Lecture 4: Bases

MATH 110-3

Franny Dean

June 26, 2023

Announcements

MATH 110: Linear Algebra Summer 2023			
Instructor:	Franny Dean (she/her/hers)	Times:	MW 4:10-6 pm T 4:10-5 pm Th 4:10-5:20 pm
Email:	frances_dean@berkeley.edu	Place:	Cory 241

Course Page: http://frances-dean.github.io \Rightarrow Teaching \Rightarrow MATH 110
Office Hours: Tuesday 1:30-2:30pm Evans 748; Tuesday 5:00-6:00 pm Cory 241; Wednesday 12:00-1:00pm Evans 732

Last Time...

■ Linearly independent lists

- Spanning lists

Last Time...

■ Linearly independent lists
■ Spanning lists
■ length spanning list \geq length of linearly independent list

Bases

Def'n:

A basis of a vector space is a list of vectors that are linearly independent and span.

Bases

Def'n:

A basis of a vector space is a list of vectors that are linearly independent and span.
$\square(1,0,0),(0,1,0),(0,0,1)$ is a basis of \mathbb{R}^{3} or \mathbb{F}^{3}

Bases

Def'n:

A basis of a vector space is a list of vectors that are linearly independent and span.

■ $(1,0,0),(0,1,0),(0,0,1)$ is a basis of \mathbb{R}^{3} or \mathbb{F}^{3}
■ $(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)$ is the standard basis of \mathbb{F}^{n}

Bases

Def'n:

A basis of a vector space is a list of vectors that are linearly independent and span.

■ $(1,0,0),(0,1,0),(0,0,1)$ is a basis of \mathbb{R}^{3} or \mathbb{F}^{3}
■ $(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)$ is the standard basis of \mathbb{F}^{n}
$\square(1,3),(5,2),(2,6)$ is not a basis of \mathbb{R}^{2}. Why?

Bases

Def'n:

A basis of a vector space is a list of vectors that are linearly independent and span.

■ $(1,0,0),(0,1,0),(0,0,1)$ is a basis of \mathbb{R}^{3} or \mathbb{F}^{3}
■ $(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)$ is the standard basis of \mathbb{F}^{n}
■ $(1,3),(5,2),(2,6)$ is not a basis of \mathbb{R}^{2}. Why?
$\square(1,3),(2,6)$ is not a basis of \mathbb{R}^{2}. Why?

Bases

Def'n:

A basis of a vector space is a list of vectors that are linearly independent and span.
$\square(1,0,0),(0,1,0),(0,0,1)$ is a basis of \mathbb{R}^{3} or \mathbb{F}^{3}
■ $(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)$ is the standard basis of \mathbb{F}^{n}
■ $(1,3),(5,2),(2,6)$ is not a basis of \mathbb{R}^{2}. Why?
$\square(1,3),(2,6)$ is not a basis of \mathbb{R}^{2}. Why?
■ $1, x, x^{2}, x^{3}, \ldots$ is a basis of $\mathcal{P}_{n}(\mathbb{F})$

Bases

Def'n:

A basis of a vector space is a list of vectors that are linearly independent and span.

■ $(1,0,0),(0,1,0),(0,0,1)$ is a basis of \mathbb{R}^{3} or \mathbb{F}^{3}
■ $(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)$ is the standard basis of \mathbb{F}^{n}

- $(1,3),(5,2),(2,6)$ is not a basis of \mathbb{R}^{2}. Why?
$\square(1,3),(2,6)$ is not a basis of \mathbb{R}^{2}. Why?
$\square 1, x, x^{2}, x^{3}, \ldots$ is a basis of $\mathcal{P}_{n}(\mathbb{F})$
$■$ How would we find a basis for $\left\{(x, y, z) \in \mathbb{F}^{3}: x+y+z=0\right\}$?

Bases

Def'n:

A basis of a vector space is a list of vectors that are linearly independent and span.

■ $(1,0,0),(0,1,0),(0,0,1)$ is a basis of \mathbb{R}^{3} or \mathbb{F}^{3}
■ $(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)$ is the standard basis of \mathbb{F}^{n}

- $(1,3),(5,2),(2,6)$ is not a basis of \mathbb{R}^{2}. Why?
$\square(1,3),(2,6)$ is not a basis of \mathbb{R}^{2}. Why?
■ $1, x, x^{2}, x^{3}, \ldots$ is a basis of $\mathcal{P}_{n}(\mathbb{F})$
$■$ How would we find a basis for $\left\{(x, y, z) \in \mathbb{F}^{3}: x+y+z=0\right\}$?

$$
\begin{aligned}
& x=y-z \\
& y=y \\
& z=z
\end{aligned}
$$

Criterion for Bases

Prop'n 2.29 [Axl14]:

A list v_{1}, \ldots, v_{n} of vectors in V is a basis if and only if for every $v \in V$ there are unique scalars $a_{i} \in \mathbb{F}$ such that $v=a_{1} v_{1}+\ldots+a_{n} v_{n}$.

Spanning Lists Contain Bases

Prop'n:

Every spanning list can be reduced to a basis.

Spanning Lists Contain Bases

Prop'n:

Every spanning list can be reduced to a basis.

Proof.

Spanning Lists Contain Bases

Prop'n:

Every spanning list can be reduced to a basis.

Proof. Let v_{1}, \ldots, v_{m} span V.

Spanning Lists Contain Bases

Prop'n:
Every spanning list can be reduced to a basis.

Proof. Let v_{1}, \ldots, v_{m} span V.
Let $B:=\left\{v_{1}, \ldots, v_{m}\right\}$.

Spanning Lists Contain Bases

Prop'n:

Every spanning list can be reduced to a basis.

Proof. Let v_{1}, \ldots, v_{m} span V.
Let $B:=\left\{v_{1}, \ldots, v_{m}\right\}$.
Step 1: If $v_{1}=0$, delete v_{1}. Otherwise $B=B$.

Spanning Lists Contain Bases

Prop'n:

Every spanning list can be reduced to a basis.

Proof. Let v_{1}, \ldots, v_{m} span V.
Let $B:=\left\{v_{1}, \ldots, v_{m}\right\}$.
Step 1: If $v_{1}=0$, delete v_{1}. Otherwise $B=B$.
Step i: If $v_{i} \in \operatorname{span}\left(v_{1}, \ldots, v_{i-1}\right)$, delete v_{i} from B.

Spanning Lists Contain Bases

Prop'n:

Every spanning list can be reduced to a basis.

Proof. Let v_{1}, \ldots, v_{m} span V.
Let $B:=\left\{v_{1}, \ldots, v_{m}\right\}$.
Step 1: If $v_{1}=0$, delete v_{1}. Otherwise $B=B$.
Step i: If $v_{i} \in \operatorname{span}\left(v_{1}, \ldots, v_{i-1}\right)$, delete v_{i} from B. Otherwise, $B=B$.

Spanning Lists Contain Bases

Prop'n:

Every spanning list can be reduced to a basis.

Proof. Let v_{1}, \ldots, v_{m} span V.
Let $B:=\left\{v_{1}, \ldots, v_{m}\right\}$.
Step 1: If $v_{1}=0$, delete v_{1}. Otherwise $B=B$.
Step i: If $v_{i} \in \operatorname{span}\left(v_{1}, \ldots, v_{i-1}\right)$, delete v_{i} from B. Otherwise, $B=B$.
After m steps, we have a list of vectors B.

Spanning Lists Contain Bases

Prop'n:

Every spanning list can be reduced to a basis.

Proof. Let v_{1}, \ldots, v_{m} span V.
Let $B:=\left\{v_{1}, \ldots, v_{m}\right\}$.
Step 1: If $v_{1}=0$, delete v_{1}. Otherwise $B=B$.
Step i: If $v_{i} \in \operatorname{span}\left(v_{1}, \ldots, v_{i-1}\right)$, delete v_{i} from B. Otherwise, $B=B$.
After m steps, we have a list of vectors B. This list spans by construction.

Spanning Lists Contain Bases

Prop'n:

Every spanning list can be reduced to a basis.

Proof. Let v_{1}, \ldots, v_{m} span V.
Let $B:=\left\{v_{1}, \ldots, v_{m}\right\}$.
Step 1: If $v_{1}=0$, delete v_{1}. Otherwise $B=B$.
Step i: If $v_{i} \in \operatorname{span}\left(v_{1}, \ldots, v_{i-1}\right)$, delete v_{i} from B. Otherwise, $B=B$.
After m steps, we have a list of vectors B. This list spans by construction. The process also ensures lin. ind.

Spanning Lists Contain Bases

Prop'n:

Every spanning list can be reduced to a basis.

Proof. Let v_{1}, \ldots, v_{m} span V.
Let $B:=\left\{v_{1}, \ldots, v_{m}\right\}$.
Step 1: If $v_{1}=0$, delete v_{1}. Otherwise $B=B$.
Step i: If $v_{i} \in \operatorname{span}\left(v_{1}, \ldots, v_{i-1}\right)$, delete v_{i} from B. Otherwise, $B=B$.
After m steps, we have a list of vectors B. This list spans by construction. The process also ensures lin. ind.

Hence, B is a basis. \square

Every finite dimensional vector space has a basis.

Prop'n:

Every finite-dimensional vector space has a basis.

Every finite dimensional vector space has a basis.

Prop'n:

Every finite-dimensional vector space has a basis.

Proof.

Every finite dimensional vector space has a basis.

Prop'n:

Every finite-dimensional vector space has a basis.

Proof. By definition every finite-dimensional vector space has a spanning list.

Every finite dimensional vector space has a basis.

Prop'n:

Every finite-dimensional vector space has a basis.

Proof. By definition every finite-dimensional vector space has a spanning list.
Reduce this list to a basis. \square

Linear Independent Lists Extend to Bases

Prop'n:

Every linear independent list in V can be extended to a basis.

Linear Independent Lists Extend to Bases

Prop'n:

Every linear independent list in V can be extended to a basis.

Proof.

Linear Independent Lists Extend to Bases

Prop'n:
Every linear independent list in V can be extended to a basis.

Proof. Add a basis for V to the list, this spans.

Linear Independent Lists Extend to Bases

Prop'n:
Every linear independent list in V can be extended to a basis.

Proof. Add a basis for V to the list, this spans.
Reduce this list to a basis. \square

Example

Let $U \subset \mathbb{C}^{5}$ defined as

$$
U=\left\{\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right) \in \mathbb{C}^{5}: 6 z_{1}=z_{2} \text { and } z_{3}+2 z_{4}+3 z_{5}=0\right\}
$$

Example

Let $U \subset \mathbb{C}^{5}$ defined as

$$
U=\left\{\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right) \in \mathbb{C}^{5}: 6 z_{1}=z_{2} \text { and } z_{3}+2 z_{4}+3 z_{5}=0\right\}
$$

Let's find a basis.

Example

Let $U \subset \mathbb{C}^{5}$ defined as

$$
U=\left\{\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right) \in \mathbb{C}^{5}: 6 z_{1}=z_{2} \text { and } z_{3}+2 z_{4}+3 z_{5}=0\right\}
$$

Let's find a basis.

$$
\begin{aligned}
& z_{1}=z_{1} \\
& z_{2}=6 z_{1} \\
& z_{3}=-2 z_{4}-3 z_{5} \\
& z_{4}=z_{4} \\
& z_{5}=z_{5}
\end{aligned}
$$

Example

Let $U \subset \mathbb{C}^{5}$ defined as

$$
U=\left\{\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right) \in \mathbb{C}^{5}: 6 z_{1}=z_{2} \text { and } z_{3}+2 z_{4}+3 z_{5}=0\right\} .
$$

Let's find a basis.

$$
\begin{aligned}
& z_{1}=z_{1} \\
& z_{2}=6 z_{1} \\
& z_{3}=-2 z_{4}-3 z_{5} \\
& z_{4}=z_{4} \\
& z_{5}=z_{5}
\end{aligned}
$$

So:
$\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right)=z_{1}(1,6,0,0,0)+z_{4}(0,0,-2,1,0)+z_{5}(0,0,-3,0,1)$.

Example

Let $U \subset \mathbb{C}^{5}$ defined as

$$
U=\left\{\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right) \in \mathbb{C}^{5}: 6 z_{1}=z_{2} \text { and } z_{3}+2 z_{4}+3 z_{5}=0\right\} .
$$

Let's find a basis.

$$
\begin{aligned}
& z_{1}=z_{1} \\
& z_{2}=6 z_{1} \\
& z_{3}=-2 z_{4}-3 z_{5} \\
& z_{4}=z_{4} \\
& z_{5}=z_{5}
\end{aligned}
$$

So:
$\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right)=z_{1}(1,6,0,0,0)+z_{4}(0,0,-2,1,0)+z_{5}(0,0,-3,0,1)$.
Lin ind?

Example

Let $U \subset \mathbb{C}^{5}$ defined as

$$
U=\left\{\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right) \in \mathbb{C}^{5}: 6 z_{1}=z_{2} \text { and } z_{3}+2 z_{4}+3 z_{5}=0\right\} .
$$

Let's find a basis.

$$
\begin{aligned}
& z_{1}=z_{1} \\
& z_{2}=6 z_{1} \\
& z_{3}=-2 z_{4}-3 z_{5} \\
& z_{4}=z_{4} \\
& z_{5}=z_{5}
\end{aligned}
$$

So:
$\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right)=z_{1}(1,6,0,0,0)+z_{4}(0,0,-2,1,0)+z_{5}(0,0,-3,0,1)$.
Lin ind? Span?

Example (Cont'd)

Let's extend this basis to \mathbb{C}^{5} :

Example (Cont'd)

Let's extend this basis to \mathbb{C}^{5} :
Add standard basis vectors!

$$
\begin{gathered}
\{(1,6,0,0,0),(0,0,-2,1,0),(0,0,-3,0,1)\} \\
\bigcup \\
\{(1,0,0,0,0),(0,0,1,0,0)\}
\end{gathered}
$$

Example (Cont'd)

Let's extend this basis to \mathbb{C}^{5} :
Add standard basis vectors!

$$
\begin{gathered}
\{(1,6,0,0,0),(0,0,-2,1,0),(0,0,-3,0,1)\} \\
\bigcup \\
\{(1,0,0,0,0),(0,0,1,0,0)\}
\end{gathered}
$$

Vectors that would not have worked: $\{(1,0,0,0,0),(0,1,0,0,0)\}$ Why?

Example (Cont'd)

Let's extend this basis to \mathbb{C}^{5} :
Add standard basis vectors!

$$
\begin{gathered}
\{(1,6,0,0,0),(0,0,-2,1,0),(0,0,-3,0,1)\} \\
\bigcup \\
\{(1,0,0,0,0),(0,0,1,0,0)\}
\end{gathered}
$$

Vectors that would not have worked: $\{(1,0,0,0,0),(0,1,0,0,0)\}$ Why?

Claim: $\mathbb{C}^{5}=U \oplus W$ where $W=\operatorname{span}((1,0,0,0,0),(0,0,1,0,0))$.

Example (Cont'd)

Let's extend this basis to \mathbb{C}^{5} :
Add standard basis vectors!

$$
\begin{gathered}
\{(1,6,0,0,0),(0,0,-2,1,0),(0,0,-3,0,1)\} \\
\bigcup \\
\{(1,0,0,0,0),(0,0,1,0,0)\}
\end{gathered}
$$

Vectors that would not have worked: $\{(1,0,0,0,0),(0,1,0,0,0)\}$ Why?

Claim: $\mathbb{C}^{5}=U \oplus W$ where $W=\operatorname{span}((1,0,0,0,0),(0,0,1,0,0))$. Why?

Example (Cont'd)

Claim: $\mathbb{C}^{5}=U \oplus W$ where $W=\operatorname{span}((1,0,0,0,0),(0,0,1,0,0))$.

Example (Cont'd)

Claim: $\mathbb{C}^{5}=U \oplus W$ where $W=\operatorname{span}((1,0,0,0,0),(0,0,1,0,0))$.
Recall, to show that $U+W$ is a direct sum, we must show their intersection is $\{0\}$.

Example (Cont'd)

Claim: $\mathbb{C}^{5}=U \oplus W$ where $W=\operatorname{span}((1,0,0,0,0),(0,0,1,0,0))$.
Recall, to show that $U+W$ is a direct sum, we must show their intersection is $\{0\}$.

S'pose $x \in U, W \ldots$

Example (Cont'd)

Claim: $\mathbb{C}^{5}=U \oplus W$ where $W=\operatorname{span}((1,0,0,0,0),(0,0,1,0,0))$.
Recall, to show that $U+W$ is a direct sum, we must show their intersection is $\{0\}$.

S'pose $x \in U, W \ldots$ To be in $W, x=(a, 0, b, 0,0)$.

Example (Cont'd)

Claim: $\mathbb{C}^{5}=U \oplus W$ where $W=\operatorname{span}((1,0,0,0,0),(0,0,1,0,0))$.
Recall, to show that $U+W$ is a direct sum, we must show their intersection is $\{0\}$.

S'pose $x \in U, W \ldots$...To be in $W, x=(a, 0, b, 0,0)$. To be in U, $x=\left(c_{1}, 6 c_{1},-2 c_{2}-3 c_{3}, c_{2}, c_{3}\right)$:

Example (Cont'd)

Claim: $\mathbb{C}^{5}=U \oplus W$ where $W=\operatorname{span}((1,0,0,0,0),(0,0,1,0,0))$.
Recall, to show that $U+W$ is a direct sum, we must show their intersection is $\{0\}$.

S'pose $x \in U, W \ldots$...To be in $W, x=(a, 0, b, 0,0)$. To be in U, $x=\left(c_{1}, 6 c_{1},-2 c_{2}-3 c_{3}, c_{2}, c_{3}\right)$:

$$
(a, 0, b, 0,0) \neq\left(c_{1}, 6 c_{2},-2 c_{2}-3 c_{3}, c_{2}, c_{3}\right)
$$

Subspaces are part of direct sums to V

Prop'n 2.34 [AxL14]

Suppose V is finite-dimensional and U is a subspace of V. Then there is a subspace W of V such that $V=U \oplus W$.

Break

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

