MATH 110: LINEAR ALGEBRA

Homework 6

Instructor Franny Dean

Instructions: Please type your solutions to the following in LaTeX and upload your solutions to Gradescope by 4:10pm on **Wednesday**, **July 26**, **2023**. You are highly encouraged to work with your classmates, but your write up must be done independently without looking at any other student's solutions. One of these 6 questions will not be graded.

- 1. (Axler 5.B.2) Suppose $T \in \mathcal{L}(V)$ and (T 2I)(T 3I)(T 4I) = 0. Suppose λ is an eigenvalue of T. Prove that $\lambda = 2$ or $\lambda = 3$ or $\lambda = 4$.
- 2. (Axler 5.C.16) The Fibonnacci sequence F_1, F_2, \ldots is defined by

$$F_1 = 1, F_2 = 1$$
, and $F_n = F_{n-2} + F_{n-1}$ for $n \ge 3$.

Define $T \in \mathcal{L}(\mathbb{R}^2)$ by T(x, y) = (y, x + y).

- (a) Show that $T^n(0,1) = (F_n, F_{n+1})$ for each positive integer n.
- (b) Find the eigenvalues of T.
- (c) Find a basis of \mathbb{R}^2 consisting of eigenvectors of T.
- 3. (Axler 6.A.5) Suppose $T \in \mathcal{L}(V)$ for finite-dimensional V is such that $||Tv|| \leq ||v||$ for every $v \in V$. Prove that $T - \sqrt{2}I$ is invertible.
- 4. (Axler 6.B.7) Find a polynomial $q \in \mathcal{P}_2(\mathbb{R})$ such that $p\left(\frac{1}{2}\right) = \int_0^1 p(x)q(x)dx$ for every $p \in \mathcal{P}_2(\mathbb{R})$.
- 5. (Axler 6.C.2) Suppose U is a finite-dimensional subspace of V. Prove that $U^{\perp} = \{0\}$ if and only if U = V.
- 6. (Axler 6.C.11) In \mathbb{R}^4 , let U = span((1, 1, 0, 0), (1, 1, 1, 2)). Find $u \in U$ such that ||u (1, 2, 3, 4)|| is as small as possible.