MATH 110: Linear Algebra

Final Study Guide

Instructor Franny Dean

Instructions: You will be able to use any printed or written notes, but no internet, digital notes, or textbooks.

- 1. Midterm study terms \oplus the following:
 - Eigenvalue
 - Eigenvector
 - Polynomials of operators
 - Upper triangular matrix, diagonal matrix
 - Inner product, properties
 - Euclidean inner product
 - Norm, basic properties
 - Orthogonal
 - Orthonormal
 - Orthogonal complement, basic properties
 - Orthogonal projection, basic properties
 - Adjoint
 - Self-adjoint operator
 - Normal operator
 - Positive operator
 - Square root
 - Isometries
 - Generalized eigenvector, generalized eigenspace
 - Nilpotent operator
 - Algebraic multiplicity
 - Geometric multiplicity
 - Block diagonal matrix
 - Characteristic polynomial
 - Minimal polynomial
 - Jordan basis
 - Trace, basis properties
 - Determinant, basis properties
- 2. Computations:
 - How to compute eigenvalues, eigenspaces
 - Computing the matrix of an operator
 - Computing generalized eigenspaces
 - Computations with characteristic and minimal polynomials

- Jordan Form for an operator
- 3. Key results and tools to review:
 - Equivalent conditions to be an eigenvector (Axler 5.6)
 - Linear independence of eigenvectors
 - Every operator on a complex vector space has an eigenvalue
 - Conditions for an upper triangular matrix
 - Over \mathbb{C} , every matrix has an upper-triangular form with respect to some basis
 - What does upper-triangular form tell us about invertibility, eigenvalues?
 - Conditions for diagonalizability
 - Pythagorean theorem
 - Orthogonal decomposition
 - Cauchy-Schwarz
 - Triangle-Inequality
 - Norm of a linear combination (Axler 6.25)
 - Writing a vector as a linear combination of an orthonormal basis (Axler 6.30)
 - Gram-Schmidt
 - Existence of orthonormal basis
 - Schur's theorem
 - Riesz Representation Theorem
 - $\bullet \ V = U \oplus U^{\perp}$
 - Matrix of T^* with respect to an orthonormal basis
 - Eigenvalues of self-adjoint operators are real
 - Normal if and only if $||Tv|| = ||T^*v||$
 - Complex and real spectral theorems
 - Characterizing positive operators
 - Characterizing isometries
 - Increasing sequence of null spaces and termination (Axler 8.2-8.4)
 - $V = \text{null } T^{\dim V} \oplus \text{range} T^{\dim V}$
 - $G(\lambda, T) = \text{null } (T \lambda I)^{\dim V}$
 - Matrix of a nilpotent operator
 - Description of operators on complex vector spaces
 - Over \mathbb{C} , invertible operators have square roots
 - Cayley-Hamilton
 - Eigenvalues are zeros of minimal polynomial
 - Jordan Form exists for any $T \in \mathcal{L}(V)$ where V is complex