MATH 110: LINEAR ALGEBRA

Homework 5

Instructor Franny Dean

Instructions: Please type your solutions to the following in LaTeX and upload your solutions to Gradescope by 4:10pm on **Wednesday**, **July 19**, **2023**. You are highly encouraged to work with your classmates, but your write up must be done independently without looking at any other student's solutions.

- 1. Read Axler Chapter 4.
- 2. (Axler 3.F.13) Define $T : \mathbb{R}^3 \to \mathbb{R}^2$ by T(x, y, z) = (4x + 5y + 6z, 7x + 8y + 9z). Suppose ϕ_1, ϕ_2 denotes the dual basis of the standard basis of \mathbb{R}^2 and ψ_1, ψ_2, ψ_3 denotes the dual basis of the standard basis of \mathbb{R}^3 .
 - (a) Describe the linear functionals $T'(\phi_1)$ and $T'(\phi_2)$.
 - (b) Write $T'(\phi_1)$ and $T'(\phi_2)$ as linear combinations of ψ_1, ψ_2, ψ_3 .
- 3. (Axler 5.A.1) Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V.
 - (a) Prove that if $U \subset \text{null } T$, then U is invariant under T.
 - (b) Prove that if range $T \subset U$, then U is invariant under T.
- 4. (Axler 5.A.7) Suppose $T \in \mathcal{L}(\mathbb{R}^2)$ defined by T(x, y) = (-3y, x). Find the eigenvalues of T.
- 5. (Axler 5.A.8) Define $T \in \mathcal{L}(\mathbb{F}^2)$ by T(w, z) = (z, w). Find all eigenvalues and eigenvectors of T.
- 6. (Axler 5.A.20) Find all eigenvalues and eigenvectors of the backward shift operator $T \in \mathcal{L}(\mathbb{F}^{\infty})$ defined by $T(z_1, z_2, z_3, \ldots) = (z_2, z_3, \ldots)$.