MATH 110: Linear Algebra

Homework 7

Instructor Franny Dean

Instructions: Please type your solutions to the following in LaTeX and upload your solutions to Gradescope by $4: 10 \mathrm{pm}$ on Wednesday, August 2, 2023. You are highly encouraged to work with your classmates, but your write up must be done independently without looking at any other student's solutions.

1. (Axler 7.A.2,4)
(a) S'pose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Prove that λ is an eigenvalue of T if and only if $\bar{\lambda}$ is an eigenvalue of T^{*}.
(b) S'pose more generally, $T \in \mathcal{L}(V, W)$. Prove that T is injective if and only if T^{*} is surjective. This implies that T is surjective if and only if T^{*} is injective. Why?
2. (Axler 7.A.15) Fix $u, x \in V$. Define $T \in \mathcal{L}(V)$ by $T v=\langle v, u\rangle x$ for every $v \in V$.
(a) Suppose $\mathbb{F}=\mathbb{R}$. Prove that T is self-adjoint if and only if u, x are linearly dependent.
(b) Prove that T is normal if and only if u, x is linearly dependent.
3. (Axler 7.B.9,11)
(a) Suppose V is a complex inner product space. Prove that every normal operator has a square root.
(b) Prove or give a counterexample: every self-adjoint operator on V over \mathbb{C} or \mathbb{R} has a cube root. (An operator $S \in \mathcal{L}(V)$ is called a cube root of $T \in \mathcal{L}(V)$ if $S^{3}=T$.)
4. (Axler 7.B.6) Prove that a normal operator on a complex inner product space is self-adjoint if and only if its eigenvalues are real.
5. (Axler 7.C.2) Suppose T is a positive operator on V. Suppose $v, w \in V$ such that $T v=w$ and $T w=v$. Prove $v=w$.
