MATH 110: LINEAR ALGEBRA

Homework 3

Instructor Franny Dean

Instructions: Please type your solutions to the following in LaTeX and upload your solutions to Gradescope by 4:10pm on **Wednesday**, **July 5**, **2023**. You are highly encouraged to work with your classmates, but your write up must be done independently without looking at any other student's solutions.

- 1. (Axler 2.B.6) Suppose v_1, v_2, v_3, v_4 is a basis of V. Prove that $v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4$ is also a basis of V.
- 2. (Axler 2.C.12) Suppose U and W are both five-dimensional subspaces of \mathbb{R}^9 . Prove $U \cap W \neq \{0\}$.
- 3. (Axler 3.A.10) Suppose U is a subspace of V with $U \neq V$. Suppose $S \in \mathcal{L}(U, V)$ and $S \neq 0$ (which means $Su \neq 0$ for some $u \in U$). Define $T: V \to W$ by

$$Tv = \begin{cases} Sv & \text{if } v \in U \\ 0 & \text{if } v \in V \text{ but } v \notin U. \end{cases}$$

Prove that T is not a linear map on V.

- 4. (Axler 3.A.4) Suppose $T \in \mathcal{L}(V, W)$ and v_1, \ldots, v_m is a list of vectors in V such that Tv_1, \ldots, Tv_m are linearly independent. Prove that v_1, \ldots, v_m are linearly independent.
- 5. (Axler 3.B.8) Suppose V and W are finite-dimensional with dim $V \ge \dim W \ge 2$. Show that

 ${T \in \mathcal{L}(V, W) : T \text{ is not surjective }}$

is not a subspace of $\mathcal{L}(V, W)$.