Lecture 6: Linear Maps

MATH 110-3

Franny Dean

June 28, 2023

Context

We started with vector spaces.

Context

We started with vector spaces.
"No one gets excited about vector spaces. The interesting part of linear algebra is the subject to which we now turn-linear maps."

- S. Axler

Definition

Let V, W be \mathbb{F} vector spaces. $(\mathbb{F}=\mathbb{R}$ or $\mathbb{C})$.

Def'n:

A linear map from V to W is a function $T: V \rightarrow W$ satisfying the following properties:

Definition

Let V, W be \mathbb{F} vector spaces. $(\mathbb{F}=\mathbb{R}$ or $\mathbb{C})$.

Def'n:

A linear map from V to W is a function $T: V \rightarrow W$ satisfying the following properties:

Additivity:

$$
T(u+v)=T(u)+T(v) \text { for all } u, v \in V
$$

Definition

Let V, W be \mathbb{F} vector spaces. $(\mathbb{F}=\mathbb{R}$ or $\mathbb{C})$.

Def'n:

A linear map from V to W is a function $T: V \rightarrow W$ satisfying the following properties:

Additivity:

$$
T(u+v)=T(u)+T(v) \text { for all } u, v \in V
$$

Homogeneity:

$$
T(\lambda u)=\lambda T(u) \text { for all } u \in V, \lambda \in \mathbb{F}
$$

Definition

Let V, W be \mathbb{F} vector spaces. $(\mathbb{F}=\mathbb{R}$ or $\mathbb{C})$.

Def'n:

A linear map from V to W is a function $T: V \rightarrow W$ satisfying the following properties:

Additivity:

$$
T(u+v)=T(u)+T(v) \text { for all } u, v \in V
$$

Homogeneity:

$$
T(\lambda u)=\lambda T(u) \text { for all } u \in V, \lambda \in \mathbb{F}
$$

Def'n:

The set of all linear maps V to W is denoted $\mathcal{L}(V, W)$.

Examples!

■ The zero map. $T(v)=0$.

Examples!

■ The zero map. $T(v)=0$.
\square The identity map. $I(v)=v$.

Examples!

■ The zero map. $T(v)=0$.

- The identity map. $I(v)=v$.

■ Differentiation. $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ defined $D p=p^{\prime}$.

Examples!

■ The zero map. $T(v)=0$.

- The identity map. $I(v)=v$.

■ Differentiation. $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ defined $D p=p^{\prime}$.
■ Integration. $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$ defined $T p=\int_{0}^{1} p d x$.

Examples!

■ The zero map. $T(v)=0$.

- The identity map. $I(v)=v$.

■ Differentiation. $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ defined $D p=p^{\prime}$.
■ Integration. $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$ defined $T p=\int_{0}^{1} p d x$.
$■$ From $\mathbb{R}^{3} \rightarrow \mathbb{R}^{2}: T(x, y, z)=(2 x-y, 5 x-7 z, 2 z-y)$.

Examples!

■ The zero map. $T(v)=0$.

- The identity map. $I(v)=v$.

■ Differentiation. $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ defined $D p=p^{\prime}$.
■ Integration. $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$ defined $T p=\int_{0}^{1} p d x$.
$■$ From $\mathbb{R}^{3} \rightarrow \mathbb{R}^{2}: T(x, y, z)=(2 x-y, 5 x-7 z, 2 z-y)$.
■ Generalizing from $\mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$:
Let $A_{j, k} \in \mathbb{F}$ for $j \in[m], k \in[n]$, define $T \in \mathcal{L}\left(\mathbb{F}^{n}, \mathbb{F}^{m}\right)$ as
$T\left(x_{1}, \ldots, x_{n}\right)=\left(A_{1,1} x_{1}+\ldots+A_{1, n} x_{n}, \ldots, A_{m, 1} x_{1}+\ldots+A_{m, n} x_{n}\right)$.

Basis of Domain

Prop'n 3.5:

Suppose v_{1}, \ldots, v_{n} is a basis of V and $w_{1}, \ldots, w_{n} \in W$. Then there exists a unique linear map $T: V \rightarrow W$ such that

$$
T v_{j}=w_{j}
$$

for each $j=1, \ldots, n$.

Basis of Domain

Prop'n 3.5:

Suppose v_{1}, \ldots, v_{n} is a basis of V and $w_{1}, \ldots, w_{n} \in W$. Then there exists a unique linear map $T: V \rightarrow W$ such that

$$
T v_{j}=w_{j}
$$

for each $j=1, \ldots, n$.

What does this mean?

Basis of Domain

Prop'n 3.5:

Suppose v_{1}, \ldots, v_{n} is a basis of V and $w_{1}, \ldots, w_{n} \in W$. Then there exists a unique linear map $T: V \rightarrow W$ such that

$$
T v_{j}=w_{j}
$$

for each $j=1, \ldots, n$.

What does this mean?

1. I can give you any basis of V and any vectors of W and create a map sending basis vectors to these vectors of W.

Basis of Domain

Prop'n 3.5:

Suppose v_{1}, \ldots, v_{n} is a basis of V and $w_{1}, \ldots, w_{n} \in W$. Then there exists a unique linear map $T: V \rightarrow W$ such that

$$
T v_{j}=w_{j}
$$

for each $j=1, \ldots, n$.

What does this mean?

1. I can give you any basis of V and any vectors of W and create a map sending basis vectors to these vectors of W.
2. A linear map is uniquely determined by where it sends basis vectors.

Proof of Prop’n 3.5

WTS:

1. Existence
2. Uniqueness

Proof of Prop'n 3.5

WTS:

1. Existence
2. Uniqueness

Existence:

Define $T: V \rightarrow W$ by

$$
T\left(c_{1} v_{1}+\ldots+c_{n} v_{n}\right)=c_{1} w_{1}+\ldots+c_{n} w_{n}
$$

for arbitrary $c_{1}, \ldots, c_{n} \in \mathbb{F}$.

Proof of Prop'n 3.5

WTS:

1. Existence
2. Uniqueness

Existence:

Define $T: V \rightarrow W$ by

$$
T\left(c_{1} v_{1}+\ldots+c_{n} v_{n}\right)=c_{1} w_{1}+\ldots+c_{n} w_{n}
$$

for arbitrary $c_{1}, \ldots, c_{n} \in \mathbb{F}$.
For each j, if $c_{j}=1$ and all other $c_{i}=0$, then $T v_{j}=w_{j}$.

Proof of Prop'n 3.5

WTS:

1. Existence
2. Uniqueness

Existence:

Define $T: V \rightarrow W$ by

$$
T\left(c_{1} v_{1}+\ldots+c_{n} v_{n}\right)=c_{1} w_{1}+\ldots+c_{n} w_{n}
$$

for arbitrary $c_{1}, \ldots, c_{n} \in \mathbb{F}$.
For each j, if $c_{j}=1$ and all other $c_{i}=0$, then $T v_{j}=w_{j}$.

Proof of Prop'n 3.5 (Cont'd)

To show T is linear:

Proof of Prop'n 3.5 (Cont'd)

To show T is linear:
Let $x=a_{1} v_{1}+\ldots+a_{n} v_{n}, y=b_{1} v_{1}+\ldots+b_{n} v_{n}$.

$$
\begin{aligned}
T(x+y) & =T\left(\left(a_{1}+b_{1}\right) v_{1}+\ldots\left(a_{n}+b_{n}\right) v_{n}\right) \\
& =\left(a_{1}+b_{1}\right) w_{1}+\ldots\left(a_{n}+b_{n}\right) w_{n} \\
& =\left(a_{1} w_{1}+\ldots a_{n} w_{n}\right)+\left(b_{1} w_{1}+\ldots b_{n} w_{n}\right) \\
& =T x+T y
\end{aligned}
$$

Proof of Prop'n 3.5 (Cont'd)

To show T is linear:
Let $x=a_{1} v_{1}+\ldots+a_{n} v_{n}, y=b_{1} v_{1}+\ldots+b_{n} v_{n}$.

$$
\begin{aligned}
T(x+y) & =T\left(\left(a_{1}+b_{1}\right) v_{1}+\ldots\left(a_{n}+b_{n}\right) v_{n}\right) \\
& =\left(a_{1}+b_{1}\right) w_{1}+\ldots\left(a_{n}+b_{n}\right) w_{n} \\
& =\left(a_{1} w_{1}+\ldots a_{n} w_{n}\right)+\left(b_{1} w_{1}+\ldots b_{n} w_{n}\right) \\
& =T x+T y
\end{aligned}
$$

Scaling left to you!

Proof of Prop'n 3.5 (Cont'd)

To show T is linear:
Let $x=a_{1} v_{1}+\ldots+a_{n} v_{n}, y=b_{1} v_{1}+\ldots+b_{n} v_{n}$.

$$
\begin{aligned}
T(x+y) & =T\left(\left(a_{1}+b_{1}\right) v_{1}+\ldots\left(a_{n}+b_{n}\right) v_{n}\right) \\
& =\left(a_{1}+b_{1}\right) w_{1}+\ldots\left(a_{n}+b_{n}\right) w_{n} \\
& =\left(a_{1} w_{1}+\ldots a_{n} w_{n}\right)+\left(b_{1} w_{1}+\ldots b_{n} w_{n}\right) \\
& =T x+T y
\end{aligned}
$$

Scaling left to you!

Done with existence!

Proof of Prop’n 3.5 (Cont’d)

Uniqueness:

Proof of Prop'n 3.5 (Cont'd)

Uniqueness:

S'pose $T v_{j}=w_{j}$ for some linear map T.

Proof of Prop'n 3.5 (Cont'd)

Uniqueness:

S'pose $T v_{j}=w_{j}$ for some linear map T.
Homogeneity implies $T\left(c_{j} v_{j}\right)=c_{j} w_{j}$.

Proof of Prop'n 3.5 (Cont'd)

Uniqueness:

S'pose $T v_{j}=w_{j}$ for some linear map T.
Homogeneity implies $T\left(c_{j} v_{j}\right)=c_{j} w_{j}$.
Then additivity implies $T\left(c_{1} v_{1}+\ldots+c_{n} v_{n}\right)=c_{1} w_{1}+\ldots+c_{n} w_{n}$.

Proof of Prop'n 3.5 (Cont'd)

Uniqueness:

S'pose $T v_{j}=w_{j}$ for some linear map T.
Homogeneity implies $T\left(c_{j} v_{j}\right)=c_{j} w_{j}$.
Then additivity implies $T\left(c_{1} v_{1}+\ldots+c_{n} v_{n}\right)=c_{1} w_{1}+\ldots+c_{n} W_{n}$.
Thus, T must be the map we just defined.

Algebra of $\mathcal{L}(V, W)$

Def'n:

Let $S, T \in \mathcal{L}(V, W)$ and $\lambda \in \mathbb{F}$. We define for all $v \in V$

$$
(S+T)(v)=S v+T v
$$

and

$$
(\lambda T)(v)=\lambda T(v)
$$

Algebra of $\mathcal{L}(V, W)$

Def'n:

Let $S, T \in \mathcal{L}(V, W)$ and $\lambda \in \mathbb{F}$. We define for all $v \in V$

$$
(S+T)(v)=S v+T v
$$

and

$$
(\lambda T)(v)=\lambda T(v)
$$

Prop'n:

With the addition and scalar multiplication defined above, $\mathcal{L}(V, W)$ is a vector space.

More algebra of $\mathcal{L}(V, W)$

Def'n:

Let U, V, W be vector spaces. If $T \in \mathcal{L}(U, V), S \in \mathcal{L}(V, W)$, then we define $S T \in \mathcal{L}(U, W)$ for $u \in U$ as

$$
(S T)(u)=S(T u) .
$$

More algebra of $\mathcal{L}(V, W)$

Def'n:

Let U, V, W be vector spaces. If $T \in \mathcal{L}(U, V), S \in \mathcal{L}(V, W)$, then we define $S T \in \mathcal{L}(U, W)$ for $u \in U$ as

$$
(S T)(u)=S(T u) .
$$

Example: Let $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ be differentiation.

More algebra of $\mathcal{L}(V, W)$

Def'n:

Let U, V, W be vector spaces. If $T \in \mathcal{L}(U, V), S \in \mathcal{L}(V, W)$, then we define $S T \in \mathcal{L}(U, W)$ for $u \in U$ as

$$
(S T)(u)=S(T u) .
$$

Example: Let $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ be differentiation. Let $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ be multiplication by x^{2}.

$$
T D(p(x))=T\left(p^{\prime}(x)\right)=x^{2} p^{\prime}(x)
$$

More algebra of $\mathcal{L}(V, W)$

Def'n:

Let U, V, W be vector spaces. If $T \in \mathcal{L}(U, V), S \in \mathcal{L}(V, W)$, then we define $S T \in \mathcal{L}(U, W)$ for $u \in U$ as

$$
(S T)(u)=S(T u) .
$$

Example: Let $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ be differentiation. Let $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ be multiplication by x^{2}.

$$
\begin{gathered}
T D(p(x))=T\left(p^{\prime}(x)\right)=x^{2} p^{\prime}(x) \\
D T(p(x))=D\left(x^{2} p(x)\right)=2 x p(x)+x^{2} p^{\prime}(x)
\end{gathered}
$$

More algebra of $\mathcal{L}(V, W)$

Def'n:

Let U, V, W be vector spaces. If $T \in \mathcal{L}(U, V), S \in \mathcal{L}(V, W)$, then we define $S T \in \mathcal{L}(U, W)$ for $u \in U$ as

$$
(S T)(u)=S(T u) .
$$

Example: Let $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ be differentiation. Let $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ be multiplication by x^{2}.

$$
\begin{gathered}
T D(p(x))=T\left(p^{\prime}(x)\right)=x^{2} p^{\prime}(x) \\
D T(p(x))=D\left(x^{2} p(x)\right)=2 x p(x)+x^{2} p^{\prime}(x)
\end{gathered}
$$

Notice that $T D \neq D T$.

Properties of map composition

Prop'n 3.9:

Properties of map composition

Prop’n 3.9:

■ associativity

$$
\left(T_{1} T_{2}\right) T_{3}=T_{1}\left(T_{2} T_{3}\right)
$$

*when domains are appropriate

Properties of map composition

Prop'n 3.9:

■ associativity

$$
\left(T_{1} T_{2}\right) T_{3}=T_{1}\left(T_{2} T_{3}\right)
$$

*when domains are appropriate
■ identity:

$$
T I_{V}=I_{W} T=T
$$

for $T \in \mathcal{L}(V, W)$

Properties of map composition

Prop'n 3.9:

■ associativity

$$
\left(T_{1} T_{2}\right) T_{3}=T_{1}\left(T_{2} T_{3}\right)
$$

*when domains are appropriate
■ identity:

$$
T I_{V}=I_{W} T=T
$$

for $T \in \mathcal{L}(V, W)$
■ distributive properties:

$$
\begin{aligned}
& \left(S_{1}+S_{2}\right) T=S_{1} T+S_{2} T \\
& S\left(T_{1}+T_{2}\right)=S T_{1}+S T_{2}
\end{aligned}
$$

where $T^{\prime} s \in \mathcal{L}(U, V)$ and $S^{\prime} s \in \mathcal{L}(V, W)$

Break

Discussion Questions

1. Prove that all linear maps send 0 to 0 .
2. Describe the subspaces of \mathbb{R}^{3} and their dimensions.
3. Let $U=\left\{p \in \mathcal{P}_{4}(\mathbb{R}): p^{\prime \prime}(6)=0\right\}$.
(a) Find a basis of U.
(b) Extend your basis to one of $\mathcal{P}_{4}(\mathbb{R})$.
(c) Find a subspace W such that $\mathcal{P}_{4}(\mathbb{F})=U \oplus W$.
4. Suppose $b, c \in \mathbb{R}$. Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by
$T(x, y, z)=(2 x-4 y+3 z+b, 6 x+c x y z)$. Show that T is linear if and only if $b=c=0$.
5. Construct a linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $T(3,0,2)=(3,4)$ and $T(1,1,1)=(1,1)$. Or show why this is impossible. what about one such that $T(3,0,2)=(3,4)$ and $T(6,0,4)=(1,1)$?

Discussion Question Hints/Solutions

1. $T(0)=T(0+0)=T(0)+T(0)$. Adding the additive inverse of $T(0)$ to each side gives $0=T(0)$.
2. | dim | $U \subseteq \mathbb{R}^{3}$ |
| :---: | :---: |
| 0 | $\{0\}$ |
| 1 | all lines in \mathbb{R}^{3} through the origin |
| 2 | all planes in \mathbb{R}^{3} through the origin |
| 3 | \mathbb{R}^{3} |
3. (a) Show that the following are linearly ind. and span:
$1,(x-6),(x-6)^{3},(x-6)^{4}$
(b) The polynomial $(x-6)^{2}$ is not in U and this list is lin ind of the right length.
(c) Let $W=\operatorname{span}\left((x-6)^{2}\right)$.

Discussion Question Hints/Solutions

4. First, if $b=c=0$. We can show that T is additive and satisfies homogeneity.
Next, notice that
$\lambda T(x, y, z) \neq T(\lambda x, \lambda y, \lambda z)=\left(2 \lambda x-4 \lambda y+3 \lambda z+b, 6 \lambda x+c \lambda^{3} x y z\right)$ for any $\lambda \in \mathbb{R}$.
5. We can use the basis of domain prop'n to define a map in the first case. One example is to say $T(3,0,2)=(3,4)$, $T(1,1,1)=(1,1)$, and $T(0,1,0)=(2,1)$ (we needed to choose a third vector and output to have a basis of the domain \mathbb{R}^{3}). The second will not be linear because $(3,0,2)=\frac{1}{2}(6,0,4)$ but $T(3,0,2) \neq \frac{1}{2} T(6,0,4)$.

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

