MATH 110: Linear Algebra

Homework 6

Instructor Franny Dean

Instructions: Please type your solutions to the following in LaTeX and upload your solutions to Gradescope by $4: 10 \mathrm{pm}$ on Wednesday, July 26, 2023. You are highly encouraged to work with your classmates, but your write up must be done independently without looking at any other student's solutions. One of these 6 questions will not be graded.

1. (Axler 5.B.2) Suppose $T \in \mathcal{L}(V)$ and $(T-2 I)(T-3 I)(T-4 I)=0$. Suppose λ is an eigenvalue of T. Prove that $\lambda=2$ or $\lambda=3$ or $\lambda=4$.
2. (Axler 5.C.16) The Fibonnacci sequence F_{1}, F_{2}, \ldots is defined by

$$
F_{1}=1, F_{2}=1, \text { and } F_{n}=F_{n-2}+F_{n-1} \text { for } n \geq 3
$$

Define $T \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ by $T(x, y)=(y, x+y)$.
(a) Show that $T^{n}(0,1)=\left(F_{n}, F_{n+1}\right)$ for each positive integer n.
(b) Find the eigenvalues of T.
(c) Find a basis of \mathbb{R}^{2} consisting of eigenvectors of T.
3. (Axler 6.A.5) Suppose $T \in \mathcal{L}(V)$ for finite-dimensional V is such that $\|T v\| \leq\|v\|$ for every $v \in V$. Prove that $T-\sqrt{2} I$ is invertible.
4. (Axler 6.B.7) Find a polynomial $q \in \mathcal{P}_{2}(\mathbb{R})$ such that $p\left(\frac{1}{2}\right)=\int_{0}^{1} p(x) q(x) d x$ for every $p \in \mathcal{P}_{2}(\mathbb{R})$.
5. (Axler 6.C.2) Suppose U is a finite-dimensional subspace of V. Prove that $U^{\perp}=\{0\}$ if and only if $U=V$.
6. (Axler 6.C.11) In \mathbb{R}^{4}, let $U=\operatorname{span}((1,1,0,0),(1,1,1,2))$. Find $u \in U$ such that $\|u-(1,2,3,4)\|$ is as small as possible.

