MATH 110: Linear Algebra

Homework 5

Instructor Franny Dean

Instructions: Please type your solutions to the following in LaTeX and upload your solutions to Gradescope by $4: 10 \mathrm{pm}$ on Wednesday, July 19, 2023. You are highly encouraged to work with your classmates, but your write up must be done independently without looking at any other student's solutions.

1. Read Axler Chapter 4.
2. (Axler 3.F.13) Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $T(x, y, z)=(4 x+5 y+6 z, 7 x+8 y+9 z)$. Suppose ϕ_{1}, ϕ_{2} denotes the dual basis of the standard basis of \mathbb{R}^{2} and $\psi_{1}, \psi_{2}, \psi_{3}$ denotes the dual basis of the standard basis of \mathbb{R}^{3}.
(a) Describe the linear functionals $T^{\prime}\left(\phi_{1}\right)$ and $T^{\prime}\left(\phi_{2}\right)$.
(b) Write $T^{\prime}\left(\phi_{1}\right)$ and $T^{\prime}\left(\phi_{2}\right)$ as linear combinations of $\psi_{1}, \psi_{2}, \psi_{3}$.
3. (Axler 5.A.1) Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V.
(a) Prove that if $U \subset$ null T, then U is invariant under T.
(b) Prove that if range $T \subset U$, then U is invariant under T.
4. (Axler 5.A.7) Suppose $T \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ defined by $T(x, y)=(-3 y, x)$. Find the eigenvalues of T.
5. (Axler 5.A.8) Define $T \in \mathcal{L}\left(\mathbb{F}^{2}\right)$ by $T(w, z)=(z, w)$. Find all eigenvalues and eigenvectors of T.
6. (Axler 5.A.20) Find all eigenvalues and eigenvectors of the backward shift operator $T \in \mathcal{L}\left(\mathbb{F}^{\infty}\right)$ defined by $T\left(z_{1}, z_{2}, z_{3}, \ldots\right)=\left(z_{2}, z_{3}, \ldots\right)$.
