

Lecture 5: Dimension

MATH 110-3

Franny Dean

June 27, 2023

We've talked about finite-dimensional vector spaces...

We've talked about finite-dimensional vector spaces...

But, what is dimension?

We've talked about finite-dimensional vector spaces...

But, what is dimension?

dim $\mathbb{R} = 1$,

We've talked about finite-dimensional vector spaces...

But, what is dimension?

 $\dim \mathbb{R}=1, \dim \mathbb{R}^2=2,$

We've talked about finite-dimensional vector spaces...

But, what is dimension?

dim $\mathbb{R} = 1$, dim $\mathbb{R}^2 = 2$, dim $\mathbb{F}^n = n$

We've talked about finite-dimensional vector spaces...

But, what is dimension?

dim $\mathbb{R} = 1$, dim $\mathbb{R}^2 = 2$, dim $\mathbb{F}^n = n$

Standard basis: (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, ..., 1) has *n* vectors.

We've talked about finite-dimensional vector spaces...

But, what is dimension?

dim $\mathbb{R} = 1$, dim $\mathbb{R}^2 = 2$, dim $\mathbb{F}^n = n$

Standard basis: (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, ..., 1) has *n* vectors.

Length of basis?

We've talked about finite-dimensional vector spaces...

But, what is dimension?

dim $\mathbb{R} = 1$, dim $\mathbb{R}^2 = 2$, dim $\mathbb{F}^n = n$

Standard basis: (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, ..., 1) has *n* vectors.

Length of basis?

But, we have ∞ -ly many bases...

Definition

We want the following:

Def'n:

The **dimension** of a finite-dimensinal vector space is the length of a basis of V.

Definition

We want the following:

Def'n:

The **dimension** of a finite-dimensinal vector space is the length of a basis of V.

We **need** first:

Prop'n:

Any two bases of a finite-dimensional vector space have the same length.

Prop'n:

Any two bases of a finite-dimensional vector space have the same length.

Prop'n:

Any two bases of a finite-dimensional vector space have the same length.

Proof.

Prop'n:

Any two bases of a finite-dimensional vector space have the same length.

Proof. Let *V* be a finite-dimensional vector space.

Prop'n:

Any two bases of a finite-dimensional vector space have the same length.

Proof. Let V be a finite-dimensional vector space. Let B, B' be two bases of V.

Prop'n:

Any two bases of a finite-dimensional vector space have the same length.

Proof. Let V be a finite-dimensional vector space. Let B, B' be two bases of V. Then since B spans and B' is linearly independent:

 $length(B) \ge length(B').$

Prop'n:

Any two bases of a finite-dimensional vector space have the same length.

Proof. Let V be a finite-dimensional vector space. Let B, B' be two bases of V. Then since B spans and B' is linearly independent:

 $length(B) \ge length(B').$

On the other hand, since B' spans and B is linearly independent:

 $length(B') \ge length(B)$.

Prop'n:

If V is finite-dimensional and U is a subspace, then dim $U \leq \dim V$.

Prop'n:

If V is finite-dimensional and U is a subspace, then dim $U \leq \dim V$.

Proof.

Prop'n:

If V is finite-dimensional and U is a subspace, then dim $U \leq \dim V$.

Proof. Let $U \subseteq V$ as in the proposition.

Prop'n:

If V is finite-dimensional and U is a subspace, then dim $U \leq \dim V$.

Proof. Let $U \subseteq V$ as in the proposition. Choose *B* a basis for *V* and *C* a basis for *U*.

Prop'n:

If V is finite-dimensional and U is a subspace, then dim $U \leq \dim V$.

Proof. Let $U \subseteq V$ as in the proposition. Choose *B* a basis for *V* and *C* a basis for *U*. Then *B* spans *V* and *C* is linearly independent in *U*, thus

 $length(B) \ge length(C)$.

What are all the subspaces of \mathbb{R}^2 and their dimensions?

What are all the subspaces of \mathbb{R}^2 and their dimensions? What dimensions can they have?

What are all the subspaces of \mathbb{R}^2 and their dimensions? What dimensions can they have? 0,1,

What are all the subspaces of \mathbb{R}^2 and their dimensions? What dimensions can they have? 0,1,2?

What are all the subspaces of \mathbb{R}^2 and their dimensions?

What dimensions can they have? 0,1,2?

 $\begin{array}{ll} \dim U = 0; & \{0\} \\ \dim U = 1; & \text{all lines through } (0,0) \\ \dim U = 2; & \mathbb{R}^2 \end{array}$

What are all the subspaces of \mathbb{R}^2 and their dimensions?

What dimensions can they have? 0,1,2?

 $\begin{array}{ll} \dim U = 0; & \{0\} \\ \dim U = 1; & \text{all lines through } (0,0) \\ \dim U = 2; & \mathbb{R}^2 \end{array}$

The only subspace with the same dimension as V is V.

Prop'n:

Suppose V is a finite-dimensional vector space with subspace U. If $\dim U = \dim V$, then U = V.

Prop'n:

Suppose V is a finite-dimensional vector space with subspace U. If $\dim U = \dim V$, then U = V.

Proof. Let u_1, \ldots, u_n be a basis for U for $n = \dim U = \dim V$.

Prop'n:

Suppose V is a finite-dimensional vector space with subspace U. If $\dim U = \dim V$, then U = V.

Proof. Let u_1, \ldots, u_n be a basis for U for $n = \dim U = \dim V$.

The u_1, \ldots, u_n are linearly independent in V so they can be extended to a basis.

Prop'n:

Suppose V is a finite-dimensional vector space with subspace U. If $\dim U = \dim V$, then U = V.

Proof. Let u_1, \ldots, u_n be a basis for U for $n = \dim U = \dim V$.

The u_1, \ldots, u_n are linearly independent in V so they can be extended to a basis.

But since there are dim V vectors, and every basis has length n the extension is trivial. \Box

Prop'n:

Suppose V is a finite-dimensional vector space with subspace U. If $\dim U = \dim V$, then U = V.

Proof. Let u_1, \ldots, u_n be a basis for U for $n = \dim U = \dim V$.

The u_1, \ldots, u_n are linearly independent in V so they can be extended to a basis.

But since there are dim *V* vectors, and every basis has length *n* the extension is trivial. \Box

Corollary

Every list of linearly independent vectors in finite-dimensional V with length dim V is a basis.

Let
$$U = \{ p \in \mathcal{P}_4(\mathbb{R}) : p(6) = 0 \}.$$

Let
$$U = \{ p \in \mathcal{P}_4(\mathbb{R}) : p(6) = 0 \}.$$

Find a basis.

Let $U = \{p \in \mathcal{P}_4(\mathbb{R}) : p(6) = 0\}.$

Find a basis.

The polynomials $(x - 6), (x - 6)^2, (x - 6)^3, (x - 6)^4$ are all in *U*.

Let
$$U = \{p \in \mathcal{P}_4(\mathbb{R}) : p(6) = 0\}.$$

Find a basis.

The polynomials (x - 6), $(x - 6)^2$, $(x - 6)^3$, $(x - 6)^4$ are all in *U*. S'pose

$$a_1(x-6) + a_2(x-6)^2 + a_3(x-6)^3 + a_4(x-6)^4 = 0.$$

Let
$$U = \{p \in \mathcal{P}_4(\mathbb{R}) : p(6) = 0\}.$$

Find a basis.

The polynomials (x - 6), $(x - 6)^2$, $(x - 6)^3$, $(x - 6)^4$ are all in *U*. S'pose

$$a_1(x-6) + a_2(x-6)^2 + a_3(x-6)^3 + a_4(x-6)^4 = 0.$$

How can we see that these are linearly independent?

Let $U = \{p \in \mathcal{P}_4(\mathbb{R}) : p(6) = 0\}.$ Find a basis.

The polynomials (x - 6), $(x - 6)^2$, $(x - 6)^3$, $(x - 6)^4$ are all in *U*. S'pose

$$a_1(x-6) + a_2(x-6)^2 + a_3(x-6)^3 + a_4(x-6)^4 = 0.$$

How can we see that these are linearly independent? We can now conclude that the four vectors form a basis.

Let $U = \{p \in \mathcal{P}_4(\mathbb{R}) : p(6) = 0\}.$ Find a basis.

The polynomials (x - 6), $(x - 6)^2$, $(x - 6)^3$, $(x - 6)^4$ are all in *U*. S'pose

$$a_1(x-6) + a_2(x-6)^2 + a_3(x-6)^3 + a_4(x-6)^4 = 0.$$

How can we see that these are linearly independent?

We can now conclude that the four vectors form a basis. Why?

Let $U = \{p \in \mathcal{P}_4(\mathbb{R}) : p(6) = 0\}.$ Find a basis.

The polynomials $(x - 6), (x - 6)^2, (x - 6)^3, (x - 6)^4$ are all in *U*. S'pose

$$a_1(x-6) + a_2(x-6)^2 + a_3(x-6)^3 + a_4(x-6)^4 = 0.$$

How can we see that these are linearly independent?

We can now conclude that the four vectors form a basis. Why? How do we know that dim $U < \dim \mathcal{P}_4(\mathbb{R})$?

Spanning Lists of Length n

Prop'n:

Let dim V = n. Then if v_1, \ldots, v_n is spans, it forms a basis.

Dimension of a Sum

Prop'n (2.43):

If U_1 and U_2 are subspaces of a finite-dimensional vector space,

 $\dim(U_1+U_2)=\dim U_1+\dim U_2-\dim(U_1\cap U_2).$

Dimension of a Sum

Prop'n (2.43):

If U_1 and U_2 are subspaces of a finite-dimensional vector space,

 $\dim(U_1+U_2)=\dim U_1+\dim U_2-\dim(U_1\cap U_2).$

Why does this make sense?

Dimension of a Sum

Prop'n (2.43):

If U_1 and U_2 are subspaces of a finite-dimensional vector space,

 $\dim(U_1+U_2)=\dim U_1+\dim U_2-\dim(U_1\cap U_2).$

Why does this make sense?

What does this mean for direct sums?

Suppose that *U* and *W* are subspaces of \mathbb{R}^8 such that dim U = 3, dim W = 5, and $U + W = \mathbb{R}^8$. Prove that $\mathbb{R}^8 = U \oplus W$.

Suppose that *U* and *W* are subspaces of \mathbb{R}^8 such that dim U = 3, dim W = 5, and $U + W = \mathbb{R}^8$. Prove that $\mathbb{R}^8 = U \oplus W$.

$\dim(U+W) = \dim U + \dim W - \dim(U \cap W)$

Suppose that *U* and *W* are subspaces of \mathbb{R}^8 such that dim U = 3, dim W = 5, and $U + W = \mathbb{R}^8$. Prove that $\mathbb{R}^8 = U \oplus W$.

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W)$$

 \implies dim $U \cap W = 0$

Suppose that *U* and *W* are subspaces of \mathbb{R}^8 such that dim U = 3, dim W = 5, and $U + W = \mathbb{R}^8$. Prove that $\mathbb{R}^8 = U \oplus W$.

$$\dim(U + W) = \dim U + \dim W - \dim(U \cap W)$$
$$\implies \dim U \cap W = 0$$
$$\implies U \cap W = \{0\}$$

Suppose that *U* and *W* are subspaces of \mathbb{R}^8 such that dim U = 3, dim W = 5, and $U + W = \mathbb{R}^8$. Prove that $\mathbb{R}^8 = U \oplus W$.

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W)$$

$$\implies \dim U \cap W = 0$$
$$\implies U \cap W = \{0\}$$

$$\implies U + W = U \oplus W = \mathbb{R}^8$$

[Axl14] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.