Lecture 5: Dimension

MATH 110-3

Franny Dean

June 27, 2023

Dimension?

We've talked about finite-dimensional vector spaces...

Dimension?

We've talked about finite-dimensional vector spaces...
But, what is dimension?

Dimension?

We've talked about finite-dimensional vector spaces...
But, what is dimension?
$\operatorname{dim} \mathbb{R}=1$,

Dimension?

We've talked about finite-dimensional vector spaces...
But, what is dimension?
$\operatorname{dim} \mathbb{R}=1, \operatorname{dim} \mathbb{R}^{2}=2$,

Dimension?

We've talked about finite-dimensional vector spaces...
But, what is dimension?
$\operatorname{dim} \mathbb{R}=1, \operatorname{dim} \mathbb{R}^{2}=2, \operatorname{dim} \mathbb{F}^{n}=n$

Dimension?

We've talked about finite-dimensional vector spaces...
But, what is dimension?
$\operatorname{dim} \mathbb{R}=1, \operatorname{dim} \mathbb{R}^{2}=2, \operatorname{dim} \mathbb{F}^{n}=n$
Standard basis: $(1,0, \ldots, 0),(0,1, \ldots, 0), \ldots(0, \ldots, 1)$ has n vectors.

Dimension?

We've talked about finite-dimensional vector spaces...
But, what is dimension?
$\operatorname{dim} \mathbb{R}=1, \operatorname{dim} \mathbb{R}^{2}=2, \operatorname{dim} \mathbb{F}^{n}=n$
Standard basis: $(1,0, \ldots, 0),(0,1, \ldots, 0), \ldots(0, \ldots, 1)$ has n vectors.
Length of basis?

Dimension?

We've talked about finite-dimensional vector spaces...
But, what is dimension?
$\operatorname{dim} \mathbb{R}=1, \operatorname{dim} \mathbb{R}^{2}=2, \operatorname{dim} \mathbb{F}^{n}=n$
Standard basis: $(1,0, \ldots, 0),(0,1, \ldots, 0), \ldots(0, \ldots, 1)$ has n vectors.
Length of basis?
But, we have ∞-ly many bases...

Definition

We want the following:

Def'n:

The dimension of a finite-dimensinal vector space is the length of a basis of V.

Definition

We want the following:

Def'n:

The dimension of a finite-dimensinal vector space is the length of a basis of V.

We need first:

Prop'n:

Any two bases of a finite-dimensional vector space have the same length.

Proof of Prop'n:

Prop'n:

Any two bases of a finite-dimensional vector space have the same length.

Proof of Prop'n:

Prop'n:

Any two bases of a finite-dimensional vector space have the same length.

Proof.

Proof of Prop'n:

Prop'n:

Any two bases of a finite-dimensional vector space have the same length.

Proof. Let V be a finite-dimensional vector space.

Proof of Prop'n:

Prop'n:

Any two bases of a finite-dimensional vector space have the same length.

Proof. Let V be a finite-dimensional vector space. Let B, B^{\prime} be two bases of V.

Proof of Prop'n:

Prop'n:

Any two bases of a finite-dimensional vector space have the same length.

Proof. Let V be a finite-dimensional vector space.
Let B, B^{\prime} be two bases of V.
Then since B spans and B^{\prime} is linearly independent:

$$
\text { length }(B) \geq \text { length }\left(B^{\prime}\right)
$$

Proof of Prop'n:

Prop'n:

Any two bases of a finite-dimensional vector space have the same length.

Proof. Let V be a finite-dimensional vector space.
Let B, B^{\prime} be two bases of V.
Then since B spans and B^{\prime} is linearly independent:

$$
\text { length }(B) \geq \text { length }\left(B^{\prime}\right)
$$

On the other hand, since B^{\prime} spans and B is linearly independent:

$$
\text { length }\left(B^{\prime}\right) \geq \text { length }(B)
$$

Dimension of a Subspace

Prop'n:

If V is finite-dimensional and U is a subspace, then $\operatorname{dim} U \leq \operatorname{dim} V$.

Dimension of a Subspace

Prop'n:

If V is finite-dimensional and U is a subspace, then $\operatorname{dim} U \leq \operatorname{dim} V$.

Proof.

Dimension of a Subspace

Prop'n:

If V is finite-dimensional and U is a subspace, then $\operatorname{dim} U \leq \operatorname{dim} V$.

Proof. Let $U \subseteq V$ as in the proposition.

Dimension of a Subspace

Prop'n:
If V is finite-dimensional and U is a subspace, then $\operatorname{dim} U \leq \operatorname{dim} V$.

Proof. Let $U \subseteq V$ as in the proposition. Choose B a basis for V and C a basis for U.

Dimension of a Subspace

Prop'n:
If V is finite-dimensional and U is a subspace, then $\operatorname{dim} U \leq \operatorname{dim} V$.

Proof. Let $U \subseteq V$ as in the proposition.
Choose B a basis for V and C a basis for U.
Then B spans V and C is linearly independent in U, thus

$$
\text { length }(B) \geq \text { length }(C) .
$$

Examples

What are all the subspaces of \mathbb{R}^{2} and their dimensions?

Examples

What are all the subspaces of \mathbb{R}^{2} and their dimensions?
What dimensions can they have?

Examples

What are all the subspaces of \mathbb{R}^{2} and their dimensions?
What dimensions can they have? 0,1,

Examples

What are all the subspaces of \mathbb{R}^{2} and their dimensions?
What dimensions can they have? 0,1,2?

Examples

What are all the subspaces of \mathbb{R}^{2} and their dimensions?
What dimensions can they have? $0,1,2$?
$\operatorname{dim} U=0: \quad\{0\}$
$\operatorname{dim} U=1$: all lines through $(0,0)$
$\operatorname{dim} U=2$:
\mathbb{R}^{2}

Examples

What are all the subspaces of \mathbb{R}^{2} and their dimensions?
What dimensions can they have? $0,1,2$?
$\operatorname{dim} U=0: \quad\{0\}$
$\operatorname{dim} U=1$: all lines through $(0,0)$
$\operatorname{dim} U=2$:
\mathbb{R}^{2}
The only subspace with the same dimension as V is V.

Proof

Prop'n:

Suppose V is a finite-dimensional vector space with subspace U. If $\operatorname{dim} U=\operatorname{dim} V$, then $U=V$.

Proof

Prop'n:

Suppose V is a finite-dimensional vector space with subspace U. If $\operatorname{dim} U=\operatorname{dim} V$, then $U=V$.

Proof. Let u_{1}, \ldots, u_{n} be a basis for U for $n=\operatorname{dim} U=\operatorname{dim} V$.

Proof

Prop'n:

Suppose V is a finite-dimensional vector space with subspace U. If $\operatorname{dim} U=\operatorname{dim} V$, then $U=V$.

Proof. Let u_{1}, \ldots, u_{n} be a basis for U for $n=\operatorname{dim} U=\operatorname{dim} V$.
The u_{1}, \ldots, u_{n} are linearly independent in V so they can be extended to a basis.

Proof

Prop'n:

Suppose V is a finite-dimensional vector space with subspace U. If $\operatorname{dim} U=\operatorname{dim} V$, then $U=V$.

Proof. Let u_{1}, \ldots, u_{n} be a basis for U for $n=\operatorname{dim} U=\operatorname{dim} V$.
The u_{1}, \ldots, u_{n} are linearly independent in V so they can be extended to a basis.

But since there are $\operatorname{dim} V$ vectors, and every basis has length n the extension is trivial. \square

Proof

Prop'n:

Suppose V is a finite-dimensional vector space with subspace U. If $\operatorname{dim} U=\operatorname{dim} V$, then $U=V$.

Proof. Let u_{1}, \ldots, u_{n} be a basis for U for $n=\operatorname{dim} U=\operatorname{dim} V$.
The u_{1}, \ldots, u_{n} are linearly independent in V so they can be extended to a basis.

But since there are $\operatorname{dim} V$ vectors, and every basis has length n the extension is trivial. \square

Corollary

Every list of linearly independent vectors in finite-dimensional V with length $\operatorname{dim} V$ is a basis.

Example Uses

$$
\text { Let } U=\left\{p \in \mathcal{P}_{4}(\mathbb{R}): p(6)=0\right\} .
$$

Example Uses

$$
\text { Let } U=\left\{p \in \mathcal{P}_{4}(\mathbb{R}): p(6)=0\right\} .
$$

Find a basis.

Example Uses

Let $U=\left\{p \in \mathcal{P}_{4}(\mathbb{R}): p(6)=0\right\}$.
Find a basis.
The polynomials $(x-6),(x-6)^{2},(x-6)^{3},(x-6)^{4}$ are all in U.

Example Uses

Let $U=\left\{p \in \mathcal{P}_{4}(\mathbb{R}): p(6)=0\right\}$.
Find a basis.
The polynomials $(x-6),(x-6)^{2},(x-6)^{3},(x-6)^{4}$ are all in U.
S'pose

$$
a_{1}(x-6)+a_{2}(x-6)^{2}+a_{3}(x-6)^{3}+a_{4}(x-6)^{4}=0
$$

Example Uses

Let $U=\left\{p \in \mathcal{P}_{4}(\mathbb{R}): p(6)=0\right\}$.
Find a basis.
The polynomials $(x-6),(x-6)^{2},(x-6)^{3},(x-6)^{4}$ are all in U.
S'pose

$$
a_{1}(x-6)+a_{2}(x-6)^{2}+a_{3}(x-6)^{3}+a_{4}(x-6)^{4}=0 .
$$

How can we see that these are linearly independent?

Example Uses

Let $U=\left\{p \in \mathcal{P}_{4}(\mathbb{R}): p(6)=0\right\}$.
Find a basis.
The polynomials $(x-6),(x-6)^{2},(x-6)^{3},(x-6)^{4}$ are all in U.
S'pose

$$
a_{1}(x-6)+a_{2}(x-6)^{2}+a_{3}(x-6)^{3}+a_{4}(x-6)^{4}=0
$$

How can we see that these are linearly independent?
We can now conclude that the four vectors form a basis.

Example Uses

Let $U=\left\{p \in \mathcal{P}_{4}(\mathbb{R}): p(6)=0\right\}$.
Find a basis.
The polynomials $(x-6),(x-6)^{2},(x-6)^{3},(x-6)^{4}$ are all in U.
S'pose

$$
a_{1}(x-6)+a_{2}(x-6)^{2}+a_{3}(x-6)^{3}+a_{4}(x-6)^{4}=0
$$

How can we see that these are linearly independent?
We can now conclude that the four vectors form a basis. Why?

Example Uses

Let $U=\left\{p \in \mathcal{P}_{4}(\mathbb{R}): p(6)=0\right\}$.
Find a basis.
The polynomials $(x-6),(x-6)^{2},(x-6)^{3},(x-6)^{4}$ are all in U.
S'pose

$$
a_{1}(x-6)+a_{2}(x-6)^{2}+a_{3}(x-6)^{3}+a_{4}(x-6)^{4}=0
$$

How can we see that these are linearly independent?
We can now conclude that the four vectors form a basis. Why?
How do we know that $\operatorname{dim} U<\operatorname{dim} \mathcal{P}_{4}(\mathbb{R})$?

Spanning Lists of Length n

Prop'n:

Let $\operatorname{dim} V=n$. Then if v_{1}, \ldots, v_{n} is spans, it forms a basis.

Dimension of a Sum

Prop'n (2.43):
If U_{1} and U_{2} are subspaces of a finite-dimensional vector space,

$$
\operatorname{dim}\left(U_{1}+U_{2}\right)=\operatorname{dim} U_{1}+\operatorname{dim} U_{2}-\operatorname{dim}\left(U_{1} \cap U_{2}\right) .
$$

Dimension of a Sum

Prop'n (2.43):

If U_{1} and U_{2} are subspaces of a finite-dimensional vector space,

$$
\operatorname{dim}\left(U_{1}+U_{2}\right)=\operatorname{dim} U_{1}+\operatorname{dim} U_{2}-\operatorname{dim}\left(U_{1} \cap U_{2}\right)
$$

Why does this make sense?

Dimension of a Sum

Prop'n (2.43):

If U_{1} and U_{2} are subspaces of a finite-dimensional vector space,

$$
\operatorname{dim}\left(U_{1}+U_{2}\right)=\operatorname{dim} U_{1}+\operatorname{dim} U_{2}-\operatorname{dim}\left(U_{1} \cap U_{2}\right) .
$$

Why does this make sense?

What does this mean for direct sums?

Example

Suppose that U and W are subspaces of \mathbb{R}^{8} such that $\operatorname{dim} U=3$, $\operatorname{dim} W=5$, and $U+W=\mathbb{R}^{8}$. Prove that $\mathbb{R}^{8}=U \oplus W$.

Example

Suppose that U and W are subspaces of \mathbb{R}^{8} such that $\operatorname{dim} U=3$, $\operatorname{dim} W=5$, and $U+W=\mathbb{R}^{8}$. Prove that $\mathbb{R}^{8}=U \oplus W$.

$$
\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim}(U \cap W)
$$

Example

Suppose that U and W are subspaces of \mathbb{R}^{8} such that $\operatorname{dim} U=3$, $\operatorname{dim} W=5$, and $U+W=\mathbb{R}^{8}$. Prove that $\mathbb{R}^{8}=U \oplus W$.

$$
\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim}(U \cap W)
$$

$\Longrightarrow \operatorname{dim} U \cap W=0$

Example

Suppose that U and W are subspaces of \mathbb{R}^{8} such that $\operatorname{dim} U=3$, $\operatorname{dim} W=5$, and $U+W=\mathbb{R}^{8}$. Prove that $\mathbb{R}^{8}=U \oplus W$.

$$
\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim}(U \cap W)
$$

$\Longrightarrow \operatorname{dim} U \cap W=0$
$\Longrightarrow U \cap W=\{0\}$

Example

Suppose that U and W are subspaces of \mathbb{R}^{8} such that $\operatorname{dim} U=3$, $\operatorname{dim} W=5$, and $U+W=\mathbb{R}^{8}$. Prove that $\mathbb{R}^{8}=U \oplus W$.

$$
\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim}(U \cap W)
$$

$\Longrightarrow \operatorname{dim} U \cap W=0$
$\Longrightarrow U \cap W=\{0\}$
$\Longrightarrow U+W=U \oplus W=\mathbb{R}^{8}$

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

