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Context

We started with vector spaces.

"No one gets excited about vector spaces. The interesting part of
linear algebra is the subject to which we now turn–linear maps."

- S. Axler
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Definition
Let V ,W be F vector spaces. (F = R or C).

Def’n:
A linear map from V to W is a function T : V → W satisfying the
following properties:

Additivity:
T(u+ v) = T(u) + T(v) for all u, v ∈ V

Homogeneity:

T(λu) = λT(u) for all u ∈ V , λ ∈ F

Def’n:
The set of all linear maps V to W is denoted L(V ,W).

FD · MATH 110 · June 28, 2023 3 / 16



Definition
Let V ,W be F vector spaces. (F = R or C).

Def’n:
A linear map from V to W is a function T : V → W satisfying the
following properties:
Additivity:

T(u+ v) = T(u) + T(v) for all u, v ∈ V

Homogeneity:

T(λu) = λT(u) for all u ∈ V , λ ∈ F

Def’n:
The set of all linear maps V to W is denoted L(V ,W).

FD · MATH 110 · June 28, 2023 3 / 16



Definition
Let V ,W be F vector spaces. (F = R or C).

Def’n:
A linear map from V to W is a function T : V → W satisfying the
following properties:
Additivity:

T(u+ v) = T(u) + T(v) for all u, v ∈ V

Homogeneity:

T(λu) = λT(u) for all u ∈ V , λ ∈ F

Def’n:
The set of all linear maps V to W is denoted L(V ,W).

FD · MATH 110 · June 28, 2023 3 / 16



Definition
Let V ,W be F vector spaces. (F = R or C).

Def’n:
A linear map from V to W is a function T : V → W satisfying the
following properties:
Additivity:

T(u+ v) = T(u) + T(v) for all u, v ∈ V

Homogeneity:

T(λu) = λT(u) for all u ∈ V , λ ∈ F

Def’n:
The set of all linear maps V to W is denoted L(V ,W).

FD · MATH 110 · June 28, 2023 3 / 16



Examples!

The zero map. T(v) = 0.

The identity map. I(v) = v.
Differentiation. D ∈ L(P(R),P(R)) defined Dp = p′.
Integration. T ∈ L(P(R),R) defined Tp =

∫ 1
0 pdx.

From R3 → R2: T(x, y, z) = (2x − y, 5x − 7z, 2z − y).
Generalizing from Fn → Fm:
Let Aj,k ∈ F for j ∈ [m], k ∈ [n], define T ∈ L(Fn,Fm) as

T(x1, . . . , xn) = (A1,1x1 + . . .+ A1,nxn, . . . ,Am,1x1 + . . .+ Am,nxn).
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Basis of Domain

Prop’n 3.5:
Suppose v1, . . . , vn is a basis of V and w1, . . . ,wn ∈ W . Then there
exists a unique linear map T : V → W such that

Tvj = wj

for each j = 1, . . . , n.

What does this mean?
1. I can give you any basis of V and any vectors of W and create a
map sending basis vectors to these vectors of W .

2. A linear map is uniquely determined by where it sends basis
vectors.
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Proof of Prop’n 3.5

WTS:
1. Existence
2. Uniqueness

Existence:
Define T : V → W by

T(c1v1 + . . .+ cnvn) = c1w1 + . . .+ cnwn

for arbitrary c1, . . . , cn ∈ F.

For each j, if cj = 1 and all other ci = 0, then Tvj = wj.
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Proof of Prop’n 3.5 (Cont’d)

To show T is linear:

Let x = a1v1 + . . .+ anvn, y = b1v1 + . . .+ bnvn.

T(x + y) = T((a1 + b1)v1 + . . . (an + bn)vn)
= (a1 + b1)w1 + . . . (an + bn)wn
= (a1w1 + . . . anwn) + (b1w1 + . . . bnwn)
= Tx + Ty

Scaling left to you!

Done with existence!
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Proof of Prop’n 3.5 (Cont’d)

Uniqueness:

S’pose Tvj = wj for some linear map T .

Homogeneity implies T(cjvj) = cjwj.

Then additivity implies T(c1v1 + . . .+ cnvn) = c1w1 + . . .+ cnwn.

Thus, T must be the map we just defined.
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Algebra of L(V ,W)

Def’n:
Let S, T ∈ L(V ,W) and λ ∈ F. We define for all v ∈ V

(S + T)(v) = Sv + Tv

and
(λT)(v) = λT(v).

Prop’n:
With the addition and scalar multiplication defined above, L(V ,W) is
a vector space.
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More algebra of L(V ,W)

Def’n:
Let U, V ,W be vector spaces. If T ∈ L(U, V), S ∈ L(V ,W), then we
define ST ∈ L(U,W) for u ∈ U as

(ST)(u) = S(Tu).

Example: Let D ∈ L(P(R),P(R)) be differentiation.

Let T ∈ L(P(R),P(R)) be multiplication by x2.

TD(p(x)) = T(p′(x)) = x2p′(x)

DT(p(x)) = D(x2p(x)) = 2xp(x) + x2p′(x)

Notice that TD ̸= DT .
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Properties of map composition

Prop’n 3.9:

associativity
(T1T2)T3 = T1(T2T3)

*when domains are appropriate
identity:

TIV = IWT = T

for T ∈ L(V ,W)

distributive properties:

(S1 + S2)T = S1T + S2T

S(T1 + T2) = ST1 + ST2

where T ′s ∈ L(U, V) and S′s ∈ L(V ,W)
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Break
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Discussion Questions

1. Prove that all linear maps send 0 to 0.
2. Describe the subspaces of R3 and their dimensions.
3. Let U = {p ∈ P4(R) : p′′(6) = 0}.

(a) Find a basis of U.
(b) Extend your basis to one of P4(R).
(c) Find a subspace W such that P4(F) = U ⊕W .

4. Suppose b, c ∈ R. Define T : R3 → R2 by
T(x, y, z) = (2x− 4y + 3z+ b, 6x+ cxyz). Show that T is linear if
and only if b = c = 0.

5. Construct a linear map T : R3 → R2 such that T(3, 0, 2) = (3, 4)
and T(1, 1, 1) = (1, 1). Or show why this is impossible. what
about one such that T(3, 0, 2) = (3, 4) and T(6, 0, 4) = (1, 1)?

FD · MATH 110 · June 28, 2023 13 / 16



Discussion Question Hints/Solutions

1. T(0) = T(0+ 0) = T(0) + T(0). Adding the additive inverse of
T(0) to each side gives 0 = T(0).

2.

dim U ⊆ R3

0 {0}
1 all lines in R3 through the origin
2 all planes in R3 through the origin
3 R3

3. (a) Show that the following are linearly ind. and span:
1, (x − 6), (x − 6)3, (x − 6)4

(b) The polynomial (x − 6)2 is not in U and this list is lin ind of the
right length.

(c) Let W = span((x − 6)2).
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Discussion Question Hints/Solutions

4. First, if b = c = 0. We can show that T is additive and satisfies
homogeneity.
Next, notice that
λT(x, y, z) ̸= T(λx, λy, λz) = (2λx−4λy+3λz+b, 6λx+ cλ3xyz)
for any λ ∈ R.

5. We can use the basis of domain prop’n to define a map in the
first case. One example is to say T(3, 0, 2) = (3, 4),
T(1, 1, 1) = (1, 1), and T(0, 1, 0) = (2, 1) (we needed to choose
a third vector and output to have a basis of the domain R3). The
second will not be linear because (3, 0, 2) = 1

2(6, 0, 4) but
T(3, 0, 2) ̸= 1

2T(6, 0, 4).
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