MATH 110: Linear Algebra

Final Study Guide

Instructor Franny Dean

Instructions: You will be able to use any printed or written notes, but no internet, digital notes, or textbooks.

1. Midterm study terms \oplus the following:

- Eigenvalue
- Eigenvector
- Polynomials of operators
- Upper triangular matrix, diagonal matrix
- Inner product, properties
- Euclidean inner product
- Norm, basic properties
- Orthogonal
- Orthonormal
- Orthogonal complement, basic properties
- Orthogonal projection, basic properties
- Adjoint
- Self-adjoint operator
- Normal operator
- Positive operator
- Square root
- Isometries
- Generalized eigenvector, generalized eigenspace
- Nilpotent operator
- Algebraic multiplicity
- Geometric multiplicity
- Block diagonal matrix
- Characteristic polynomial
- Minimal polynomial
- Jordan basis
- Trace, basis properties
- Determinant, basis properties

2. Computations:

- How to compute eigenvalues, eigenspaces
- Computing the matrix of an operator
- Computing generalized eigenspaces
- Computations with characteristic and minimal polynomials
- Jordan Form for an operator

3. Key results and tools to review:

- Equivalent conditions to be an eigenvector (Axler 5.6)
- Linear independence of eigenvectors
- Every operator on a complex vector space has an eigenvalue
- Conditions for an upper triangular matrix
- Over \mathbb{C}, every matrix has an upper-triangular form with respect to some basis
- What does upper-triangular form tell us about invertibility, eigenvalues?
- Conditions for diagonalizability
- Pythagorean theorem
- Orthogonal decomposition
- Cauchy-Schwarz
- Triangle-Inequality
- Norm of a linear combination (Axler 6.25)
- Writing a vector as a linear combination of an orthonormal basis (Axler 6.30)
- Gram-Schmidt
- Existence of orthonormal basis
- Schur's theorem
- Riesz Representation Theorem
- $V=U \oplus U^{\perp}$
- Matrix of T^{*} with respect to an orthonormal basis
- Eigenvalues of self-adjoint operators are real
- Normal if and only if $\|T v\|=\left\|T^{*} v\right\|$
- Complex and real spectral theorems
- Characterizing positive operators
- Characterizing isometries
- Increasing sequence of null spaces and termination (Axler 8.2-8.4)
- $V=$ null $T^{\operatorname{dim} V} \oplus \operatorname{range} T^{\operatorname{dim} V}$
- $G(\lambda, T)=\operatorname{null}(T-\lambda I)^{\operatorname{dim} V}$
- Matrix of a nilpotent operator
- Description of operators on complex vector spaces
- Over \mathbb{C}, invertible operators have square roots
- Cayley-Hamilton
- Eigenvalues are zeros of minimal polynomial
- Jordan Form exists for any $T \in \mathcal{L}(V)$ where V is complex

