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General Functions

Well-defined
Injective
Surjective
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Null Space

Def’n:
Let T ∈ L(V ,W). The null space of T , null T is the subset of V
consisting of those vectors that T maps to 0.

null T := {v ∈ V : Tv = 0}

Examples:
the zero map T : V → W?
differentiation
T ∈ L(P(R),P(R)) defined by Tp = x2p
T ∈ L(F∞,F∞) defined by T(x1, x2, x3, . . .) = (x2, x3, . . .)

the null space is also called the kernel
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Null Space is a Subspace

Prop’n:
Suppose T ∈ L(V ,W). Then null T is a subspace of V .

Proof. Using subspace criterion:
T(0) = 0, thus 0 ∈ null T
For u, v ∈ null T , then

T(u+ v) = Tu+ Tv = 0+ 0 = 0

so u+ v ∈ null T
For u ∈ null T , λ ∈ F. Then

T(λu) = λTu = λ0 = 0

and λu ∈ null T .
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Injective

Def’n:
A function T : V → W is called injective if Tu = Tv implies u = v.

Which of the maps from our null space examples are injective?

Prop’n:
Let T ∈ L(V ,W). Then T is injective if and only if null T = {0}.

Tells us that only multiplication by x2 is injective.
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Proof of Prop’n:

Prop’n:
Let T ∈ L(V ,W). Then T is injective if and only if null T = {0}.

Proof. S’pose T is injective.
{0} ⊆ null T because null T is a subspace
null T ⊆ {0} because for v ∈ null V ,

T(v) = 0 = T(0)

injectivity implies v = 0
=⇒ {0} = null T
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Proof of Prop’n:

Prop’n:
Let T ∈ L(V ,W). Then T is injective if and only if null T = {0}.

Proof (cont’d).

S’pose null T = {0}.
Suppose u, v ∈ V and Tu = Tv. WTS: u = v.
We have

0 = Tu− Tv = T(u− v).

=⇒ u− v ∈ null T = {0} and u = v □
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Range

Def’n:
Let T ∈ L(V ,W) (or any function V → W ). The range of T is the
subset of W consisting of those vectors that are of the form Tv for
some v ∈ V .

range T = {Tv : v ∈ V}

Examples:
the zero map T : V → W?
differentiation
T ∈ L(P(R),P(R)) defined by Tp = x2p
T ∈ L(F∞,F∞) defined by T(x1, x2, x3, . . .) = (x2, x3, . . .)

the range is also called the image
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Range is a Subspace of W ...

Prop’n 3.19 [Axl14]:
Let T ∈ L(V ,W), then range T is a subspace of W .

Def’n:
A function T : V → W is called surjective if its range is equal to W .
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Fundamental Theorem of Linear Maps

Prop’n:
Let V be a finite-dimensional vector space and T ∈ L(V ,W). Then
range T is finite dimensional and

dim V = dim null T + dim range T .

This result is usually called rank-nullity!
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Fundamental Theorem of Linear Maps

Proof sketch:

Let u1, . . . , un be a basis of null T .

These vectors are linearly independent in V and so can be extended
to a basis of V :

u1, . . . , un, v1, . . . , vm

for m = dim V − dim null T .

WTS: m = dim range T

Claim: Tv1, . . . , Tvm are a basis for range T

Done.
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Consequences

Let V ,W be finite-dimensional vector spaces:

Corollary 1:

If dim V > dimW , then no linear map V → W is injective.

Proof. Let T ∈ L(V ,W),

dim null T = dim V − dim range T
≥ dim V − dimW

> 0
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Consequences (Cont’d)

Let V ,W be finite-dimensional vector spaces:

Corollary 2:

If dim V < dimW , then no linear map V → W is surjective.

Proof. Let T ∈ L(V ,W),

dim range T = dim V − dim null T
≤ dim V

< dimW
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Consequences for systems of linear equations

Homogeneous System of Linear Equations:
n∑
k=1

A1,kxk = 0

· · ·
n∑
k=1

Am,kxk = 0

Ai,j ∈ F

What solutions other than x1 = x2 = . . . = xn = 0 do we have?

Turn into a linear map question:

T : Fn → Fm T(x1, . . . , xn) = (
n∑
k=1

A1,kxk, . . . ,
n∑
k=1

Am,kxk)
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What solutions other than x1 = x2 = . . . = xn = 0 do we have?

Turn into a linear map question:

T : Fn → Fm T(x1, . . . , xn) = (
n∑
k=1

A1,kxk, . . . ,
n∑
k=1

Am,kxk)

Solving the system is equivalent to finding solutions to
T(x1, . . . , xn) = 0.

Is the null space strictly bigger than {0}?
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Consequences for systems of linear equations

Inhomogeneous System of Linear Equations:
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A1,kxk = c1

· · ·
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Am,kxk = cm

Ai,j ∈ F

Are there c1, . . . , cm such that there are no solutions?
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