 1, 0, 0)).

Claim: $\mathbb{C}^5 = U \oplus W$ where W = span((1, 0, 0, 0, 0), (0, 0, 1, 0, 0)).

Recall, to show that U + W is a direct sum, we must show their intersection is $\{0\}$.

Claim: $\mathbb{C}^5 = U \oplus W$ where W = span((1, 0, 0, 0, 0), (0, 0, 1, 0, 0)).

Recall, to show that U + W is a direct sum, we must show their intersection is $\{0\}$.

S'pose $x \in U, W...$

Claim: $\mathbb{C}^5 = U \oplus W$ where W = span((1, 0, 0, 0, 0), (0, 0, 1, 0, 0)).

Recall, to show that U + W is a direct sum, we must show their intersection is $\{0\}$.

S'pose $x \in U, W$...To be in *W*, x = (a, 0, b, 0, 0).

Claim: $\mathbb{C}^5 = U \oplus W$ where W = span((1, 0, 0, 0, 0), (0, 0, 1, 0, 0)).

Recall, to show that U + W is a direct sum, we must show their intersection is $\{0\}$.

S'pose $x \in U, W$...To be in W, x = (a, 0, b, 0, 0). To be in $U, x = (c_1, 6c_1, -2c_2 - 3c_3, c_2, c_3)$:

Claim: $\mathbb{C}^5 = U \oplus W$ where W = span((1, 0, 0, 0, 0), (0, 0, 1, 0, 0)).

Recall, to show that U + W is a direct sum, we must show their intersection is $\{0\}$.

S'pose $x \in U, W$...To be in W, x = (a, 0, b, 0, 0). To be in $U, x = (c_1, 6c_1, -2c_2 - 3c_3, c_2, c_3)$:

$$(a, 0, b, 0, 0) \neq (c_1, 6c_2, -2c_2 - 3c_3, c_2, c_3)$$

Subspaces are part of direct sums to V

Prop'n 2.34 [Axl14]

Suppose V is finite-dimensional and U is a subspace of V. Then there is a subspace W of V such that $V = U \oplus W$.

[Axl14] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.