

Lecture 7: Rank-Nullity

MATH 110-3

Franny Dean

June 29, 2023

General Functions

- Well-defined
- Injective
- Surjective

Let $T \in \mathcal{L}(V, W)$. The **null space** of *T*, null *T* is the subset of *V* consisting of those vectors that *T* maps to 0.

Def'n:

Let $T \in \mathcal{L}(V, W)$. The **null space** of *T*, null *T* is the subset of *V* consisting of those vectors that *T* maps to 0.

null
$$T := \{ v \in V : Tv = 0 \}$$

Def'n:

Let $T \in \mathcal{L}(V, W)$. The **null space** of *T*, null *T* is the subset of *V* consisting of those vectors that *T* maps to 0.

$$\mathsf{null} \ T := \{ v \in V : Tv = 0 \}$$

Examples:

• the zero map $T: V \rightarrow W$?

Def'n:

Let $T \in \mathcal{L}(V, W)$. The **null space** of *T*, null *T* is the subset of *V* consisting of those vectors that *T* maps to 0.

$$\mathsf{null}\ T := \{ v \in V : Tv = 0 \}$$

- the zero map $T: V \rightarrow W$?
- differentiation

Def'n:

Let $T \in \mathcal{L}(V, W)$. The **null space** of *T*, null *T* is the subset of *V* consisting of those vectors that *T* maps to 0.

null
$$T := \{ v \in V : Tv = 0 \}$$

- the zero map $T: V \rightarrow W$?
- differentiation
- $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ defined by $Tp = x^2p$

Def'n:

Let $T \in \mathcal{L}(V, W)$. The **null space** of *T*, null *T* is the subset of *V* consisting of those vectors that *T* maps to 0.

null
$$T := \{ v \in V : Tv = 0 \}$$

- the zero map $T: V \rightarrow W$?
- differentiation
- $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ defined by $Tp = x^2p$
- $T \in \mathcal{L}(\mathbb{F}^{\infty},\mathbb{F}^{\infty})$ defined by $T(x_1,x_2,x_3,\ldots) = (x_2,x_3,\ldots)$

Def'n:

Let $T \in \mathcal{L}(V, W)$. The **null space** of *T*, null *T* is the subset of *V* consisting of those vectors that *T* maps to 0.

null
$$T := \{ v \in V : Tv = 0 \}$$

Examples:

- the zero map $T: V \rightarrow W$?
- differentiation
- $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ defined by $Tp = x^2p$
- $T \in \mathcal{L}(\mathbb{F}^{\infty},\mathbb{F}^{\infty})$ defined by $T(x_1,x_2,x_3,\ldots) = (x_2,x_3,\ldots)$

 $m
m
m \Lambda$ the null space is also called the **kernel** $m
m \Lambda$

Prop'n:

Suppose $T \in \mathcal{L}(V, W)$. Then null T is a subspace of V.

Prop'n:

Suppose $T \in \mathcal{L}(V, W)$. Then null T is a subspace of V.

Proof. Using subspace criterion:

T
$$(0) = 0$$
, thus $0 \in \text{null } T$

Prop'n:

Suppose $T \in \mathcal{L}(V, W)$. Then null T is a subspace of V.

Proof. Using subspace criterion:

T
$$(0) = 0$$
, thus $0 \in \text{null } T$

For $u, v \in \text{null } T$, then

$$T(u+v) = Tu + Tv = 0 + 0 = 0$$

so $u + v \in \text{null } T$

Prop'n:

Suppose $T \in \mathcal{L}(V, W)$. Then null T is a subspace of V.

Proof. Using subspace criterion:

T
$$(0) = 0$$
, thus $0 \in \text{null } T$

For $u, v \in \text{null } T$, then

$$T(u+v)=Tu+Tv=0+0=0$$

so $u + v \in \text{null } T$

For $u \in \text{null } T$, $\lambda \in \mathbb{F}$. Then

$$T(\lambda u) = \lambda T u = \lambda 0 = 0$$

and $\lambda u \in \text{null } T$.

FD • MATH 110 • June 29, 2023

A function $T: V \rightarrow W$ is called **injective** if Tu = Tv implies u = v.

A function $T: V \rightarrow W$ is called **injective** if Tu = Tv implies u = v.

Which of the maps from our null space examples are injective?

A function $T: V \rightarrow W$ is called **injective** if Tu = Tv implies u = v.

Which of the maps from our null space examples are injective?

Prop'n:

Let $T \in \mathcal{L}(V, W)$. Then T is injective if and only if null $T = \{0\}$.

A function $T: V \rightarrow W$ is called **injective** if Tu = Tv implies u = v.

Which of the maps from our null space examples are injective?

Prop'n:

Let $T \in \mathcal{L}(V, W)$. Then T is injective if and only if null $T = \{0\}$.

Tells us that only multiplication by x^2 is injective.

Prop'n:

Let $T \in \mathcal{L}(V, W)$. Then T is injective if and only if null $T = \{0\}$.

Prop'n:

Let $T \in \mathcal{L}(V, W)$. Then T is injective if and only if null $T = \{0\}$.

Proof.

Prop'n:

Let $T \in \mathcal{L}(V, W)$. Then T is injective if and only if null $T = \{0\}$.

Proof. S'pose *T* is injective.

Prop'n:

Let $T \in \mathcal{L}(V, W)$. Then T is injective if and only if null $T = \{0\}$.

Proof. S'pose T is injective.

• $\{0\} \subseteq \text{null } T$ because null T is a subspace

Prop'n:

Let $T \in \mathcal{L}(V, W)$. Then T is injective if and only if null $T = \{0\}$.

Proof. S'pose T is injective.

- $\{0\} \subseteq \text{null } T$ because null T is a subspace
- null $T \subseteq \{0\}$ because for $v \in$ null V,

$$T(v)=0=T(0)$$

injectivity implies v = 0

 $\blacksquare \implies \{0\} = \operatorname{null} T$

Prop'n:

Let $T \in \mathcal{L}(V, W)$. Then T is injective if and only if null $T = \{0\}$.

Proof (cont'd).

Prop'n:

Let $T \in \mathcal{L}(V, W)$. Then T is injective if and only if null $T = \{0\}$.

Proof (cont'd). S'pose null $T = \{0\}$.

Prop'n:

Let $T \in \mathcal{L}(V, W)$. Then T is injective if and only if null $T = \{0\}$.

Proof (cont'd). S'pose null $T = \{0\}$.

Suppose $u, v \in V$ and Tu = Tv.

Prop'n:

Let $T \in \mathcal{L}(V, W)$. Then T is injective if and only if null $T = \{0\}$.

Proof (cont'd). S'pose null $T = \{0\}$.

Suppose $u, v \in V$ and Tu = Tv. WTS: u = v.

Prop'n:

Let $T \in \mathcal{L}(V, W)$. Then T is injective if and only if null $T = \{0\}$.

Proof (cont'd). S'pose null $T = \{0\}$.

Suppose $u, v \in V$ and Tu = Tv. WTS: u = v.

We have

$$0=Tu-Tv=T(u-v).$$

Prop'n:

Let $T \in \mathcal{L}(V, W)$. Then T is injective if and only if null $T = \{0\}$.

Proof (cont'd). S'pose null $T = \{0\}$.

Suppose $u, v \in V$ and Tu = Tv. WTS: u = v.

We have

$$0=Tu-Tv=T(u-v).$$

•
$$\implies$$
 $u - v \in$ null $T = \{0\}$ and $u = v \square$

Def'n:

Let $T \in \mathcal{L}(V, W)$ (or any function $V \to W$). The **range** of T is the subset of W consisting of those vectors that are of the form Tv for some $v \in V$.

Def'n:

Let $T \in \mathcal{L}(V, W)$ (or any function $V \to W$). The **range** of *T* is the subset of *W* consisting of those vectors that are of the form *Tv* for some $v \in V$.

range
$$T = \{Tv : v \in V\}$$

Def'n:

Let $T \in \mathcal{L}(V, W)$ (or any function $V \to W$). The **range** of *T* is the subset of *W* consisting of those vectors that are of the form *Tv* for some $v \in V$.

range
$$T = \{Tv : v \in V\}$$

Def'n:

Let $T \in \mathcal{L}(V, W)$ (or any function $V \to W$). The **range** of *T* is the subset of *W* consisting of those vectors that are of the form *Tv* for some $v \in V$.

ange
$$T = \{Tv : v \in V\}$$

Examples:

• the zero map $T: V \rightarrow W$?

Def'n:

Let $T \in \mathcal{L}(V, W)$ (or any function $V \to W$). The **range** of *T* is the subset of *W* consisting of those vectors that are of the form *Tv* for some $v \in V$.

ange
$$T = \{Tv : v \in V\}$$

- the zero map $T: V \rightarrow W$?
- differentiation

Def'n:

Let $T \in \mathcal{L}(V, W)$ (or any function $V \to W$). The **range** of *T* is the subset of *W* consisting of those vectors that are of the form *Tv* for some $v \in V$.

range
$$T = \{Tv : v \in V\}$$

- the zero map $T: V \rightarrow W$?
- differentiation
- $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ defined by $Tp = x^2p$

Def'n:

Let $T \in \mathcal{L}(V, W)$ (or any function $V \to W$). The **range** of T is the subset of W consisting of those vectors that are of the form Tv for some $v \in V$.

range
$$T = \{Tv : v \in V\}$$

- the zero map $T: V \rightarrow W$?
- differentiation
- $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ defined by $Tp = x^2p$
- $T \in \mathcal{L}(\mathbb{F}^{\infty}, \mathbb{F}^{\infty})$ defined by $T(x_1, x_2, x_3, \ldots) = (x_2, x_3, \ldots)$

Def'n:

Let $T \in \mathcal{L}(V, W)$ (or any function $V \to W$). The **range** of T is the subset of W consisting of those vectors that are of the form Tv for some $v \in V$.

range
$$T = \{Tv : v \in V\}$$

Examples:

- the zero map $T: V \rightarrow W$?
- differentiation
- $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ defined by $Tp = x^2p$
- $T \in \mathcal{L}(\mathbb{F}^{\infty},\mathbb{F}^{\infty})$ defined by $T(x_1,x_2,x_3,\ldots) = (x_2,x_3,\ldots)$

floor the range is also called the **image** floor

Range is a Subspace of *W*...

Prop'n 3.19 [Axl14]:

Let $T \in \mathcal{L}(V, W)$, then range T is a subspace of W.

Range is a Subspace of *W*...

Prop'n 3.19 [Axl14]:

Let $T \in \mathcal{L}(V, W)$, then range T is a subspace of W.

Def'n:

A function $T: V \rightarrow W$ is called surjective if its range is equal to W.

Prop'n:

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V, W)$. Then range T is finite dimensional and

dim V = dim null T + dim range T.

Prop'n:

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V, W)$. Then range T is finite dimensional and

dim V = dim null T + dim range T.

🗥 This result is *usually* called **rank-nullity**! 🛝

Proof sketch:

Proof sketch: Let u_1, \ldots, u_n be a basis of null *T*.

Proof sketch: Let u_1, \ldots, u_n be a basis of null *T*.

These vectors are linearly independent in V and so can be extended to a basis of V:

 $u_1,\ldots,u_n,v_1,\ldots,v_m$

for $m = \dim V - \dim \operatorname{null} T$.

Proof sketch: Let u_1, \ldots, u_n be a basis of null *T*.

These vectors are linearly independent in V and so can be extended to a basis of V:

 $u_1,\ldots,u_n,v_1,\ldots,v_m$

for $m = \dim V - \dim \operatorname{null} T$.

WTS: $m = \dim \operatorname{range} T$

Proof sketch: Let u_1, \ldots, u_n be a basis of null *T*.

These vectors are linearly independent in V and so can be extended to a basis of V:

 $u_1,\ldots,u_n,v_1,\ldots,v_m$

for $m = \dim V - \dim \operatorname{null} T$.

```
WTS: m = \dim \operatorname{range} T
```

Claim: Tv_1, \ldots, Tv_m are a basis for range T

Proof sketch: Let u_1, \ldots, u_n be a basis of null *T*.

These vectors are linearly independent in V and so can be extended to a basis of V:

 $u_1,\ldots,u_n,v_1,\ldots,v_m$

for $m = \dim V - \dim \operatorname{null} T$.

```
WTS: m = \dim \operatorname{range} T
```

```
Claim: Tv_1, \ldots, Tv_m are a basis for range T
```

Done.

Corollary 1:

Corollary 1:

If dim $V > \dim W$, then **no** linear map $V \to W$ is injective.

Corollary 1:

If dim $V > \dim W$, then **no** linear map $V \to W$ is injective.

Proof. Let $T \in \mathcal{L}(V, W)$,

Corollary 1:

If dim $V > \dim W$, then **no** linear map $V \to W$ is injective.

Proof. Let $T \in \mathcal{L}(V, W)$,

$$dim null T = dim V - dim range T$$
$$\geq dim V - dim W$$
$$> 0$$

Let V, W be finite-dimensional vector spaces:

Corollary 2:

Let V, W be finite-dimensional vector spaces:

Corollary 2:

If dim $V < \dim W$, then **no** linear map $V \rightarrow W$ is surjective.

Let V, W be finite-dimensional vector spaces:

Corollary 2:

If dim $V < \dim W$, then **no** linear map $V \rightarrow W$ is surjective.

Proof. Let $T \in \mathcal{L}(V, W)$,

Let V, W be finite-dimensional vector spaces:

Corollary 2:

If dim $V < \dim W$, then **no** linear map $V \rightarrow W$ is surjective.

Proof. Let $T \in \mathcal{L}(V, W)$,

$$\operatorname{dim} \operatorname{range} T = \operatorname{dim} V - \operatorname{dim} \operatorname{null} T$$

 $\leq \operatorname{dim} V$
 $< \operatorname{dim} W$

Homogeneous System of Linear Equations:

$$\sum_{k=1}^{n} A_{1,k} x_k = 0$$
...
$$\sum_{k=1}^{n} A_{m,k} x_k = 0$$

 $A_{i,j} \in \mathbb{F}$

Homogeneous System of Linear Equations:

$$\sum_{k=1}^{n} A_{1,k} x_k = 0$$
...
$$\sum_{k=1}^{n} A_{m,k} x_k = 0$$

 $A_{i,j} \in \mathbb{F}$

What solutions other than $x_1 = x_2 = \ldots = x_n = 0$ do we have?

Homogeneous System of Linear Equations:

$$\sum_{k=1}^{n} A_{1,k} x_k = 0$$
...
$$\sum_{k=1}^{n} A_{m,k} x_k = 0$$

 $A_{i,j} \in \mathbb{F}$

What solutions other than $x_1 = x_2 = ... = x_n = 0$ do we have?

Turn into a linear map question:

Homogeneous System of Linear Equations:

$$\sum_{k=1}^{n} A_{1,k} x_k = 0$$
...
$$\sum_{k=1}^{n} A_{m,k} x_k = 0$$

 $A_{i,j} \in \mathbb{F}$

What solutions other than $x_1 = x_2 = ... = x_n = 0$ do we have?

Turn into a linear map question:

$$T: \mathbb{F}^n \to \mathbb{F}^m$$
 $T(x_1, \ldots, x_n) = (\sum_{k=1}^n A_{1,k} x_k, \ldots, \sum_{k=1}^n A_{m,k} x_k)$

FD • MATH 110 • June 29, 2023

What solutions other than $x_1 = x_2 = ... = x_n = 0$ do we have? Turn into a linear map question:

$$T: \mathbb{F}^n \to \mathbb{F}^m$$
 $T(x_1, \ldots, x_n) = (\sum_{k=1}^n A_{1,k} x_k, \ldots, \sum_{k=1}^n A_{m,k} x_k)$

What solutions other than $x_1 = x_2 = ... = x_n = 0$ do we have? Turn into a linear map question:

$$T: \mathbb{F}^n \to \mathbb{F}^m$$
 $T(x_1, \ldots, x_n) = (\sum_{k=1}^n A_{1,k} x_k, \ldots, \sum_{k=1}^n A_{m,k} x_k)$

Solving the system is equivalent to finding solutions to $T(x_1, ..., x_n) = 0.$

What solutions other than $x_1 = x_2 = ... = x_n = 0$ do we have? Turn into a linear map question:

$$T: \mathbb{F}^n \to \mathbb{F}^m \qquad T(x_1, \ldots, x_n) = \left(\sum_{k=1}^n A_{1,k} x_k, \ldots, \sum_{k=1}^n A_{m,k} x_k\right)$$

Solving the system is equivalent to finding solutions to $T(x_1, ..., x_n) = 0$.

Is the null space strictly bigger than {0}*?*

Inhomogeneous System of Linear Equations:

$$\sum_{k=1}^{n} A_{1,k} x_k = c_1$$
...
$$\sum_{k=1}^{n} A_{m,k} x_k = c_m$$

 $A_{i,j} \in \mathbb{F}$

Inhomogeneous System of Linear Equations:

$$\sum_{k=1}^{n} A_{1,k} x_k = c_1$$
...
$$\sum_{k=1}^{n} A_{m,k} x_k = c_m$$

 $A_{i,j} \in \mathbb{F}$

Are there c_1, \ldots, c_m such that there are no solutions?

Inhomogeneous System of Linear Equations:

$$\sum_{k=1}^{n} A_{1,k} x_k = c_1$$
...
$$\sum_{k=1}^{n} A_{m,k} x_k = c_m$$

 $A_{i,j} \in \mathbb{F}$

Are there c_1, \ldots, c_m such that there are no solutions?

Turn into a linear map question again:

$$T: \mathbb{F}^n \to \mathbb{F}^m \qquad T(x_1, \ldots, x_n) = (\sum_{k=1}^n A_{1,k} x_k, \ldots, \sum_{k=1}^n A_{1,k} x_k)$$

FD • MATH 110 • June 29, 2023

Are there c_1, \ldots, c_m such that there are no solutions?

Turn into a linear map question again:

$$T: \mathbb{F}^n \to \mathbb{F}^m \qquad T(x_1, \ldots, x_n) = (\sum_{k=1}^n A_{1,k} x_k, \ldots, \sum_{k=1}^n A_{1,k} x_k)$$

Are there c_1, \ldots, c_m such that there are no solutions?

Turn into a linear map question again:

$$T: \mathbb{F}^n \to \mathbb{F}^m \qquad T(x_1, \ldots, x_n) = \left(\sum_{k=1}^n A_{1,k} x_k, \ldots, \sum_{k=1}^n A_{1,k} x_k\right)$$

Solving the system is equivalent to finding solutions to $T(x_1, ..., x_n) = (c_1, ..., c_n).$

Are there c_1, \ldots, c_m such that there are no solutions?

Turn into a linear map question again:

$$T: \mathbb{F}^n \to \mathbb{F}^m \qquad T(x_1, \ldots, x_n) = \left(\sum_{k=1}^n A_{1,k} x_k, \ldots, \sum_{k=1}^n A_{1,k} x_k\right)$$

Solving the system is equivalent to finding solutions to $T(x_1, ..., x_n) = (c_1, ..., c_n).$

Question becomes is the range all of \mathbb{F}^m ?

[Axl14] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.