

Lecture 9: Isomorphisms

MATH 110-3

Franny Dean

July 5, 2023

Def'n:

A linear map $T \in \mathcal{L}(V, W)$ is called **invertible** if there exists a map $S \in \mathcal{L}(W, V)$ such that *ST* is the identity on *V* and *TS* is the identity on *W*.

Def'n:

A linear map $T \in \mathcal{L}(V, W)$ is called **invertible** if there exists a map $S \in \mathcal{L}(W, V)$ such that *ST* is the identity on *V* and *TS* is the identity on *W*.

Def'n:

We call the map *S* above the **inverse** of *T*.

Def'n:

A linear map $T \in \mathcal{L}(V, W)$ is called **invertible** if there exists a map $S \in \mathcal{L}(W, V)$ such that *ST* is the identity on *V* and *TS* is the identity on *W*.

Def'n:

We call the map *S* above the **inverse** of *T*.

Example:

Def'n:

A linear map $T \in \mathcal{L}(V, W)$ is called **invertible** if there exists a map $S \in \mathcal{L}(W, V)$ such that *ST* is the identity on *V* and *TS* is the identity on *W*.

Def'n:

We call the map *S* above the **inverse** of *T*.

Example: $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined as $T(x_1, x_2) = (2x_1, \frac{1}{3}x_2)$

Def'n:

A linear map $T \in \mathcal{L}(V, W)$ is called **invertible** if there exists a map $S \in \mathcal{L}(W, V)$ such that *ST* is the identity on *V* and *TS* is the identity on *W*.

Def'n:

We call the map S above the **inverse** of T.

Example:

 $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined as $T(x_1, x_2) = (2x_1, \frac{1}{3}x_2)$

 $S : \mathbb{R}^2 \to \mathbb{R}^2$ defined as $S(y_1, y_2) = (\frac{1}{2}y_1, 3y_2)$ is the **inverse** of *T*

Def'n:

A linear map $T \in \mathcal{L}(V, W)$ is called **invertible** if there exists a map $S \in \mathcal{L}(W, V)$ such that *ST* is the identity on *V* and *TS* is the identity on *W*.

Def'n:

We call the map S above the **inverse** of T.

Example:

 $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined as $T(x_1, x_2) = (2x_1, \frac{1}{3}x_2)$

 $S : \mathbb{R}^2 \to \mathbb{R}^2$ defined as $S(y_1, y_2) = (\frac{1}{2}y_1, 3y_2)$ is the **inverse** of *T* and *T* is thus **invertible**

If an inverse exist, then it is unique.

If an inverse exist, then it is unique.

Proof.

If an inverse exist, then it is unique.

Proof. Let $T \in \mathcal{L}(V, W)$ be invertible and S_1, S_2 be two of its inverses.

If an inverse exist, then it is unique.

Proof. Let $T \in \mathcal{L}(V, W)$ be invertible and S_1, S_2 be two of its inverses. Then

$$S_1 = S_1 I = S_1 (TS_2) = (S_1 T) S_2 = IS_2 = S_2.$$

If an inverse exist, then it is unique.

Proof. Let $T \in \mathcal{L}(V, W)$ be invertible and S_1, S_2 be two of its inverses.

Then

$$S_1 = S_1 I = S_1 (TS_2) = (S_1 T) S_2 = IS_2 = S_2.$$

Notation

Write the inverse of *T* as T^{-1} .

Prop'n:

Suppose $S, T \in \mathcal{L}(V)$ for finite-dimensional V. We have that ST = I if and only if TS = I.

Prop'n:

Suppose $S, T \in \mathcal{L}(V)$ for finite-dimensional V. We have that ST = I if and only if TS = I.

Proof.

Prop'n:

Suppose $S, T \in \mathcal{L}(V)$ for finite-dimensional V. We have that ST = I if and only if TS = I.

Proof.

Lemma:

Suppose *V* is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that *ST* is invertible if and only if both *S* and *T* are invertible.

Prop'n:

Suppose $S, T \in \mathcal{L}(V)$ for finite-dimensional V. We have that ST = I if and only if TS = I.

Proof.

Lemma:

Suppose *V* is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that *ST* is invertible if and only if both *S* and *T* are invertible.

S'pose ST = I.

Prop'n:

Suppose $S, T \in \mathcal{L}(V)$ for finite-dimensional V. We have that ST = I if and only if TS = I.

Proof.

Lemma:

Suppose *V* is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that *ST* is invertible if and only if both *S* and *T* are invertible.

S'pose ST = I. We have that S, T are both invertible.

Prop'n:

Suppose $S, T \in \mathcal{L}(V)$ for finite-dimensional V. We have that ST = I if and only if TS = I.

Proof.

Lemma:

Suppose *V* is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that *ST* is invertible if and only if both *S* and *T* are invertible.

S'pose ST = I. We have that S, T are both invertible. So $STT^{-1} = IT^{-1} = T^{-1}$.

Prop'n:

Suppose $S, T \in \mathcal{L}(V)$ for finite-dimensional V. We have that ST = I if and only if TS = I.

Proof.

Lemma:

Suppose *V* is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that *ST* is invertible if and only if both *S* and *T* are invertible.

S'pose ST = I. We have that S, T are both invertible. So $STT^{-1} = IT^{-1} = T^{-1}$. And $TS = TT^{-1} = I$.

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof. Let $T \in \mathcal{L}(V, W)$.

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof. Let $T \in \mathcal{L}(V, W)$.

S'pose T is invertible...

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof. Let $T \in \mathcal{L}(V, W)$.

S'pose *T* is invertible...*Injective*:

Tu = Tv

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof. Let $T \in \mathcal{L}(V, W)$.

S'pose *T* is invertible...*Injective*:

$$Tu = Tv$$

$$u = (T^{-1}T)u = T^{-1}(Tu) = T^{-1}(Tv) = v$$

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof. Let $T \in \mathcal{L}(V, W)$.

S'pose *T* is invertible...*Injective*:

$$u = (T^{-1}T)u = T^{-1}(Tu) = T^{-1}(Tv) = v$$

Surjective: Let $w \in W$.

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof. Let $T \in \mathcal{L}(V, W)$.

S'pose *T* is invertible...*Injective*:

$$u = (T^{-1}T)u = T^{-1}(Tu) = T^{-1}(Tv) = v$$

Surjective: Let $w \in W$. Then $TT^{-1}w = w$, $T^{-1}w \in V$.

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof. Let $T \in \mathcal{L}(V, W)$.

S'pose *T* is invertible...*Injective*:

$$Tu = Tv$$

$$u = (T^{-1}T)u = T^{-1}(Tu) = T^{-1}(Tv) = v$$

Surjective: Let $w \in W$. Then $TT^{-1}w = w$, $T^{-1}w \in V$.

S'pose *T* is injective and surjective...

FD • MATH 110 • July 5, 2023

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof (cont'd).

S'pose *T* is injective and surjective...

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof (cont'd).

S'pose *T* is injective and surjective...

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof (cont'd).

S'pose *T* is injective and surjective...

We construct the inverse map $T^{-1}: W \to V$. For each $w \in W$, there exists a $v \in V$ such that Tv = w by surjectivity. This v is unique by injectivity.

Let $T^{-1}w := v$ so that $T(T^{-1}w) = Tv = w$.

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof (cont'd).

S'pose *T* is injective and surjective...

Let
$$T^{-1}w := v$$
 so that $T(T^{-1}w) = Tv = w$.
 $T((T^{-1}T)v) = (TT^{-1})(Tv) = I(Tv) = Tv$

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof (cont'd).

S'pose *T* is injective and surjective...

Let
$$T^{-1}w := v$$
 so that $T(T^{-1}w) = Tv = w$.
 $T((T^{-1}T)v) = (TT^{-1})(Tv) = I(Tv) = Tv$
 $\implies (T^{-1}T)v = v$ since T is injective.

Prop'n:

A linear map is invertible if and only if it is both injective and surjective.

Proof (cont'd).

S'pose *T* is injective and surjective...

Let
$$T^{-1}w := v$$
 so that $T(T^{-1}w) = Tv = w$.
 $T((T^{-1}T)v) = (TT^{-1})(Tv) = I(Tv) = Tv$
 $\implies (T^{-1}T)v = v$ since T is injective.
To complete the proof... show T^{-1} is linear.

Non-Invertible Examples

Anything that is not surjective.

Non-Invertible Examples

- Anything that is not surjective.
- Anything that is not injective.

Non-Invertible Examples

- Anything that is not surjective.
- Anything that is not injective.
- Multiplication by x^2 from $\mathcal{P}(\mathbb{R})$ to itself.

Non-Invertible Examples

- Anything that is not surjective.
- Anything that is not injective.
- Multiplication by x^2 from $\mathcal{P}(\mathbb{R})$ to itself.
- Backwards shift map $\mathbb{F}^{\infty} \to \mathbb{F}^{\infty}$.

Non-Invertible Examples

- Anything that is not surjective.
- Anything that is not injective.
- Multiplication by x^2 from $\mathcal{P}(\mathbb{R})$ to itself.
- Backwards shift map $\mathbb{F}^{\infty} \to \mathbb{F}^{\infty}$.

$$T(x,y) = (0,y)$$

An invertible linear map is also called an **isomorphism**.

An invertible linear map is also called an **isomorphism**.

Two vector spaces are called **isomorphic** is there exists an isomorphism between them.

Def'n:

Two finite-dimensional vector spaces over the same field $\mathbb F$ are isomorphic if and only if they have the same dimension.

Def'n:

Two finite-dimensional vector spaces over the same field $\mathbb F$ are isomorphic if and only if they have the same dimension.

Proof. S'pose V, W are isomorphic \mathbb{F} -vector spaces.

Def'n:

Two finite-dimensional vector spaces over the same field $\mathbb F$ are isomorphic if and only if they have the same dimension.

Proof. S'pose V, W are isomorphic \mathbb{F} -vector spaces. Then there is an isomorphism between them:

Def'n:

Two finite-dimensional vector spaces over the same field $\mathbb F$ are isomorphic if and only if they have the same dimension.

Proof. S'pose V, W are isomorphic \mathbb{F} -vector spaces. Then there is an isomorphism between them: *T*.

Def'n:

Two finite-dimensional vector spaces over the same field $\mathbb F$ are isomorphic if and only if they have the same dimension.

Proof. S'pose V, W are isomorphic \mathbb{F} -vector spaces. Then there is an isomorphism between them: *T*.

T is injective, so null T = 0.

Def'n:

Two finite-dimensional vector spaces over the same field $\mathbb F$ are isomorphic if and only if they have the same dimension.

Proof. S'pose V, W are isomorphic \mathbb{F} -vector spaces. Then there is an isomorphism between them: *T*.

T is injective, so null T = 0. T is surjective, so range T = W. Thus, by the formula

dim V = dim null T + dim range T,

we have

$$\dim V = 0 + \dim W.$$

Def'n:

Two finite-dimensional vector spaces over the same field ${\mathbb F}$ are isomorphic if and only if they have the same dimension.

Proof (cont'd).

Def'n:

Two finite-dimensional vector spaces over the same field ${\mathbb F}$ are isomorphic if and only if they have the same dimension.

Proof (cont'd). For the other direction:

Def'n:

Two finite-dimensional vector spaces over the same field $\mathbb F$ are isomorphic if and only if they have the same dimension.

Proof (cont'd). For the other direction: S'pose V, W are of the same dimension.

Def'n:

Two finite-dimensional vector spaces over the same field $\mathbb F$ are isomorphic if and only if they have the same dimension.

Proof (cont'd). For the other direction: S'pose V, W are of the same dimension. Then pick bases v_1, \ldots, v_n of V and w_1, \ldots, w_n of W.

Def'n:

Two finite-dimensional vector spaces over the same field $\mathbb F$ are isomorphic if and only if they have the same dimension.

Proof (cont'd). For the other direction: S'pose V, W are of the same dimension. Then pick bases v_1, \ldots, v_n of V and w_1, \ldots, w_n of W.

The map

$$T(c_1v_1+\ldots+c_nv_n)=c_1w_1+\ldots+c_nw_n$$

is an isomorphism. 🗆

Maps and Matrices

Prop'n:

Suppose v_1, \ldots, v_m is a basis of V and w_1, \ldots, w_n is a basis of W. Then \mathcal{M} is an isomorphism between $\mathcal{L}(V, W)$ and $\mathbb{F}^{n,m}$.

Maps and Matrices

Prop'n:

Suppose v_1, \ldots, v_m is a basis of V and w_1, \ldots, w_n is a basis of W. Then \mathcal{M} is an isomorphism between $\mathcal{L}(V, W)$ and $\mathbb{F}^{n,m}$.

Proof ...

Maps and Matrices

Prop'n:

Suppose v_1, \ldots, v_m is a basis of V and w_1, \ldots, w_n is a basis of W. Then \mathcal{M} is an isomorphism between $\mathcal{L}(V, W)$ and $\mathbb{F}^{n,m}$.

Proof ...

- *M* is linear
- *M* is injective
- *M* is surjective

A linear map from a vector space to itself is called an operator.

A linear map from a vector space to itself is called an **operator**. The set of all operators on V is denoted $\mathcal{L}(V)$.

A linear map from a vector space to itself is called an **operator**. The set of all operators on V is denoted $\mathcal{L}(V)$.

Remarkable result...

Prop'n:

Suppose *V* is *finite-dimensional* and $T \in \mathcal{L}(V)$. Then the following are equivalent:

- T is injective
- T is surjective
- T is invertible

Prop'n:

Suppose *V* is *finite-dimensional* and $T \in \mathcal{L}(V)$. Then the following are equivalent:

- 1. T is injective
- 2. T is surjective
- 3. *T* is invertible

Prop'n:

Suppose *V* is *finite-dimensional* and $T \in \mathcal{L}(V)$. Then the following are equivalent:

- 1. T is injective
- 2. T is surjective
- 3. *T* is invertible

Proof.

Prop'n:

Suppose *V* is *finite-dimensional* and $T \in \mathcal{L}(V)$. Then the following are equivalent:

- 1. T is injective
- 2. T is surjective
- 3. *T* is invertible

 $\textit{Proof.} \text{ Need to show 1} \implies 2,2 \implies 3,3 \implies 1.$

Prop'n:

Suppose *V* is *finite-dimensional* and $T \in \mathcal{L}(V)$. Then the following are equivalent:

- 1. T is injective
- 2. T is surjective
- 3. T is invertible

Proof. Need to show $1 \implies 2, 2 \implies 3, 3 \implies 1$.

1 \implies 2: If *T* is injective, dim null *T* = 0. By Rank-Nullity, dim range = dim *V* - dim null *T* = dim *V*.

Prop'n:

Suppose *V* is *finite-dimensional* and $T \in \mathcal{L}(V)$. Then the following are equivalent:

- 1. T is injective
- 2. T is surjective
- 3. T is invertible

Proof. Need to show $1 \implies 2, 2 \implies 3, 3 \implies 1$.

1 \implies 2: If *T* is injective, dim null *T* = 0. By Rank-Nullity, dim range = dim *V* - dim null *T* = dim *V*.

2 \implies 3: If *T* is surjective, range *T* = *V* and dim null *T* = dim *V* - range *T* = 0.

Prop'n:

Suppose *V* is *finite-dimensional* and $T \in \mathcal{L}(V)$. Then the following are equivalent:

- 1. T is injective
- 2. T is surjective
- 3. T is invertible

Proof. Need to show $1 \implies 2, 2 \implies 3, 3 \implies 1$.

1 \implies 2: If *T* is injective, dim null *T* = 0. By Rank-Nullity, dim range = dim *V* - dim null *T* = dim *V*.

2 \implies 3: If *T* is surjective, range *T* = *V* and dim null *T* = dim *V* - range *T* = 0.

 $3 \implies 1$ is by previous prop'n.

Prop'n:

Suppose *V* is *finite-dimensional* and $T \in \mathcal{L}(V)$. Then the following are equivalent:

- 1. T is injective
- 2. T is surjective
- 3. T is invertible

Proof. Need to show $1 \implies 2, 2 \implies 3, 3 \implies 1$.

1 \implies 2: If *T* is injective, dim null *T* = 0. By Rank-Nullity, dim range = dim *V* - dim null *T* = dim *V*.

2 \implies 3: If *T* is surjective, range *T* = *V* and dim null *T* = dim *V* - range *T* = 0.

 $3 \implies 1$ is by previous prop'n.

Discussion Questions

- 1. Suppose $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$ are both invertible linear maps. Prove that $ST \in \mathcal{L}(U, W)$ is invertible and that its inverse is $(ST)^{-1} = T^{-1}S^{-1}$.
- 2. Come up with an example of a linear map that is injective but not surjective and one that is surjective but not injective.
- 3. Suppose $D \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{P}_2(\mathbb{R}))$ is the differentiation map defined Dp = p'. Find a basis of $\mathcal{P}_3(\mathbb{R})$ and a basis of $\mathcal{P}_2(\mathbb{R})$ such that the matrix of D with respect to these bases is

$$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

Discussion Questions

- 4. Suppose *V* and *W* are finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove there exists a basis of *V* and a basis of *W* such that with respect to these bases, all entries of $\mathcal{M}(T)$ are 0 except the entries in row *j*, column *j* equal 1 for all *j* such that $1 \le j \le \dim \operatorname{range} T$.
- 5. Find two 2 \times 2 matrices that do not commute.
- 6. Let a_0, \ldots, a_n be any scalars in \mathbb{F} . Consider the basis $1, x, \ldots, x^n$ of $\mathcal{P}(\mathbb{F})$ and the standard basis of \mathbb{F}^{n+1} . Write the matrix of the transformation

$$T: \mathcal{P}_n(\mathbb{F}) \to \mathbb{F}^{n+1}$$

 $p \to (p(a_0), p(a_1), \dots, p(a_n))$

with respect to these bases.

Discussion Questions

- 7. Suppose V is finite dimensional and S, T, $U \in \mathcal{L}(V)$ and STU = I. Show that T is invertible and that $T^{-1} = US$.
- 8. Suppose V is finite dimensional and $R, S, T \in \mathcal{L}(V)$ are such that *RST* is surjective. Prove S is injective.

$$(ST)(T^{1}S^{-1}) = S(TT^{-1})S^{-1} = SIS^{-1} = SS^{-1} = I$$

 $(T^{-1}S^{-1})(ST) = T^{-1}(S^{-1}S)T = T^{-1}IT = T^{-1}T = I$

- 2. One solution is example 3.68 in [Axl14].
- Basis for P₃(ℝ): x³, x², x, 1 Basis for P₂(ℝ): 3x², 2x, 1
- 5. An example of two matrices that do not commute are

$$\left(\begin{array}{rrr} 2 & 4 \\ 3 & 5 \end{array}\right), \left(\begin{array}{rrr} 1 & 1 \\ 2 & 1 \end{array}\right)$$

1.

4. Pick u_1, \ldots, u_k to be a basis for null *T*.

4. Pick u_1, \ldots, u_k to be a basis for null *T*. Extend to a basis $u_1, \ldots, u_k, v_1, \ldots, v_n$ of *V*.

4. Pick u_1, \ldots, u_k to be a basis for null *T*. Extend to a basis $u_1, \ldots, u_k, v_1, \ldots, v_n$ of *V*. As in the proof of Rank-Nullity, Tv_1, \ldots, Tv_n span range *T*.

4. Pick u_1, \ldots, u_k to be a basis for null *T*. Extend to a basis $u_1, \ldots, u_k, v_1, \ldots, v_n$ of *V*. As in the proof of Rank-Nullity, Tv_1, \ldots, Tv_n span range *T*. Extend this list to a basis $Tv_1, \ldots, Tv_n, w_1, \ldots, w_m$ of *W*.

Pick u₁,..., u_k to be a basis for null *T*. Extend to a basis u₁,..., u_k, v₁,..., v_n of *V*. As in the proof of Rank-Nullity, *Tv*₁,..., *Tv_n* span range *T*. Extend this list to a basis *Tv*₁,..., *Tv_n*, w₁,..., w_m of *W*. These are the desired bases as...

Pick u₁,..., u_k to be a basis for null *T*. Extend to a basis u₁,..., u_k, v₁,..., v_n of *V*. As in the proof of Rank-Nullity, *Tv*₁,..., *Tv_n* span range *T*. Extend this list to a basis *Tv*₁,..., *Tv_n*, w₁,..., w_m of *W*. These are the desired bases as...

$$Tv_{1} = 1 \cdot Tv_{1} + 0 \cdot T_{2} + 0 \cdot w_{1} + \dots + 0 \cdot w_{m}$$

$$Tv_{2} = 0 \cdot Tv_{1} + 1 \cdot T_{2} + 0 \cdot w_{1} + \dots + 0 \cdot w_{m}$$

:

$$Tv_{n} = 0 \cdot Tv_{1} + \dots + 1 \cdot T_{n} + 0 \cdot w_{1} + \dots + 0 \cdot w_{m}$$

Pick u₁,..., u_k to be a basis for null *T*. Extend to a basis u₁,..., u_k, v₁,..., v_n of *V*. As in the proof of Rank-Nullity, *Tv*₁,..., *Tv_n* span range *T*. Extend this list to a basis *Tv*₁,..., *Tv_n*, w₁,..., w_m of *W*. These are the desired bases as...

$$Tv_{1} = 1 \cdot Tv_{1} + 0 \cdot T_{2} + 0 \cdot w_{1} + \dots + 0 \cdot w_{m}$$

$$Tv_{2} = 0 \cdot Tv_{1} + 1 \cdot T_{2} + 0 \cdot w_{1} + \dots + 0 \cdot w_{m}$$

:

$$Tv_{n} = 0 \cdot Tv_{1} + \dots + 1 \cdot T_{n} + 0 \cdot w_{1} + \dots + 0 \cdot w_{n}$$

... giving the desired matrix form.

- 6. This is the Vandermonde matrix.
- 7. Using prop'n from lecture, (ST)U = I implies U(ST) = I. This implies $US = T^{-1}$.
- 8. *RST* surjective implies *R*(*ST*) invertible. *R*(*ST*) invertible implies *ST* invertible. *ST* invertible implies *S* is invertible which implies *S* is surjective.

[Ax114] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Cham, 2014.