MATH 110: LINEAR ALGEBRA

Homework 7

Instructor Franny Dean

Instructions: Please type your solutions to the following in LaTeX and upload your solutions to Gradescope by 4:10pm on Wednesday, August 2, 2023. You are highly encouraged to work with your classmates, but your write up must be done independently without looking at any other student's solutions.

- 1. (Axler 7.A.2,4)
 - (a) S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Prove that λ is an eigenvalue of T if and only if $\overline{\lambda}$ is an eigenvalue of T^* .
 - (b) S'pose more generally, $T \in \mathcal{L}(V, W)$. Prove that T is injective if and only if T^* is surjective. This implies that T is surjective if and only if T^* is injective. Why?
- 2. (Axler 7.A.15) Fix $u, x \in V$. Define $T \in \mathcal{L}(V)$ by $Tv = \langle v, u \rangle x$ for every $v \in V$.
 - (a) Suppose $\mathbb{F} = \mathbb{R}$. Prove that T is self-adjoint if and only if u, x are linearly dependent.
 - (b) Prove that T is normal if and only if u, x is linearly dependent.
- 3. (Axler 7.B.9,11)
 - (a) Suppose V is a complex inner product space. Prove that every normal operator has a square root.
 - (b) Prove or give a counterexample: every self-adjoint operator on V over \mathbb{C} or \mathbb{R} has a cube root. (An operator $S \in \mathcal{L}(V)$ is called a cube root of $T \in \mathcal{L}(V)$ if $S^3 = T$.)
- 4. (Axler 7.B.6) Prove that a normal operator on a complex inner product space is self-adjoint if and only if its eigenvalues are real.
- 5. (Axler 7.C.2) Suppose T is a positive operator on V. Suppose $v, w \in V$ such that Tv = w and Tw = v. Prove v = w.