

Lecture 8: Matrices

MATH 110-3

Franny Dean

July 3, 2023

Last lecture...

Last lecture...

Systems of Linear Equations:

$$\sum_{k=1}^n A_{1,k} x_k = c_1$$

. . .

$$\sum_{k=1}^n A_{m,k} x_k = c_m$$

 $A_{i,j} \in \mathbb{F}$

Last lecture...

Systems of Linear Equations:

$$\sum_{k=1}^n A_{1,k} x_k = c_1$$

. . .

$$\sum_{k=1}^n A_{m,k} x_k = c_m$$

 $A_{i,j} \in \mathbb{F}$

Turn into a linear map question:

$$T: \mathbb{F}^n \to \mathbb{F}^m \qquad T(x_1, \ldots, x_n) = (\sum_{k=1}^n A_{1,k} x_k, \ldots, \sum_{k=1}^n A_{1,k} x_k)$$

FD • MATH 110 • July 3, 2023

Concrete example:

Concrete example:

$$5x_1 + 2x_2 + 3x_3 = c_1$$

$$x_1 + 6x_2 + x_3 = c_2$$

$$2x_1 + 2x_2 + x_3 = c_3$$

Concrete example:

$$5x_1 + 2x_2 + 3x_3 = c_1$$

$$x_1 + 6x_2 + x_3 = c_2$$

$$2x_1 + 2x_2 + x_3 = c_3$$

Becomes

$$T: \mathbb{F}^n \to \mathbb{F}^m$$
$$T(x_1, \ldots, x_n) = (5x_1 + 2x_2 + 3x_3, x_1 + 6x_2 + x_3, 2x_1 + 2x_2 + x_3)$$

Concrete example:

$$5x_1 + 2x_2 + 3x_3 = c_1$$

$$x_1 + 6x_2 + x_3 = c_2$$

$$2x_1 + 2x_2 + x_3 = c_3$$

Becomes

$$T: \mathbb{F}^n \to \mathbb{F}^m$$

 $T(x_1, \dots, x_n) = (5x_1 + 2x_2 + 3x_3, x_1 + 6x_2 + x_3, 2x_1 + 2x_2 + x_3)$
Becomes

$$\mathcal{M}(T) = \left(egin{array}{cccc} 5 & 2 & 3 \ 1 & 6 & 1 \ 2 & 2 & 1 \end{array}
ight)$$

Matrices

Def'n:

A $m \times n$ matrix is a rectangular array of elements of \mathbb{F} with m rows and n columns:

$$\left(\begin{array}{cccc}A_{1,1}&\ldots&A_{1,n}\\\vdots&&\vdots\\A_{m,1}&\ldots&A_{m,n}\end{array}\right)$$

Matrices

Def'n:

A $m \times n$ matrix is a rectangular array of elements of \mathbb{F} with m rows and n columns:

$$\left(\begin{array}{ccc}A_{1,1}&\ldots&A_{1,n}\\\vdots&&\vdots\\A_{m,1}&\ldots&A_{m,n}\end{array}\right)$$

Reminders

Rows by Columns

Matrices

Def'n:

A $m \times n$ matrix is a rectangular array of elements of \mathbb{F} with m rows and n columns:

$$\begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix}$$

Reminders

- Rows by Columns
- Entry in *i*-row, *j*-column is A_{*i*,*j*}

Matrix of a Linear Map

Def'n:

S'pose $T \in \mathcal{L}(V, W)$ and v_1, \ldots, v_n is a basis of V and w_1, \ldots, w_n a basis of W. The **matrix of** T with respect to these bases is $\mathcal{M}(T)$ where $A_{i,k}$ defined by

$$Tv_k = A_{1,k}w_1 + \ldots + A_{m,k}w_m.$$

Example:

Example:

Write the matrix of $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$ for

 $T(x_1, x_2, x_3) = (5x_1 + 2x_2 + 3x_3, x_1 + 6x_2 + x_3, 2x_1 + 2x_2 + x_3)$

Example:

Write the matrix of $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$ for

$$T(x_1, x_2, x_3) = (5x_1 + 2x_2 + 3x_3, x_1 + 6x_2 + x_3, 2x_1 + 2x_2 + x_3)$$

Notice that T(1,0,0) = (5,1,2), T(0,1,0) = (2,6,2), and T(0,0,1) = (3,1,1).

Example:

Write the matrix of $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$ for

$$T(x_1, x_2, x_3) = (5x_1 + 2x_2 + 3x_3, x_1 + 6x_2 + x_3, 2x_1 + 2x_2 + x_3)$$

Notice that T(1,0,0) = (5,1,2), T(0,1,0) = (2,6,2), and T(0,0,1) = (3,1,1).

$$\mathcal{M}(T) = \left(\begin{array}{rrrr} 5 & 2 & 3 \\ 1 & 6 & 1 \\ 2 & 2 & 1 \end{array}\right)$$

 $D\in\mathcal{L}(\mathcal{P}_3(\mathbb{R}),\mathcal{P}_2(\mathbb{R}))$ is the differentiation map defined Dp=p'

 $D\in\mathcal{L}(\mathcal{P}_3(\mathbb{R}),\mathcal{P}_2(\mathbb{R}))$ is the differentiation map defined Dp=p'

What is the matrix $\mathcal{M}(D)$?

 $D \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{P}_2(\mathbb{R}))$ is the differentiation map defined Dp = p'What is the matrix $\mathcal{M}(D)$?

We use the bases: $1, x, x^2, x^3$ of $\mathcal{P}_3(\mathbb{R})$ and $1, x, x^2$ of $\mathcal{P}_2(\mathbb{R})$:

 $D \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{P}_2(\mathbb{R}))$ is the differentiation map defined Dp = p'What is the matrix $\mathcal{M}(D)$?

We use the bases: $1, x, x^2, x^3$ of $\mathcal{P}_3(\mathbb{R})$ and $1, x, x^2$ of $\mathcal{P}_2(\mathbb{R})$:

D(1) = 0	$= 0 \cdot 1 + 0 \cdot x + 0 \cdot x^2$
D(x) = 1	$= 1 \cdot 1 + 0 \cdot x + 0 \cdot x^2$
$D(x^2)=2x$	$= 0 \cdot 1 + 2 \cdot x + 0 \cdot x^2$
$D(x^3)=3x^2$	$= 0 \cdot 1 + 0 \cdot x + 3 \cdot x^2$

 $D \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{P}_2(\mathbb{R}))$ is the differentiation map defined Dp = p'What is the matrix $\mathcal{M}(D)$?

We use the bases: $1, x, x^2, x^3$ of $\mathcal{P}_3(\mathbb{R})$ and $1, x, x^2$ of $\mathcal{P}_2(\mathbb{R})$:

D(1) = 0	$= 0 \cdot 1 + 0 \cdot x + 0 \cdot x^2$
D(x) = 1	$= 1 \cdot 1 + 0 \cdot x + 0 \cdot x^2$
$D(x^2)=2x$	$= 0 \cdot 1 + 2 \cdot x + 0 \cdot x^2$
$D(x^3)=3x^2$	$= 0 \cdot 1 + 0 \cdot x + 3 \cdot x^2$

$$\mathcal{M}(D) = \left(\begin{array}{rrrrr} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{array}\right)$$

 $T \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}),\mathbb{R})$ is the integration map defined $Tp = \int_0^1 p(x) dx$

 $T \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathbb{R})$ is the integration map defined $Tp = \int_0^1 p(x) dx$ What is the matrix $\mathcal{M}(T)$?

 $T \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathbb{R})$ is the integration map defined $Tp = \int_0^1 p(x) dx$ What is the matrix $\mathcal{M}(T)$?

We use the bases: $1, x, x^2, x^3$ of $\mathcal{P}_3(\mathbb{R})$ and 1 of \mathbb{R} :

 $T \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathbb{R})$ is the integration map defined $Tp = \int_0^1 p(x) dx$ What is the matrix $\mathcal{M}(T)$?

We use the bases: $1, x, x^2, x^3$ of $\mathcal{P}_3(\mathbb{R})$ and 1 of \mathbb{R} :

$$T(1) = \int_{0}^{1} 1 dx = 1 = 1 \cdot 1$$

$$T(x) = \int_{0}^{1} x dx = 1/2 = 1/2 \cdot 1$$

$$T(x^{2}) = \int_{0}^{1} x^{2} dx = 1/3 = 1/3 \cdot 1$$

$$T(x^{3}) = \int_{0}^{1} x^{3} dx = 1/4 = 1/4 \cdot 1$$

 $T \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathbb{R})$ is the integration map defined $Tp = \int_0^1 p(x) dx$ What is the matrix $\mathcal{M}(T)$?

We use the bases: $1, x, x^2, x^3$ of $\mathcal{P}_3(\mathbb{R})$ and 1 of \mathbb{R} :

$$T(1) = \int_{0}^{1} 1 dx = 1 = 1 \cdot 1$$

$$T(x) = \int_{0}^{1} x dx = 1/2 = 1/2 \cdot 1$$

$$T(x^{2}) = \int_{0}^{1} x^{2} dx = 1/3 = 1/3 \cdot 1$$

$$T(x^{3}) = \int_{0}^{1} x^{3} dx = 1/4 = 1/4 \cdot 1$$

 $\mathcal{M}(D) = \left(\begin{array}{ccc} 1 & 1/2 & 1/3 & 1/4 \end{array} \right)$

Def'n:

The **sum** of two matrices is computed by adding corresponding entries.

Matrix Algebra

Def'n:

The **sum** of two matrices is computed by adding corresponding entries.

Prop'n 3.36:

Let $S, T \in \mathcal{L}(V, W)$. Then $\mathcal{M}(S + T) = \mathcal{M}(S) + \mathcal{M}(T)$.

Matrix Algebra (Cont'd)

Def'n:

The **scalar multiplication** of a matrix is computed by scaling each entry.

$$(\lambda A)_{i,j} = \lambda A_{i,j}$$

Matrix Algebra (Cont'd)

Def'n:

The **scalar multiplication** of a matrix is computed by scaling each entry.

$$(\lambda A)_{i,j} = \lambda A_{i,j}$$

Prop'n 3.36:

Let $\lambda \in \mathbb{F}$, $T \in \mathcal{L}(V, W)$. Then $\mathcal{M}(\lambda T) = \lambda \mathcal{M}(T)$.

Vector Space of Matrices

Def'n:

The set of all $m \times n$ matrices with entries in \mathbb{F} are denoted $\mathbb{F}^{m,n}$.

Prop'n 3.40 [Axl14]:

For positive integers m, n, with matrix addition and scalar multiplication $\mathbb{F}^{m,n}$ is a vector space with dimension mn.

Vector Space of Matrices

Def'n:

The set of all $m \times n$ matrices with entries in \mathbb{F} are denoted $\mathbb{F}^{m,n}$.

Prop'n 3.40 [Axl14]:

For positive integers m, n, with matrix addition and scalar multiplication $\mathbb{F}^{m,n}$ is a vector space with dimension mn.

What is the basis?

Review of Matrix Multiplication

Review of Matrix Multiplication

First, for $A \cdot B$, need A to be $m \times n$ and B to be $n \times l$ for any positive integrs m, n, l.

Review of Matrix Multiplication

First, for $A \cdot B$, need A to be $m \times n$ and B to be $n \times l$ for any positive integrs m, n, l.

$$\left(\begin{array}{rrr} 2 & 3 \\ 4 & 5 \end{array}\right) \left(\begin{array}{rrr} 1 & 2 \\ 4 & 5 \end{array}\right)$$

Multiplication of Matrices Corresponds to Composition of Linear Maps

 $T: U \rightarrow V, S: V \rightarrow W$, then $ST: U \rightarrow W$

Multiplication of Matrices Corresponds to Composition of Linear Maps

 $T: U \rightarrow V, S: V \rightarrow W$, then $ST: U \rightarrow W$ We want $\mathcal{M}(ST) = \mathcal{M}(S)\mathcal{M}(T)$.

Multiplication of Matrices Corresponds to Composition of Linear Maps

$$T: U \rightarrow V, S: V \rightarrow W$$
, then $ST: U \rightarrow W$

We want $\mathcal{M}(ST) = \mathcal{M}(S)\mathcal{M}(T)$.

We will *choose* to define matrix multiplication so that this is true.

Definition Matrix Multiplication

Def'n:

Suppose *A* is an $m \times n$ matrix and *C* is an $n \times p$ matrix. Then *AC* is defined to be the $m \times p$ matrix whose entry in row *j* column *k* is given by

$$(AC)_{j,k} = \sum_{r=1}^n A_{j,r} C_{r,k}.$$

Definition Matrix Multiplication

Def'n:

Suppose *A* is an $m \times n$ matrix and *C* is an $n \times p$ matrix. Then *AC* is defined to be the $m \times p$ matrix whose entry in row *j* column *k* is given by

$$(AC)_{j,k} = \sum_{r=1}^n A_{j,r} C_{r,k}.$$

The entry in row j, column k of AC is computed by taking row j of A and column k of C multiplying corresponding entries and summing.

Prop'n 3.43 [Axl14]:

If $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then $\mathcal{M}(ST) = \mathcal{M}(S)\mathcal{M}(T)$.

Prop'n 3.43 [Axl14]:

If $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then $\mathcal{M}(ST) = \mathcal{M}(S)\mathcal{M}(T)$.

Proof sketch.

Prop'n 3.43 [Axl14]:

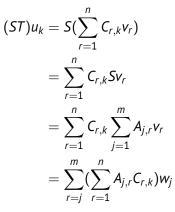
If $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then $\mathcal{M}(ST) = \mathcal{M}(S)\mathcal{M}(T)$.

Proof sketch. Let $\mathcal{M}(S) = A$, $\mathcal{M}(T) = C$.

Prop'n 3.43 [Axl14]:

If $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then $\mathcal{M}(ST) = \mathcal{M}(S)\mathcal{M}(T)$.

Proof sketch. Let
$$\mathcal{M}(S) = A$$
, $\mathcal{M}(T) = C$.



use def'n matrix of map

using linearity

use def'n matrix of map

rearranging the sums

Matrix Multiplication Does Not Commute

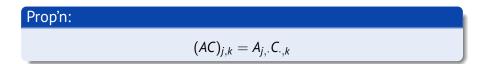
Matrix Multiplication Does Not Commute!

Notation: *A* an $m \times n$ matrix

- $A_{j,\cdot}$ is the row *j* of *A* (a 1 × *n* matrix)
- $A_{.,k}$ is the column k of A (a $m \times 1$ matrix)

Notation: *A* an $m \times n$ matrix

- $A_{j,\cdot}$ is the row *j* of *A* (a 1 × *n* matrix)
- $A_{.,k}$ is the column k of A (a $m \times 1$ matrix)



Notation: *A* an $m \times n$ matrix

- $A_{j,\cdot}$ is the row *j* of *A* (a 1 × *n* matrix)
- $A_{.,k}$ is the column k of A (a $m \times 1$ matrix)

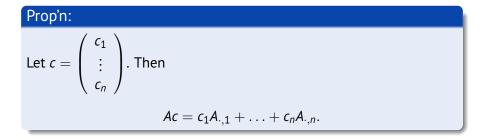
Prop'n: $(AC)_{j,k} = A_{j,\cdot}C_{\cdot,k}$

Prop'n:

$$(AC)_{\cdot,k} = AC_{\cdot,k}$$

Example.

Example.



FD • MATH 110 • July 3, 2023

[Ax114] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.