MATH 110: Linear Algebra

Homework 2

Instructor Franny Dean

Instructions: Please type your solutions to the following in LaTeX and upload your solutions to Gradescope by $4: 10 \mathrm{pm}$ on Wednesday, June 28, 2023. You are highly encouraged to work with your classmates, but your write up must be done independently without looking at any other student's solutions.

1. (Axler 1.C.9) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is periodic if there exists a positive number p such that $f(x)=$ $f(x+p)$ for all $x \in \mathbb{R}$. Is the set of periodic functions from \mathbb{R} to \mathbb{R} a subspace of $\mathbb{R}^{\mathbb{R}}$? Prove it.
2. (Axler 1.C.10) Suppose $U_{1}, U_{2} \subseteq V$ as subspaces. Prove that the intersection $U_{1} \cap U_{2}$ is a subspace.
3. (Axler 1.C.24) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called even if $f(-x)=f(x)$ for all $x \in \mathbb{R}$. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called odd if $f(-x)=-f(x)$ for all $x \in \mathbb{R}$. Let U_{e} denote the set of real-valued even functions and U_{o} the real-valued odd functions on \mathbb{R}. Show $\mathbb{R}^{\mathbb{R}}=U_{e} \oplus U_{o}$.
4. (Axler 2.A.3) Find a number t such that $(3,1,4),(2,-3,5),(5,9,-t)$ is not linearly independent in \mathbb{R}^{3}.
5. (Axler 2.A.11) Suppose v_{1}, \ldots, v_{m} is linearly independent in V and $w \in V$. Show that v_{1}, \ldots, v_{m}, w is linearly independent if and only if $w \notin \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$.
