MATH 110: LINEAR ALGEBRA

Homework 2

Instructor Franny Dean

Instructions: Please type your solutions to the following in LaTeX and upload your solutions to Gradescope by 4:10pm on **Wednesday**, **June 28**, **2023**. You are highly encouraged to work with your classmates, but your write up must be done independently without looking at any other student's solutions.

- 1. (Axler 1.C.9) A function $f : \mathbb{R} \to \mathbb{R}$ is *periodic* if there exists a positive number p such that f(x) = f(x+p) for all $x \in \mathbb{R}$. Is the set of periodic functions from \mathbb{R} to \mathbb{R} a subspace of $\mathbb{R}^{\mathbb{R}}$? Prove it.
- 2. (Axler 1.C.10) Suppose $U_1, U_2 \subseteq V$ as subspaces. Prove that the intersection $U_1 \cap U_2$ is a subspace.
- 3. (Axler 1.C.24) A function $f : \mathbb{R} \to \mathbb{R}$ is called **even** if f(-x) = f(x) for all $x \in \mathbb{R}$. A function $f : \mathbb{R} \to \mathbb{R}$ is called **odd** if f(-x) = -f(x) for all $x \in \mathbb{R}$. Let U_e denote the set of real-valued even functions and U_o the real-valued odd functions on \mathbb{R} . Show $\mathbb{R}^{\mathbb{R}} = U_e \oplus U_o$.
- 4. (Axler 2.A.3) Find a number t such that (3, 1, 4), (2, -3, 5), (5, 9, -t) is not linearly independent in \mathbb{R}^3 .
- 5. (Axler 2.A.11) Suppose v_1, \ldots, v_m is linearly independent in V and $w \in V$. Show that v_1, \ldots, v_m, w is linearly independent if and only if $w \notin \operatorname{span}(v_1, \ldots, v_m)$.