Lecture 9: Isomorphisms

MATH 110-3

Franny Dean

July 5, 2023

Invertible

Def'n:

A linear map $T \in \mathcal{L}(V, W)$ is called invertible if there exists a map $S \in \mathcal{L}(W, V)$ such that $S T$ is the identity on V and $T S$ is the identity on W.

Invertible

Def'n:

A linear map $T \in \mathcal{L}(V, W)$ is called invertible if there exists a map $S \in \mathcal{L}(W, V)$ such that $S T$ is the identity on V and $T S$ is the identity on W.

Def'n:

We call the map S above the inverse of T.

Invertible

Def'n:

A linear map $T \in \mathcal{L}(V, W)$ is called invertible if there exists a map $S \in \mathcal{L}(W, V)$ such that $S T$ is the identity on V and $T S$ is the identity on W.

Def'n:

We call the map S above the inverse of T.

Example:

Invertible

Def'n:

A linear map $T \in \mathcal{L}(V, W)$ is called invertible if there exists a map $S \in \mathcal{L}(W, V)$ such that $S T$ is the identity on V and $T S$ is the identity on W.

Def'n:

We call the map S above the inverse of T.

Example:

$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined as $T\left(x_{1}, x_{2}\right)=\left(2 x_{1}, \frac{1}{3} x_{2}\right)$

Invertible

Def'n:

A linear map $T \in \mathcal{L}(V, W)$ is called invertible if there exists a map $S \in \mathcal{L}(W, V)$ such that $S T$ is the identity on V and $T S$ is the identity on W.

Def'n:

We call the map S above the inverse of T.

Example:

$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined as $T\left(x_{1}, x_{2}\right)=\left(2 x_{1}, \frac{1}{3} x_{2}\right)$
$S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined as $S\left(y_{1}, y_{2}\right)=\left(\frac{1}{2} y_{1}, 3 y_{2}\right)$ is the inverse of T

Invertible

Def'n:

A linear map $T \in \mathcal{L}(V, W)$ is called invertible if there exists a map $S \in \mathcal{L}(W, V)$ such that $S T$ is the identity on V and $T S$ is the identity on W.

Def'n:

We call the map S above the inverse of T.

Example:

$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined as $T\left(x_{1}, x_{2}\right)=\left(2 x_{1}, \frac{1}{3} x_{2}\right)$
$S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined as $S\left(y_{1}, y_{2}\right)=\left(\frac{1}{2} y_{1}, 3 y_{2}\right)$ is the inverse of T and T is thus invertible

Uniqueness

Prop'n:

If an inverse exist, then it is unique.

Uniqueness

Prop'n:

If an inverse exist, then it is unique.

Proof.

Uniqueness

Prop'n:

If an inverse exist, then it is unique.
Proof. Let $T \in \mathcal{L}(V, W)$ be invertible and S_{1}, S_{2} be two of its inverses.

Uniqueness

Prop'n:

If an inverse exist, then it is unique.

Proof. Let $T \in \mathcal{L}(V, W)$ be invertible and S_{1}, S_{2} be two of its inverses.
Then

$$
S_{1}=S_{1} I=S_{1}\left(T S_{2}\right)=\left(S_{1} T\right) S_{2}=I S_{2}=S_{2}
$$

Uniqueness

Prop'n:

If an inverse exist, then it is unique.
Proof. Let $T \in \mathcal{L}(V, W)$ be invertible and S_{1}, S_{2} be two of its inverses.
Then

$$
S_{1}=S_{1} I=S_{1}\left(T S_{2}\right)=\left(S_{1} T\right) S_{2}=I S_{2}=S_{2} .
$$

\square

Notation

Write the inverse of T as T^{-1}.

Invertibility (Cont'd)

Prop'n:

Suppose $S, T \in \mathcal{L}(V)$ for finite-dimensional V. We have that $S T=I$ if and only if $T S=I$.

Invertibility (Cont'd)

Prop'n:

Suppose $S, T \in \mathcal{L}(V)$ for finite-dimensional V. We have that $S T=I$ if and only if $T S=I$.

Proof.

Invertibility (Cont'd)

Prop'n:

Suppose $S, T \in \mathcal{L}(V)$ for finite-dimensional V. We have that $S T=I$ if and only if $T S=I$.

Proof.

Lemma:

Suppose V is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that $S T$ is invertible if and only if both S and T are invertible.

Invertibility (Cont'd)

Prop'n:

Suppose $S, T \in \mathcal{L}(V)$ for finite-dimensional V. We have that $S T=I$ if and only if $T S=I$.

Proof.

Lemma:

Suppose V is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that $S T$ is invertible if and only if both S and T are invertible.

S'pose $S T=I$.

Invertibility (Cont'd)

Prop'n:

Suppose $S, T \in \mathcal{L}(V)$ for finite-dimensional V. We have that $S T=I$ if and only if $T S=I$.

Proof.

Lemma:

Suppose V is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that $S T$ is invertible if and only if both S and T are invertible.

S'pose $S T=I$. We have that S, T are both invertible.

Invertibility (Cont'd)

Prop'n:

Suppose $S, T \in \mathcal{L}(V)$ for finite-dimensional V. We have that $S T=I$ if and only if $T S=I$.

Proof.

Lemma:

Suppose V is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that $S T$ is invertible if and only if both S and T are invertible.

S'pose $S T=I$. We have that S, T are both invertible. So $S T T^{-1}=I T^{-1}=T^{-1}$.

Invertibility (Cont'd)

Prop'n:

Suppose $S, T \in \mathcal{L}(V)$ for finite-dimensional V. We have that $S T=I$ if and only if $T S=I$.

Proof.

Lemma:

Suppose V is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that $S T$ is invertible if and only if both S and T are invertible.

S'pose $S T=I$. We have that S, T are both invertible. So
$S T T^{-1}=I T^{-1}=T^{-1}$. And $T S=T T^{-1}=I$.

Invertible = Injective + Surjective

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Invertible = Injective + Surjective

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof. Let $T \in \mathcal{L}(V, W)$.

Invertible = Injective + Surjective

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof. Let $T \in \mathcal{L}(V, W)$.
S'pose T is invertible...

Invertible = Injective + Surjective

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof. Let $T \in \mathcal{L}(V, W)$.
S'pose T is invertible...Injective:

$$
T u=T v
$$

Invertible = Injective + Surjective

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof. Let $T \in \mathcal{L}(V, W)$.
S'pose T is invertible...Injective:

$$
\begin{gathered}
T u=T v \\
u=\left(T^{-1} T\right) u=T^{-1}(T u)=T^{-1}(T v)=v
\end{gathered}
$$

Invertible = Injective + Surjective

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof. Let $T \in \mathcal{L}(V, W)$.
S'pose T is invertible...Injective:

$$
\begin{gathered}
T u=T v \\
u=\left(T^{-1} T\right) u=T^{-1}(T u)=T^{-1}(T v)=v
\end{gathered}
$$

Surjective: Let $w \in W$.

Invertible = Injective + Surjective

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof. Let $T \in \mathcal{L}(V, W)$.
S'pose T is invertible...Injective:

$$
\begin{gathered}
T u=T v \\
u=\left(T^{-1} T\right) u=T^{-1}(T u)=T^{-1}(T v)=v
\end{gathered}
$$

Surjective: Let $w \in W$.Then $T T^{-1} w=w, T^{-1} w \in V$.

Invertible = Injective + Surjective

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof. Let $T \in \mathcal{L}(V, W)$.
S'pose T is invertible...Injective:

$$
\begin{gathered}
T u=T v \\
u=\left(T^{-1} T\right) u=T^{-1}(T u)=T^{-1}(T v)=v
\end{gathered}
$$

Surjective: Let $w \in W$.Then $T T^{-1} w=w, T^{-1} w \in V$.
S'pose T is injective and surjective...

Invertible = Injective + Surjective

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof (cont'd).
S'pose T is injective and surjective...

Invertible = Injective + Surjective

Prop'n:
A linear map is invertible if and only if it is both injective and surjective.

Proof (cont'd).
S'pose T is injective and surjective...
We construct the inverse map $T^{-1}: W \rightarrow V$. For each $w \in W$, there exists a $v \in V$ such that $T v=w$ by surjectivity. This v is unique by injectivity.

Invertible = Injective + Surjective

Prop'n:
A linear map is invertible if and only if it is both injective and surjective.

Proof (cont'd).
S'pose T is injective and surjective...
We construct the inverse map $T^{-1}: W \rightarrow V$. For each $w \in W$, there exists a $v \in V$ such that $T v=w$ by surjectivity. This v is unique by injectivity.

Let $T^{-1} w:=v$ so that $T\left(T^{-1} w\right)=T v=w$.

Invertible = Injective + Surjective

Prop'n:
A linear map is invertible if and only if it is both injective and surjective.

Proof (cont'd).
S'pose T is injective and surjective...
We construct the inverse map $T^{-1}: W \rightarrow V$. For each $w \in W$, there exists a $v \in V$ such that $T v=w$ by surjectivity. This v is unique by injectivity.

Let $T^{-1} w:=v$ so that $T\left(T^{-1} w\right)=T v=w$.

$$
T\left(\left(T^{-1} T\right) v\right)=\left(T T^{-1}\right)(T v)=I(T v)=T v
$$

Invertible = Injective + Surjective

Prop'n:
A linear map is invertible if and only if it is both injective and surjective.

Proof (cont'd).
S'pose T is injective and surjective...
We construct the inverse map $T^{-1}: W \rightarrow V$. For each $w \in W$, there exists a $v \in V$ such that $T v=w$ by surjectivity. This v is unique by injectivity.

Let $T^{-1} w:=v$ so that $T\left(T^{-1} w\right)=T v=w$.

$$
T\left(\left(T^{-1} T\right) v\right)=\left(T T^{-1}\right)(T v)=I(T v)=T v
$$

$\Longrightarrow\left(T^{-1} T\right) v=v$ since T is injective.

Invertible = Injective + Surjective

Prop'n:
A linear map is invertible if and only if it is both injective and surjective.

Proof (cont'd).
S'pose T is injective and surjective...
We construct the inverse map $T^{-1}: W \rightarrow V$. For each $w \in W$, there exists a $v \in V$ such that $T v=w$ by surjectivity. This v is unique by injectivity.

Let $T^{-1} w:=v$ so that $T\left(T^{-1} w\right)=T v=w$.

$$
T\left(\left(T^{-1} T\right) v\right)=\left(T T^{-1}\right)(T v)=I(T v)=T v
$$

$\Longrightarrow\left(T^{-1} T\right) v=v$ since T is injective.
To complete the proof... show T^{-1} is linear.

Non-Invertible Examples

■ Anything that is not surjective.

Non-Invertible Examples

■ Anything that is not surjective.
■ Anything that is not injective.

Non-Invertible Examples

■ Anything that is not surjective.
■ Anything that is not injective.
■ Multiplication by x^{2} from $\mathcal{P}(\mathbb{R})$ to itself.

Non-Invertible Examples

■ Anything that is not surjective.

- Anything that is not injective.

■ Multiplication by x^{2} from $\mathcal{P}(\mathbb{R})$ to itself.
■ Backwards shift map $\mathbb{F}^{\infty} \rightarrow \mathbb{F}^{\infty}$.

Non-Invertible Examples

■ Anything that is not surjective.
■ Anything that is not injective.
■ Multiplication by x^{2} from $\mathcal{P}(\mathbb{R})$ to itself.
■ Backwards shift map $\mathbb{F}^{\infty} \rightarrow \mathbb{F}^{\infty}$.

- $T(x, y)=(0, y)$

Isomorphisms

Def'n:

An invertible linear map is also called an isomorphism.

Isomorphisms

Def'n:

An invertible linear map is also called an isomorphism.

Two vector spaces are called isomorphic is there exists an isomorphism between them.

Dimension and Isomorphisms

Def'n:

Two finite-dimensional vector spaces over the same field \mathbb{F} are isomorphic if and only if they have the same dimension.

Dimension and Isomorphisms

Def'n:

Two finite-dimensional vector spaces over the same field \mathbb{F} are isomorphic if and only if they have the same dimension.

Proof. S'pose V, W are isomorphic \mathbb{F}-vector spaces.

Dimension and Isomorphisms

Def'n:

Two finite-dimensional vector spaces over the same field \mathbb{F} are isomorphic if and only if they have the same dimension.

Proof. S'pose V, W are isomorphic \mathbb{F}-vector spaces. Then there is an isomorphism between them:

Dimension and Isomorphisms

Def'n:

Two finite-dimensional vector spaces over the same field \mathbb{F} are isomorphic if and only if they have the same dimension.

Proof. S'pose V, W are isomorphic \mathbb{F}-vector spaces. Then there is an isomorphism between them: T.

Dimension and Isomorphisms

Def'n:

Two finite-dimensional vector spaces over the same field \mathbb{F} are isomorphic if and only if they have the same dimension.

Proof. S'pose V, W are isomorphic \mathbb{F}-vector spaces. Then there is an isomorphism between them: T.
T is injective, so null $T=0$.

Dimension and Isomorphisms

Def'n:

Two finite-dimensional vector spaces over the same field \mathbb{F} are isomorphic if and only if they have the same dimension.

Proof. S'pose V, W are isomorphic \mathbb{F}-vector spaces. Then there is an isomorphism between them: T.
T is injective, so null $T=0 . T$ is surjective, so range $T=W$. Thus, by the formula

$$
\operatorname{dim} V=\operatorname{dim} \text { null } T+\operatorname{dim} \text { range } T,
$$

we have

$$
\operatorname{dim} V=0+\operatorname{dim} W
$$

Dimension and Isomorphisms

Def'n:

Two finite-dimensional vector spaces over the same field \mathbb{F} are isomorphic if and only if they have the same dimension.

Proof (cont'd).

Dimension and Isomorphisms

Def'n:

Two finite-dimensional vector spaces over the same field \mathbb{F} are isomorphic if and only if they have the same dimension.

Proof (cont'd). For the other direction:

Dimension and Isomorphisms

Def'n:

Two finite-dimensional vector spaces over the same field \mathbb{F} are isomorphic if and only if they have the same dimension.

Proof (cont'd). For the other direction: S'pose V, W are of the same dimension.

Dimension and Isomorphisms

Def'n:

Two finite-dimensional vector spaces over the same field \mathbb{F} are isomorphic if and only if they have the same dimension.

Proof (cont'd). For the other direction: S'pose V, W are of the same dimension. Then pick bases v_{1}, \ldots, v_{n} of V and w_{1}, \ldots, w_{n} of W.

Dimension and Isomorphisms

Def'n:

Two finite-dimensional vector spaces over the same field \mathbb{F} are isomorphic if and only if they have the same dimension.

Proof (cont'd). For the other direction: S'pose V, W are of the same dimension. Then pick bases v_{1}, \ldots, v_{n} of V and w_{1}, \ldots, w_{n} of W.

The map

$$
T\left(c_{1} v_{1}+\ldots+c_{n} v_{n}\right)=c_{1} w_{1}+\ldots+c_{n} w_{n}
$$

is an isomorphism. \square

Maps and Matrices

Prop'n:

Suppose v_{1}, \ldots, v_{m} is a basis of V and w_{1}, \ldots, w_{n} is a basis of W. Then \mathcal{M} is an isomorphism between $\mathcal{L}(V, W)$ and $\mathbb{F}^{n, m}$.

Maps and Matrices

Prop'n:

Suppose v_{1}, \ldots, v_{m} is a basis of V and w_{1}, \ldots, w_{n} is a basis of W. Then \mathcal{M} is an isomorphism between $\mathcal{L}(V, W)$ and $\mathbb{F}^{n, m}$.

Proof...

Maps and Matrices

Prop'n:

Suppose v_{1}, \ldots, v_{m} is a basis of V and w_{1}, \ldots, w_{n} is a basis of W. Then \mathcal{M} is an isomorphism between $\mathcal{L}(V, W)$ and $\mathbb{F}^{n, m}$.

Proof...

- \mathcal{M} is linear
- \mathcal{M} is injective
- \mathcal{M} is surjective

Operators

Def'n:

A linear map from a vector space to itself is called an operator.

Operators

Def'n:

A linear map from a vector space to itself is called an operator. The set of all operators on V is denoted $\mathcal{L}(V)$.

Operators

Def'n:

A linear map from a vector space to itself is called an operator. The set of all operators on V is denoted $\mathcal{L}(V)$.

Remarkable result...

Prop'n:

Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Then the following are equivalent:

- T is injective
- T is surjective

■ T is invertible

Injective=Surjective for Finite-Dim Operators

Prop'n:

Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Then the following are equivalent:

1. T is injective
2. T is surjective
3. T is invertible

Injective=Surjective for Finite-Dim Operators

Prop'n:

Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Then the following are equivalent:

1. T is injective
2. T is surjective
3. T is invertible

Proof.

Injective=Surjective for Finite-Dim Operators

Prop'n:

Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Then the following are equivalent:

1. T is injective
2. T is surjective
3. T is invertible

Proof. Need to show $1 \Longrightarrow 2,2 \Longrightarrow 3,3 \Longrightarrow 1$.

Injective=Surjective for Finite-Dim Operators

Prop'n:
Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Then the following are equivalent:

1. T is injective
2. T is surjective
3. T is invertible

Proof. Need to show $1 \Longrightarrow 2,2 \Longrightarrow 3,3 \Longrightarrow 1$.
$1 \Longrightarrow 2$: If T is injective, dim null $T=0$. By Rank-Nullity, dim range $=\operatorname{dim} V-\operatorname{dim}$ null $T=\operatorname{dim} V$.

Injective=Surjective for Finite-Dim Operators

Prop'n:
Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Then the following are equivalent:

1. T is injective
2. T is surjective
3. T is invertible

Proof. Need to show $1 \Longrightarrow 2,2 \Longrightarrow 3,3 \Longrightarrow 1$.
$1 \Longrightarrow 2$: If T is injective, dim null $T=0$. By Rank-Nullity, dim range $=\operatorname{dim} V-\operatorname{dim}$ null $T=\operatorname{dim} V$.
$2 \Longrightarrow 3$: If T is surjective, range $T=V$ and dim null $T=\operatorname{dim} V-$ range $T=0$.

Injective=Surjective for Finite-Dim Operators

Prop'n:
Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Then the following are equivalent:

1. T is injective
2. T is surjective
3. T is invertible

Proof. Need to show $1 \Longrightarrow 2,2 \Longrightarrow 3,3 \Longrightarrow 1$.
$1 \Longrightarrow 2$: If T is injective, dim null $T=0$. By Rank-Nullity, dim range $=\operatorname{dim} V-\operatorname{dim}$ null $T=\operatorname{dim} V$.
$2 \Longrightarrow 3$: If T is surjective, range $T=V$ and dim null $T=\operatorname{dim} V-$ range $T=0$.
$3 \Longrightarrow 1$ is by previous prop'n.

Injective=Surjective for Finite-Dim Operators

Prop'n:
Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Then the following are equivalent:

1. T is injective
2. T is surjective
3. T is invertible

Proof. Need to show $1 \Longrightarrow 2,2 \Longrightarrow 3,3 \Longrightarrow 1$.
$1 \Longrightarrow 2$: If T is injective, dim null $T=0$. By Rank-Nullity, dim range $=\operatorname{dim} V-\operatorname{dim}$ null $T=\operatorname{dim} V$.
$2 \Longrightarrow 3$: If T is surjective, range $T=V$ and dim null $T=\operatorname{dim} V-$ range $T=0$.
$3 \Longrightarrow 1$ is by previous prop'n.

Break

Discussion Questions

1. Suppose $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$ are both invertible linear maps. Prove that $S T \in \mathcal{L}(U, W)$ is invertible and that its inverse is $(S T)^{-1}=T^{-1} S^{-1}$.
2. Come up with an example of a linear map that is injective but not surjective and one that is surjective but not injective.
3. Suppose $D \in \mathcal{L}\left(\mathcal{P}_{3}(\mathbb{R}), \mathcal{P}_{2}(\mathbb{R})\right)$ is the differentiation map defined $D p=p^{\prime}$. Find a basis of $\mathcal{P}_{3}(\mathbb{R})$ and a basis of $\mathcal{P}_{2}(\mathbb{R})$ such that the matrix of D with respect to these bases is

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Discussion Questions

4. Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove there exists a basis of V and a basis of W such that with respect to these bases, all entries of $\mathcal{M}(T)$ are 0 except the entries in row j, column j equal 1 for all j such that $1 \leq j \leq \operatorname{dim}$ range T.
5. Find two 2×2 matrices that do not commute.
6. Let a_{0}, \ldots, a_{n} be any scalars in \mathbb{F}. Consider the basis $1, x, \ldots, x^{n}$ of $\mathcal{P}(\mathbb{F})$ and the standard basis of \mathbb{F}^{n+1}. Write the matrix of the transformation

$$
\begin{gathered}
T: \mathcal{P}_{n}(\mathbb{F}) \rightarrow \mathbb{F}^{n+1} \\
p \rightarrow\left(p\left(a_{0}\right), p\left(a_{1}\right), \ldots, p\left(a_{n}\right)\right)
\end{gathered}
$$

with respect to these bases.

Discussion Questions

7. Suppose V is finite dimensional and $S, T, U \in \mathcal{L}(V)$ and $S T U=I$. Show that T is invertible and that $T^{-1}=U S$.
8. Suppose V is finite dimensional and $R, S, T \in \mathcal{L}(V)$ are such that RST is surjective. Prove S is injective.

Discussion Question Hints/Solutions

1.

$$
\begin{gathered}
(S T)\left(T^{1} S^{-1}\right)=S\left(T T^{-1}\right) S^{-1}=S I S^{-1}=S S^{-1}=I \\
\left(T^{-1} S^{-1}\right)(S T)=T^{-1}\left(S^{-1} S\right) T=T^{-1} I T=T^{-1} T=I
\end{gathered}
$$

2. One solution is example 3.68 in [Axl14].
3. Basis for $\mathcal{P}_{3}(\mathbb{R}): x^{3}, x^{2}, x, 1$ Basis for $\mathcal{P}_{2}(\mathbb{R}): 3 x^{2}, 2 x, 1$
4. An example of two matrices that do not commute are

$$
\left(\begin{array}{ll}
2 & 4 \\
3 & 5
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right)
$$

Discussion Question Hints/Solutions

4. Pick u_{1}, \ldots, u_{k} to be a basis for null T.

Discussion Question Hints/Solutions

4. Pick u_{1}, \ldots, u_{k} to be a basis for null T. Extend to a basis $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{n}$ of V.

Discussion Question Hints/Solutions

4. Pick u_{1}, \ldots, u_{k} to be a basis for null T. Extend to a basis $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{n}$ of V. As in the proof of Rank-Nullity, $T v_{1}, \ldots, T v_{n}$ span range T.

Discussion Question Hints/Solutions

4. Pick u_{1}, \ldots, u_{k} to be a basis for null T. Extend to a basis $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{n}$ of V. As in the proof of Rank-Nullity, $T v_{1}, \ldots, T v_{n}$ span range T. Extend this list to a basis $T v_{1}, \ldots, T v_{n}, w_{1}, \ldots, w_{m}$ of W.

Discussion Question Hints/Solutions

4. Pick u_{1}, \ldots, u_{k} to be a basis for null T. Extend to a basis $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{n}$ of V. As in the proof of Rank-Nullity, $T v_{1}, \ldots, T v_{n}$ span range T. Extend this list to a basis $T v_{1}, \ldots, T v_{n}, w_{1}, \ldots, w_{m}$ of W. These are the desired bases as...

Discussion Question Hints/Solutions

4. Pick u_{1}, \ldots, u_{k} to be a basis for null T. Extend to a basis $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{n}$ of V. As in the proof of Rank-Nullity, $T v_{1}, \ldots, T v_{n}$ span range T. Extend this list to a basis $T v_{1}, \ldots, T v_{n}, W_{1}, \ldots, w_{m}$ of W. These are the desired bases as...

$$
\begin{aligned}
& T v_{1}=1 \cdot T v_{1}+0 \cdot T_{2}+0 \cdot w_{1}+\ldots+0 \cdot w_{m} \\
& T v_{2}=0 \cdot T v_{1}+1 \cdot T_{2}+0 \cdot w_{1}+\ldots+0 \cdot w_{m}
\end{aligned}
$$

$$
T v_{n}=0 \cdot T v_{1}+\ldots+1 \cdot T_{n}+0 \cdot w_{1}+\ldots+0 \cdot w_{m}
$$

Discussion Question Hints/Solutions

4. Pick u_{1}, \ldots, u_{k} to be a basis for null T. Extend to a basis $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{n}$ of V. As in the proof of Rank-Nullity, $T v_{1}, \ldots, T v_{n}$ span range T. Extend this list to a basis
$T v_{1}, \ldots, T v_{n}, W_{1}, \ldots, w_{m}$ of W. These are the desired bases as...

$$
\begin{aligned}
T v_{1} & =1 \cdot T v_{1}+0 \cdot T_{2}+0 \cdot w_{1}+\ldots+0 \cdot w_{m} \\
T v_{2} & =0 \cdot T v_{1}+1 \cdot T_{2}+0 \cdot w_{1}+\ldots+0 \cdot w_{m} \\
\quad & \\
T v_{n} & =0 \cdot T v_{1}+\ldots+1 \cdot T_{n}+0 \cdot w_{1}+\ldots+0 \cdot w_{m}
\end{aligned}
$$

...giving the desired matrix form.

Discussion Question Hints/Solutions

6. This is the Vandermonde matrix.
7. Using prop'n from lecture, $(S T) U=I$ implies $U(S T)=I$. This implies US $=T^{-1}$.
8. $R S T$ surjective implies $R(S T)$ invertible. $R(S T)$ invertible implies $S T$ invertible. $S T$ invertible implies S is invertible which implies S is surjective.

References

[Axl14] Sheldon Axter. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.

