Lecture 8: Matrices

MATH 110-3

Franny Dean

July 3, 2023

Motivation

Last lecture...

Motivation

Last lecture...

Systems of Linear Equations:

$$
\begin{array}{r}
\sum_{k=1}^{n} A_{1, k} x_{k}=c_{1} \\
\\
\ldots \\
\sum_{k=1}^{n} A_{m, k} x_{k}=c_{m}
\end{array}
$$

$A_{i, j} \in \mathbb{F}$

Motivation

Last lecture...

Systems of Linear Equations:

$$
\begin{array}{r}
\sum_{k=1}^{n} A_{1, k} x_{k}=c_{1} \\
\\
\cdots \\
\sum_{k=1}^{n} A_{m, k} x_{k}=c_{m}
\end{array}
$$

$A_{i, j} \in \mathbb{F}$
Turn into a linear map question:

$$
T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m} \quad T\left(x_{1}, \ldots, x_{n}\right)=\left(\sum_{k=1}^{n} A_{1, k} x_{k}, \ldots, \sum_{k=1}^{n} A_{1, k} x_{k}\right)
$$

Motivation

Concrete example:

Motivation

Concrete example:

$$
\begin{aligned}
5 x_{1}+2 x_{2}+3 x_{3} & =c_{1} \\
x_{1}+6 x_{2}+x_{3} & =c_{2} \\
2 x_{1}+2 x_{2}+x_{3} & =c_{3}
\end{aligned}
$$

Motivation

Concrete example:

$$
\begin{aligned}
5 x_{1}+2 x_{2}+3 x_{3} & =c_{1} \\
x_{1}+6 x_{2}+x_{3} & =c_{2} \\
2 x_{1}+2 x_{2}+x_{3} & =c_{3}
\end{aligned}
$$

Becomes

$$
\begin{gathered}
T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m} \\
T\left(x_{1}, \ldots, x_{n}\right)=\left(5 x_{1}+2 x_{2}+3 x_{3}, x_{1}+6 x_{2}+x_{3}, 2 x_{1}+2 x_{2}+x_{3}\right)
\end{gathered}
$$

Motivation

Concrete example:

$$
\begin{aligned}
5 x_{1}+2 x_{2}+3 x_{3} & =c_{1} \\
x_{1}+6 x_{2}+x_{3} & =c_{2} \\
2 x_{1}+2 x_{2}+x_{3} & =c_{3}
\end{aligned}
$$

Becomes

$$
\begin{gathered}
T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m} \\
T\left(x_{1}, \ldots, x_{n}\right)=\left(5 x_{1}+2 x_{2}+3 x_{3}, x_{1}+6 x_{2}+x_{3}, 2 x_{1}+2 x_{2}+x_{3}\right)
\end{gathered}
$$

Becomes

$$
\mathcal{M}(T)=\left(\begin{array}{lll}
5 & 2 & 3 \\
1 & 6 & 1 \\
2 & 2 & 1
\end{array}\right)
$$

Matrices

Def'n:

A $m \times n$ matrix is a rectangular array of elements of \mathbb{F} with m rows and n columns:

$$
\left(\begin{array}{ccc}
A_{1,1} & \ldots & A_{1, n} \\
\vdots & & \vdots \\
A_{m, 1} & \ldots & A_{m, n}
\end{array}\right)
$$

Matrices

Def'n:

A $m \times n$ matrix is a rectangular array of elements of \mathbb{F} with m rows and n columns:

$$
\left(\begin{array}{ccc}
A_{1,1} & \ldots & A_{1, n} \\
\vdots & & \vdots \\
A_{m, 1} & \ldots & A_{m, n}
\end{array}\right)
$$

Reminders
■ Rows by Columns

Matrices

Def'n:

A $m \times n$ matrix is a rectangular array of elements of \mathbb{F} with m rows and n columns:

$$
\left(\begin{array}{ccc}
A_{1,1} & \ldots & A_{1, n} \\
\vdots & & \vdots \\
A_{m, 1} & \ldots & A_{m, n}
\end{array}\right)
$$

Reminders

■ Rows by Columns
■ Entry in i-row, j-column is $A_{i, j}$

Matrix of a Linear Map

Def'n:

S'pose $T \in \mathcal{L}(V, W)$ and v_{1}, \ldots, v_{n} is a basis of V and w_{1}, \ldots, w_{n} a basis of W. The matrix of T with respect to these bases is $\mathcal{M}(T)$ where $A_{j, k}$ defined by

$$
T v_{k}=A_{1, k} W_{1}+\ldots+A_{m, k} W_{m}
$$

Matrix of Linear Map: $\mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$

Example:

Matrix of Linear Map: $\mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$

Example:

Write the matrix of $T \in \mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$ for

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(5 x_{1}+2 x_{2}+3 x_{3}, x_{1}+6 x_{2}+x_{3}, 2 x_{1}+2 x_{2}+x_{3}\right)
$$

Matrix of Linear Map: $\mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$

Example:

Write the matrix of $T \in \mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$ for

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(5 x_{1}+2 x_{2}+3 x_{3}, x_{1}+6 x_{2}+x_{3}, 2 x_{1}+2 x_{2}+x_{3}\right)
$$

Notice that $T(1,0,0)=(5,1,2), T(0,1,0)=(2,6,2)$, and $T(0,0,1)=(3,1,1)$.

Matrix of Linear Map: $\mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$

Example:

Write the matrix of $T \in \mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$ for

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(5 x_{1}+2 x_{2}+3 x_{3}, x_{1}+6 x_{2}+x_{3}, 2 x_{1}+2 x_{2}+x_{3}\right)
$$

Notice that $T(1,0,0)=(5,1,2), T(0,1,0)=(2,6,2)$, and $T(0,0,1)=(3,1,1)$.

$$
\mathcal{M}(T)=\left(\begin{array}{lll}
5 & 2 & 3 \\
1 & 6 & 1 \\
2 & 2 & 1
\end{array}\right)
$$

Matrix of Differentiation
 $D \in \mathcal{L}\left(\mathcal{P}_{3}(\mathbb{R}), \mathcal{P}_{2}(\mathbb{R})\right)$ is the differentiation map defined $D p=p^{\prime}$

Matrix of Differentiation

$D \in \mathcal{L}\left(\mathcal{P}_{3}(\mathbb{R}), \mathcal{P}_{2}(\mathbb{R})\right)$ is the differentiation map defined $D p=p^{\prime}$
What is the matrix $\mathcal{M}(D)$?

Matrix of Differentiation

$D \in \mathcal{L}\left(\mathcal{P}_{3}(\mathbb{R}), \mathcal{P}_{2}(\mathbb{R})\right)$ is the differentiation map defined $D p=p^{\prime}$
What is the matrix $\mathcal{M}(D)$?
We use the bases: $1, x, x^{2}, x^{3}$ of $\mathcal{P}_{3}(\mathbb{R})$ and $1, x, x^{2}$ of $\mathcal{P}_{2}(\mathbb{R})$:

Matrix of Differentiation

$D \in \mathcal{L}\left(\mathcal{P}_{3}(\mathbb{R}), \mathcal{P}_{2}(\mathbb{R})\right)$ is the differentiation map defined $D p=p^{\prime}$
What is the matrix $\mathcal{M}(D)$?
We use the bases: $1, x, x^{2}, x^{3}$ of $\mathcal{P}_{3}(\mathbb{R})$ and $1, x, x^{2}$ of $\mathcal{P}_{2}(\mathbb{R})$:

$$
\begin{aligned}
D(1) & =0 & & =0 \cdot 1+0 \cdot x+0 \cdot x^{2} \\
D(x) & =1 & & =1 \cdot 1+0 \cdot x+0 \cdot x^{2} \\
D\left(x^{2}\right) & =2 x & & =0 \cdot 1+2 \cdot x+0 \cdot x^{2} \\
D\left(x^{3}\right) & =3 x^{2} & & =0 \cdot 1+0 \cdot x+3 \cdot x^{2}
\end{aligned}
$$

Matrix of Differentiation

$D \in \mathcal{L}\left(\mathcal{P}_{3}(\mathbb{R}), \mathcal{P}_{2}(\mathbb{R})\right)$ is the differentiation map defined $D p=p^{\prime}$
What is the matrix $\mathcal{M}(D)$?
We use the bases: $1, x, x^{2}, x^{3}$ of $\mathcal{P}_{3}(\mathbb{R})$ and $1, x, x^{2}$ of $\mathcal{P}_{2}(\mathbb{R})$:

$$
\begin{aligned}
D(1) & =0 & & =0 \cdot 1+0 \cdot x+0 \cdot x^{2} \\
D(x) & =1 & & =1 \cdot 1+0 \cdot x+0 \cdot x^{2} \\
D\left(x^{2}\right) & =2 x & & =0 \cdot 1+2 \cdot x+0 \cdot x^{2} \\
D\left(x^{3}\right) & =3 x^{2} & & =0 \cdot 1+0 \cdot x+3 \cdot x^{2}
\end{aligned}
$$

$$
\mathcal{M}(D)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

Matrix of Integration

$T \in \mathcal{L}\left(\mathcal{P}_{3}(\mathbb{R}), \mathbb{R}\right)$ is the integration map defined $T p=\int_{0}^{1} p(x) d x$

Matrix of Integration

$T \in \mathcal{L}\left(\mathcal{P}_{3}(\mathbb{R}), \mathbb{R}\right)$ is the integration map defined $T p=\int_{0}^{1} p(x) d x$ What is the matrix $\mathcal{M}(T)$?

Matrix of Integration

$T \in \mathcal{L}\left(\mathcal{P}_{3}(\mathbb{R}), \mathbb{R}\right)$ is the integration map defined $T p=\int_{0}^{1} p(x) d x$ What is the matrix $\mathcal{M}(T)$?

We use the bases: $1, x, x^{2}, x^{3}$ of $\mathcal{P}_{3}(\mathbb{R})$ and 1 of \mathbb{R} :

Matrix of Integration

$T \in \mathcal{L}\left(\mathcal{P}_{3}(\mathbb{R}), \mathbb{R}\right)$ is the integration map defined $T p=\int_{0}^{1} p(x) d x$ What is the matrix $\mathcal{M}(T)$?

We use the bases: $1, x, x^{2}, x^{3}$ of $\mathcal{P}_{3}(\mathbb{R})$ and 1 of \mathbb{R} :

$$
\begin{array}{ll}
T(1)=\int_{0}^{1} 1 d x & =1=1 \cdot 1 \\
T(x)=\int_{0}^{1} x d x & =1 / 2=1 / 2 \cdot 1 \\
T\left(x^{2}\right)=\int_{0}^{1} x^{2} d x & =1 / 3=1 / 3 \cdot 1 \\
T\left(x^{3}\right)=\int_{0}^{1} x^{3} d x & =1 / 4=1 / 4 \cdot 1
\end{array}
$$

Matrix of Integration

$T \in \mathcal{L}\left(\mathcal{P}_{3}(\mathbb{R}), \mathbb{R}\right)$ is the integration map defined $T p=\int_{0}^{1} p(x) d x$ What is the matrix $\mathcal{M}(T)$?

We use the bases: $1, x, x^{2}, x^{3}$ of $\mathcal{P}_{3}(\mathbb{R})$ and 1 of \mathbb{R} :

$$
\begin{array}{ll}
T(1)=\int_{0}^{1} 1 d x & =1=1 \cdot 1 \\
T(x)=\int_{0}^{1} x d x & =1 / 2=1 / 2 \cdot 1 \\
T\left(x^{2}\right)=\int_{0}^{1} x^{2} d x & =1 / 3=1 / 3 \cdot 1 \\
T\left(x^{3}\right)=\int_{0}^{1} x^{3} d x & =1 / 4=1 / 4 \cdot 1
\end{array}
$$

$\mathcal{M}(D)=\left(\begin{array}{llll}1 & 1 / 2 & 1 / 3 & 1 / 4\end{array}\right)$

Matrix Algebra

Def'n:

The sum of two matrices is computed by adding corresponding entries.

Matrix Algebra

Def'n:

The sum of two matrices is computed by adding corresponding entries.

```
Prop'n 3.36:
```

Let $S, T \in \mathcal{L}(V, W)$. Then $\mathcal{M}(S+T)=\mathcal{M}(S)+\mathcal{M}(T)$.

Matrix Algebra (Cont'd)

Def'n:

The scalar multiplication of a matrix is computed by scaling each entry.

$$
(\lambda A)_{i, j}=\lambda A_{i, j}
$$

Matrix Algebra (Cont'd)

Def'n:

The scalar multiplication of a matrix is computed by scaling each entry.

$$
(\lambda A)_{i, j}=\lambda A_{i, j}
$$

Prop'n 3.36:

Let $\lambda \in \mathbb{F}, T \in \mathcal{L}(V, W)$. Then $\mathcal{M}(\lambda T)=\lambda \mathcal{M}(T)$.

Vector Space of Matrices

Def'n:

The set of all $m \times n$ matrices with entries in \mathbb{F} are denoted $\mathbb{F}^{m, n}$.

Prop'n 3.40 [Axl14]:

For positive integers m, n, with matrix addition and scalar multiplication $\mathbb{F}^{m, n}$ is a vector space with dimension $m n$.

Vector Space of Matrices

Def'n:

The set of all $m \times n$ matrices with entries in \mathbb{F} are denoted $\mathbb{F}^{m, n}$.

Prop'n 3.40 [Axl14]:

For positive integers m, n, with matrix addition and scalar multiplication $\mathbb{F}^{m, n}$ is a vector space with dimension $m n$.

What is the basis?

Review of Matrix Multiplication

Review of Matrix Multiplication

First, for $A \cdot B$, need A to be $m \times n$ and B to be $n \times l$ for any positive integrs m, n, l.

Review of Matrix Multiplication

First, for $A \cdot B$, need A to be $m \times n$ and B to be $n \times l$ for any positive integrs m, n, l.

$$
\left(\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right)
$$

Multiplication of Matrices Corresponds to Composition of Linear Maps

$T: U \rightarrow V, S: V \rightarrow W$, then $S T: U \rightarrow W$

Multiplication of Matrices Corresponds to Composition of Linear Maps

$T: U \rightarrow V, S: V \rightarrow W$, then $S T: U \rightarrow W$
We want $\mathcal{M}(S T)=\mathcal{M}(S) \mathcal{M}(T)$.

Multiplication of Matrices Corresponds to Composition of Linear Maps

$T: U \rightarrow V, S: V \rightarrow W$, then $S T: U \rightarrow W$
We want $\mathcal{M}(S T)=\mathcal{M}(S) \mathcal{M}(T)$.
We will choose to define matrix multiplication so that this is true.

Definition Matrix Multiplication

Def'n:

Suppose A is an $m \times n$ matrix and C is an $n \times p$ matrix. Then $A C$ is defined to be the $m \times p$ matrix whose entry in row j column k is given by

$$
(A C)_{j, k}=\sum_{r=1}^{n} A_{j, r} C_{r, k} .
$$

Definition Matrix Multiplication

Def'n:

Suppose A is an $m \times n$ matrix and C is an $n \times p$ matrix. Then $A C$ is defined to be the $m \times p$ matrix whose entry in row j column k is given by

$$
(A C)_{j, k}=\sum_{r=1}^{n} A_{j, r} C_{r, k} .
$$

The entry in row j, column k of $A C$ is computed by taking row j of A and column k of C multiplying corresponding entries and summing.

Product of Linear Maps

Prop'n 3.43 [Axl14]:

If $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then $\mathcal{M}(S T)=\mathcal{M}(S) \mathcal{M}(T)$.

Product of Linear Maps

Prop'n 3.43 [AxL14]:
 If $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then $\mathcal{M}(S T)=\mathcal{M}(S) \mathcal{M}(T)$.

Proof sketch.

Product of Linear Maps

Prop'n 3.43 [Axl14]:

If $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then $\mathcal{M}(S T)=\mathcal{M}(S) \mathcal{M}(T)$.
Proof sketch. Let $\mathcal{M}(S)=A, \mathcal{M}(T)=C$.

Product of Linear Maps

Prop'n 3.43 [Axl14]:

If $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then $\mathcal{M}(S T)=\mathcal{M}(S) \mathcal{M}(T)$.
Proof sketch. Let $\mathcal{M}(S)=A, \mathcal{M}(T)=C$.

$$
\begin{array}{rlr}
(S T) u_{k} & =S\left(\sum_{r=1}^{n} C_{r, k} v_{r}\right) & \text { use def'n matrix of map } \\
& =\sum_{r=1}^{n} C_{r, k} S v_{r} & \text { using linearity } \\
& =\sum_{r=1}^{n} C_{r, k} \sum_{j=1}^{m} A_{j, r} v_{r} & \text { use def'n matrix of map } \\
& =\sum_{r=j}^{m}\left(\sum_{r=1}^{n} A_{j, r} C_{r, k}\right) w_{j} & \text { rearranging the sums }
\end{array}
$$

Matrix Multiplication Does Not Commute

Matrix Multiplication Does Not Commute!

Other ways of thinking about matrix product

Other ways of thinking about matrix product

Notation: A an $m \times n$ matrix

- $A_{j,}$, is the row j of A (a $1 \times n$ matrix)
- $A_{\cdot, k}$ is the column k of A (a $m \times 1$ matrix)

Other ways of thinking about matrix product

Notation: A an $m \times n$ matrix

- $A_{j,}$, is the row j of A (a $1 \times n$ matrix)
- $A_{\cdot, k}$ is the column k of A (a $m \times 1$ matrix)

Prop'n:

$$
(A C)_{j, k}=A_{j, C} C_{\cdot, k}
$$

Other ways of thinking about matrix product

Notation: A an $m \times n$ matrix

- $A_{j,}$, is the row j of A (a $1 \times n$ matrix)
- $A_{\cdot, k}$ is the column k of A (a $m \times 1$ matrix)

Prop'n:

$$
(A C)_{j, k}=A_{j, C} C_{\cdot, k}
$$

Prop'n:

$$
(A C)_{\cdot, k}=A C_{\cdot, k}
$$

Other ways of thinking about matrix product (Cont'd)

Example.

Other ways of thinking about matrix product (Cont'd)

Example.

Prop'n:
Let $c=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$. Then

$$
A c=c_{1} A_{\cdot, 1}+\ldots+c_{n} A_{\cdot, n}
$$

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

