MATH 110: Linear Algebra

Homework 3

Instructor Franny Dean

Instructions: Please type your solutions to the following in LaTeX and upload your solutions to Gradescope by $4: 10 \mathrm{pm}$ on Wednesday, July 5, 2023. You are highly encouraged to work with your classmates, but your write up must be done independently without looking at any other student's solutions.

1. (Axler 2.B.6) Suppose $v_{1}, v_{2}, v_{3}, v_{4}$ is a basis of V. Prove that $v_{1}+v_{2}, v_{2}+v_{3}, v_{3}+v_{4}, v_{4}$ is also a basis of V.
2. (Axler 2.C.12) Suppose U and W are both five-dimensional subspaces of \mathbb{R}^{9}. Prove $U \cap W \neq\{0\}$.
3. (Axler 3.A.10) Suppose U is a subspace of V with $U \neq V$. Suppose $S \in \mathcal{L}(U, V)$ and $S \neq 0$ (which means $S u \neq 0$ for some $u \in U)$. Define $T: V \rightarrow W$ by

$$
T v= \begin{cases}S v & \text { if } v \in U \\ 0 & \text { if } v \in V \text { but } v \notin U\end{cases}
$$

Prove that T is not a linear map on V.
4. (Axler 3.A.4) Suppose $T \in \mathcal{L}(V, W)$ and v_{1}, \ldots, v_{m} is a list of vectors in V such that $T v_{1}, \ldots, T v_{m}$ are linearly independent. Prove that v_{1}, \ldots, v_{m} are linearly independent.
5. (Axler 3.B.8) Suppose V and W are finite-dimensional with $\operatorname{dim} V \geq \operatorname{dim} W \geq 2$. Show that

$$
\{T \in \mathcal{L}(V, W): T \text { is not surjective }\}
$$

is not a subspace of $\mathcal{L}(V, W)$.

